JPH03193826A - Method for controlling strip temperature in continuous annealing furnace - Google Patents

Method for controlling strip temperature in continuous annealing furnace

Info

Publication number
JPH03193826A
JPH03193826A JP33285589A JP33285589A JPH03193826A JP H03193826 A JPH03193826 A JP H03193826A JP 33285589 A JP33285589 A JP 33285589A JP 33285589 A JP33285589 A JP 33285589A JP H03193826 A JPH03193826 A JP H03193826A
Authority
JP
Japan
Prior art keywords
flow rate
fuel flow
line speed
strip
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33285589A
Other languages
Japanese (ja)
Inventor
Kuniaki Tauchi
田内 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33285589A priority Critical patent/JPH03193826A/en
Publication of JPH03193826A publication Critical patent/JPH03193826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute high accurate control of strip temp. by using dynamic heat transfer model to the strip temp. in a furnace, deciding fuel set value corresponding to line speed and variation of strip condition at the prescribed control cycle and if necessary, resetting the control cycle. CONSTITUTION:The fuel rate supplied into a radiant tube set to heating zone in a continuous annealing furnace, is adjusted so as to become the fuel flow rate set value to control the strip temp. at outlet of the heating zone. In the above strip temp. control method, by using the preset dynamic heat transfer model to the strip temp. in the furnace, the optimum fuel flow rate time series is calculated at the prescribed control cycle. Then, for the variation of the current line speed and strip condition from the current to the prescribed time in further, calculation for causing the strip temp. to follow the target value with the min. deviation is executed. By this method, the above fuel flow rate set value is decided, outputted and this operation is repeated at every control cycle. Further, at the same time when the variation of line speed becomes the prescribed value or more, the above control cycle is reset, and immediately the same process as the above is executed. By this method, always the optimum fuel flow rate is calculated and the fuel flow rate set value is decided to maintain the variation of strip temp. to min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はラジアントチューブに供給する燃料流量を操作
して板温を制御する連続焼鈍炉の板温制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling a plate temperature in a continuous annealing furnace, which controls the plate temperature by manipulating the flow rate of fuel supplied to a radiant tube.

C従来の技術〕 連続焼鈍炉とは冷間圧延後の薄板コイルの後端と次コイ
ルの先端とを溶接し、そのストリップに連続的に加熱、
冷却の熱処理を施す設備である。
C. Prior Art] A continuous annealing furnace is a process in which the trailing end of a thin plate coil after cold rolling is welded to the tip of the next coil, and the strip is continuously heated.
This is equipment that performs cooling heat treatment.

すなわち第3図に示すように加熱帯2、均熱帯3、第1
次冷却帯4、第2次冷却帯5、第3次冷却帯6から構成
され、各帯で第4図のようなヒートサイクルを実現させ
る。
In other words, as shown in Figure 3, there are heating zone 2, soaking zone 3, and 1st zone.
It is composed of a secondary cooling zone 4, a secondary cooling zone 5, and a tertiary cooling zone 6, and a heat cycle as shown in FIG. 4 is realized in each zone.

第5図はこのうち加熱帯2の概略構成図である。FIG. 5 is a schematic diagram of the heating zone 2.

加熱帯2では炉内にラジアントチューブ11を平行に複
数列設け、このラジアントチューブ11内で燃料ガスを
燃焼させて加熱する。すなわち、ロール12で方向転換
しながらラジアントチューブ11の・列間を上下に通過
するストリップ13を輻射熱によって加熱する。加熱帯
2における従来の板温制御は炉内雰囲気温度(炉温)を
所定値にするように燃料流量を調節することにより、間
接的に行なっている。すなわち第5図において14は炉
温検出器、l5は炉温調節計、16は燃料流量調節計で
あり、これらにより長平方向に沿った複数個のゾーン毎
の炉温制御系A、B・・・−・・・・−を構成している
。なお、図示していないがゾーンごとの燃料流量は燃料
流量検出器で検出された燃料流量が所定値になるように
各ゾーンごとの燃料流量調節計16による制御弁操作に
よって制御される。さらに板温検出器22による板温検
出値が目標値に等しくなるように運転員が炉温設定値を
修正する。
In the heating zone 2, a plurality of parallel rows of radiant tubes 11 are provided in the furnace, and fuel gas is combusted within the radiant tubes 11 for heating. That is, the strip 13 passing vertically between the rows of radiant tubes 11 while changing direction with the roll 12 is heated by radiant heat. Conventional plate temperature control in the heating zone 2 is performed indirectly by adjusting the fuel flow rate so that the furnace atmosphere temperature (furnace temperature) is at a predetermined value. That is, in FIG. 5, 14 is a furnace temperature detector, 15 is a furnace temperature controller, and 16 is a fuel flow rate controller, which control the furnace temperature control system A, B, etc. for each zone along the longitudinal direction.・-・・・・・・- is comprised. Although not shown, the fuel flow rate for each zone is controlled by the control valve operation by the fuel flow rate controller 16 for each zone so that the fuel flow rate detected by the fuel flow rate detector becomes a predetermined value. Further, the operator corrects the furnace temperature setting so that the plate temperature detected by the plate temperature detector 22 becomes equal to the target value.

また炉温の時定数は20分以上もあるため、板温の応答
性改善のため、炉温−燃料流量カスケート制御でなく燃
料流量を直接操作する板温制御方法が提案されている。
Furthermore, since the time constant of the furnace temperature is 20 minutes or more, a plate temperature control method that directly controls the fuel flow rate instead of the furnace temperature-fuel flow rate cascade control has been proposed in order to improve the responsiveness of the plate temperature.

たとえば弊社等の出願した特開昭64−28329によ
れば、対象コイルの焼鈍前に炉内板温の動的モデルを用
いて、対象コイルの焼鈍条件(板厚、板温目標値、ライ
ンスピード目標値など)変化に対して板温偏差を最小限
にする最適燃料流量時系列を演算し、設定するフィード
フォワード制御法が提案されてりる。
For example, according to Japanese Patent Application Laid-Open No. 64-28329 filed by our company, a dynamic model of the furnace plate temperature is used to determine the annealing conditions (plate thickness, target plate temperature, line speed, etc.) of the target coil before annealing the target coil. A feedforward control method has been proposed that calculates and sets an optimal fuel flow rate time series that minimizes plate temperature deviation in response to changes in target values, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の装置では、最大生産量が得られるように自動的に
プロセス計算機がラインスピード目標値を演算し、設定
できる運転レベルに至っていないため、ラインスピード
設定は運転員が行なっている。また鋼板(ストリップ)
の蛇行や、入側にある溶接機での溶接トラブルによる溶
接時間の確保などのため運転員が手動でスピードダウン
させることが多い。
In conventional equipment, the process computer automatically calculates the line speed target value in order to obtain the maximum production volume, and since the line speed has not yet reached a settable operating level, the line speed is set by the operator. Also steel plate (strip)
Operators often manually slow down the speed to ensure welding time due to meandering or welding problems with the welding machine on the entry side.

したがって対象コイルの焼鈍前にラインスピードの目標
値とその変更タイミングを前提条件とする前述の最適燃
料流量を演算し設定するフィードフォワード制御法の実
現は困難である。言いかえれば従来の運転レベルで実用
的な板温制御を行なうには、ラインスピードは手動設定
することを前提とした制御方法が必要である。
Therefore, it is difficult to realize the feedforward control method in which the above-mentioned optimum fuel flow rate is calculated and set based on the line speed target value and its change timing as prerequisites before annealing the target coil. In other words, in order to perform practical plate temperature control at a conventional operating level, a control method is required that assumes that the line speed is manually set.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

すなわち、連続焼鈍炉の板温制御方法として、連続焼鈍
炉の加熱帯に配設したラジアントチューブに供給する燃
料流量を燃料流量設定値になるよう操作して加熱帯出口
の板温を制御する方法において、あらかじめ作成した炉
内板温の動的伝熱モデルを用いて所定の制御周期で現在
のラインスピードおよび現在から将来の所定時間までの
板条件(板厚、板幅、板温目標値)変化に対して板温を
目標値との最小限のはずれで追従させる最適燃料流量時
系列を真出し、上記燃料流量設定値を決めるとともに、
ラインスピードの変化が所定値以上になると同時に前記
制御周期をリセ・ントし、即座に前記と同様の工程を実
施するようにした。
That is, as a method for controlling the plate temperature of a continuous annealing furnace, the plate temperature at the outlet of the heating zone is controlled by controlling the fuel flow rate supplied to the radiant tube arranged in the heating zone of the continuous annealing furnace so as to reach the fuel flow rate set value. , the current line speed and plate conditions (plate thickness, plate width, plate temperature target value) from now to a predetermined time in the future are calculated at a predetermined control cycle using a dynamic heat transfer model of plate temperature in the furnace created in advance. Determine the optimal fuel flow time series that allows the plate temperature to follow changes with the minimum deviation from the target value, determine the above fuel flow setting value, and
As soon as the change in line speed exceeds a predetermined value, the control cycle is reset and the same steps as described above are immediately performed.

〔作用〕[Effect]

上記手段により、ラインスピードの変化が所定値を越え
ないときは、あらかじめ作成された炉内板温の動的伝熱
モデルにより所定の制御周期で現在のラインスピードお
よび現在から将来の所定時間までの板条件(板厚、板幅
、板温目標値)変化に対して板温を目標値との最小限の
はずれで追従させる最適燃料流量時系列が算出され、燃
料流量設定値が決められ、同燃料流量設定値になるよう
燃料流量が操作される。またラインスピードの変化が所
定値以上になると同時に前記制御周期がリセットされ、
即座に前記と同様の工程が実施される。
When the change in line speed does not exceed a predetermined value by the above means, a dynamic heat transfer model of the furnace plate temperature created in advance is used to calculate the current line speed and the change from the present to a predetermined time in the future in a predetermined control cycle. The optimal fuel flow time series that allows the plate temperature to follow changes in plate conditions (plate thickness, plate width, plate temperature target value) with the minimum deviation from the target value is calculated, the fuel flow rate set value is determined, and the same The fuel flow rate is manipulated to reach the fuel flow set point. Further, the control cycle is reset as soon as the change in line speed exceeds a predetermined value,
Steps similar to those described above are immediately carried out.

このようにして、ラインスピードが手動で減速される場
合でも、ただちに最適燃料流量が算出され、燃料流量設
定値が決められるので、板温変動が少なく維持されるよ
うになる。
In this way, even if the line speed is manually reduced, the optimal fuel flow rate is immediately calculated and the fuel flow rate set value is determined, so plate temperature fluctuations are kept small.

〔実施例〕〔Example〕

本発明の方法に係る一実施例を第1図と第2図により説
明する。
An embodiment of the method of the present invention will be described with reference to FIGS. 1 and 2.

なお、従来例で説明した部分は、同一の番号をつけ、説
明を省略し、この発明に関する部分を主体に説明する。
Note that the parts explained in the conventional example are given the same numbers and the explanation thereof is omitted, and the explanation will mainly be given to the parts related to the present invention.

第1図にて、加熱帯2の入口部にラインスピード検出器
17と入口板温検出器21が設けられる。ラインスピー
ド検出器17の出力は第1演算器18へ送られる。第1
演算器18の出力は第2演算器19、分配器20を経て
各ゾーンの燃料流量調節計16へつながれている。また
モデルのパラメータ推定器23は入口板温検出器21、
出口板温検出器22、ラインスピード検出器17等の信
号を入力し、自己の出力を第2演算器19へ送る。
In FIG. 1, a line speed detector 17 and an inlet plate temperature detector 21 are provided at the inlet of the heating zone 2. The output of the line speed detector 17 is sent to the first arithmetic unit 18. 1st
The output of the computing unit 18 is connected to the fuel flow rate controller 16 of each zone via a second computing unit 19 and a distributor 20. In addition, the model parameter estimator 23 includes an inlet plate temperature detector 21,
It inputs signals from the outlet plate temperature detector 22, line speed detector 17, etc., and sends its own output to the second computing unit 19.

以上の構成において、演算器18はラインスピード検出
器17により得たラインスピード検出値を用いて手動に
よるラインスピード“変化”を検知する。その方法はた
とえば次のようにする。
In the above configuration, the arithmetic unit 18 uses the line speed detection value obtained by the line speed detector 17 to detect a manual line speed "change". For example, the method is as follows.

(a)  一定の検出周期でラインスピードを検出する
(a) Line speed is detected at a constant detection cycle.

(b)  ラインスピードの時間変化率が所定値以上っ
まり式(1)を満足すれば即座に後述する最適燃料流量
時系列演算を開始させる。そうでなければ(a)にもど
る。
(b) If the time rate of change of the line speed exceeds a predetermined value and satisfies equation (1), the optimum fuel flow rate time series calculation, which will be described later, is immediately started. Otherwise, return to (a).

V(t)−V(t−1)≧E−−−−−−−・−m−−
−−・(1)Δt ここでν(t)ニラインスピード検出値(今回値)V(
t−1) ニラインスピード検出値(前回値)Δt  
:検出周期 ε  :定数 第2演算器19は一定の制御周期で後述する最適燃料流
量時系列演算を行ない、燃料流量設定値を出力する。ま
たゾーン配分器20は前記出力値を各ゾーンに所定の比
率で配分し、各ゾーンの燃料流量設定値として燃料流量
調節計16へ出力する。なお前述のように第1演算器1
8によりラインスピードが変化したことを検知すれば制
御周期をリセットし、即座に最適燃料流量時系列演算を
行ない、燃料流量設定値を出力する。以後一定の制御周
期で上記処理をくり返す。
V(t)−V(t−1)≧E−−−−−−・−m−−
--・(1) Δt where ν(t) second line speed detection value (current value) V(
t-1) Ni line speed detection value (previous value) Δt
: Detection period ε : Constant The second calculator 19 performs an optimum fuel flow rate time series calculation, which will be described later, at a constant control period, and outputs a fuel flow rate set value. The zone distributor 20 also distributes the output value to each zone at a predetermined ratio, and outputs it to the fuel flow rate controller 16 as a fuel flow rate set value for each zone. Note that as mentioned above, the first computing unit 1
8, if a change in line speed is detected, the control cycle is reset, the optimum fuel flow rate time series calculation is immediately performed, and the fuel flow rate setting value is output. Thereafter, the above process is repeated at a constant control cycle.

最適燃料流量時系列演算とは現時点のラインスピード検
出値や将来の板条件変化に対する板温偏差を最小限にす
る燃料流量時系列を求めることである。
The optimum fuel flow rate time series calculation is to find a fuel flow rate time series that minimizes the plate temperature deviation due to the current line speed detection value and future changes in plate conditions.

数学的に表現すればたとえば式(2)の評価間数Jを、
式(3)、(4)の制約条件のもとて最小にする燃料流
量G、(t)(0≦t≦T)を求めることである。
Expressing it mathematically, for example, the number of evaluations J in equation (2) is
The goal is to find the fuel flow rate G, (t) (0≦t≦T) that is minimized under the constraints of equations (3) and (4).

ただしG r (t)は制御周期ごとの階段関数とする
However, G r (t) is a step function for each control period.

Ts(t)≧Tss(t)−ΔTSL(0≦t≦T) 
 −43)1F≦CF (t)≦OF    (0≦t
≦T)  −−−一申・−(4)ここでTs(t)  
:板温   (0≦t≦T)Tss(t):板温目標値
(0≦t≦T)T   :対象計算区間 (現在時刻を1−0とする) Gy(t)  :燃料流量 (O≦t≦T)lF  :
下限値 UF  :上限値 ΔTSL  :板温許容偏差(低温側)式(3)の制約
条件を導入するのは、通常ヒートサイクルの許容偏差は
低温側よりも高温側の方が大きいためである。板条件(
板厚、板幅、板温目標値)の将来の時間的変化はライン
スピード検出値や、図示していないが溶接点検出器、ロ
ールに付けたパルスジェネレータを用いて溶接点トラッ
キングすることにより公知の技術で算出可能である。
Ts(t)≧Tss(t)−ΔTSL(0≦t≦T)
-43) 1F≦CF (t)≦OF (0≦t
≦T) ---Isshin・-(4) Here, Ts(t)
: Plate temperature (0≦t≦T) Tss (t): Plate temperature target value (0≦t≦T) T: Target calculation interval (current time is 1-0) Gy (t): Fuel flow rate (O ≦t≦T)lF:
Lower limit value UF : Upper limit value ΔTSL : Plate temperature allowable deviation (low temperature side) The constraint condition of formula (3) is introduced because the allowable deviation of the heat cycle is usually larger on the high temperature side than on the low temperature side. Board conditions (
Future temporal changes in plate thickness, plate width, plate temperature target values) are known by line speed detection values and by tracking welding points using a welding point detector and a pulse generator attached to the roll (not shown). It can be calculated using this technique.

また、最適計算の解法は従来の種々の文献で紹介されて
いる数理計画法(最大原理、動的計画法、乗数法など)
のどれかを使えばよい。
In addition, the solution method for optimal calculation is mathematical programming methods (maximum principle, dynamic programming, multiplier method, etc.) introduced in various conventional literature.
You can use either one.

最適計算にあたっては燃料流量、ラインスピード、板厚
、板幅と板温の動的挙動との関係を表現する動特性式が
必要である。たとえば、弊社等の出願による特開昭64
−184233においては次のような物理モデルが提案
されている。
For optimal calculations, a dynamic characteristic equation that expresses the relationship between the dynamic behavior of fuel flow rate, line speed, plate thickness, plate width, and plate temperature is required. For example, JP-A-64 filed by our company, etc.
-184233 proposes the following physical model.

(Tsx+273)’) A、・φ・σ −・・・・ (5) ここでT、: T’s、l: ΔH: A、: L : d : ■ : GF : C3: Ts  : KF : 炉温 平均板温 ストリップエンタルピ上昇分 ストリップ伝熱面積(=WXLX2) ストリップ長  W:板幅 板厚 ラインスピード 燃料流量 ストリップ比熱 ストリップ比重量 ステファンボルツマン定数 定数 C1φ:パラメータ 式(5)、(6)を使えば制御周期ごと、あるいはライ
ンスピードが変化した際、その時点のT、、T、、の推
定+Ii(これは前回の制御周期で計算されている。)
を初期値とし、現在のラインスピードV(定数となる。
(Tsx+273)') A,・φ・σ −・・・・ (5) Here, T: T's, l: ΔH: A,: L: d: ■: GF: C3: Ts: KF: Furnace Average plate temperature Strip enthalpy increase Strip heat transfer area (=WXLX2) Strip length W: Plate width Plate thickness Line speed Fuel flow rate Strip Specific heat strip Specific weight Stefan Boltzmann constant Constant C1φ: Use parameter formulas (5) and (6) For example, every control cycle or when the line speed changes, estimate T, , T, at that point + Ii (this is calculated in the previous control cycle).
is the initial value, and the current line speed V (becomes a constant).

)、将来の板条件(d(t)、W(t)およびTss(
t)は溶接点トラッキングにより時間関数として与えら
れる。)に対して板温挙動T s (t)を計算できる
。したがって最適計算により式(2)の評価関数を最小
にするGy(t)を求めGy(1)を出力する。
), future board conditions (d(t), W(t) and Tss(
t) is given as a function of time by weld point tracking. ), the plate temperature behavior T s (t) can be calculated. Therefore, Gy(t) that minimizes the evaluation function of equation (2) is determined by optimal calculation and Gy(1) is output.

(Gy(1)とは階段関数であるG y (t)のうち
現時点から1制御周期分の燃料流量計算値である。)第
2図は本実施例によるラインスピード「滅」時の板温制
御例である。数分後に板厚の厚い次コイルが通板されて
も板温は下限以下になることはなく、板温変動の小さい
運転ができている。
(Gy(1) is the fuel flow rate calculation value for one control period from the current point in Gy(t), which is a step function.) Figure 2 shows the plate temperature when the line speed is "low" according to this embodiment. This is an example of control. Even when the next coil with a thicker plate is passed several minutes later, the plate temperature does not fall below the lower limit, allowing operation with small plate temperature fluctuations.

なおモデルのパラメータ推定器23は、モデル化誤差や
プロセス特性変動などに対してモデル精度向上のため、
入口板温検出器21、出口板温検出器22による板温検
出値やラインスピード、板厚、板幅、炉温、燃料流量の
各実績値を用いてパラメータ修正を行なうものである。
Note that the model parameter estimator 23 is configured to improve model accuracy against modeling errors and process characteristic fluctuations.
Parameters are corrected using plate temperature detection values from the inlet plate temperature detector 21 and outlet plate temperature detector 22, and actual values of line speed, plate thickness, plate width, furnace temperature, and fuel flow rate.

パラメータ修正方法はたとえば上記特開昭64−184
233に提案されているように、一定期間のモデル計算
値と実績値との誤差が最小となるように式(5)、(6
)に含まれるパラメータC9φを修正する。
For example, the parameter correction method is described in the above-mentioned Japanese Patent Application Laid-Open No. 64-184.
As proposed in 233, formulas (5) and (6) are used to minimize the error between the model calculation value and the actual value for a certain period of time.
) is corrected.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によればラインスピードや
板条件(板厚、板幅、目標板温)の変化に対し、最適な
燃料流量操作をすることにより高精度な板温制御ができ
る。しかもラインスピードを手動設定せざるを得ない運
転レベルにおいて高精度な板温制御が実現できるため非
常に実用的である。
As explained above, according to the present invention, highly accurate plate temperature control can be performed by optimally controlling the fuel flow rate in response to changes in line speed and plate conditions (plate thickness, plate width, target plate temperature). Moreover, it is extremely practical because it can achieve highly accurate plate temperature control at operating levels where the line speed must be manually set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る連続焼鈍炉加熱帯およ
び板温制御B装置の構成図、第2図は同実施例の板温制
御例を示す図、第3図は従来の連続焼鈍炉の全体構成図
、第4図は同従来の連続焼鈍炉で熱処理するヒートサイ
クル図、第5図は同従来の連続焼鈍炉加熱帯および板温
制御装置の構成図である。 2・・・加熱帯、    12・・・ラジアントチュー
ブ、13・・・ストリップ、  16・・・燃料流量調
節計、17・・・ラインスピード検出器、 18、19・・・演真器、   20・・・ゾーン配分
器。 第1図
Fig. 1 is a configuration diagram of a continuous annealing furnace heating zone and plate temperature control device B according to an embodiment of the present invention, Fig. 2 is a diagram showing an example of plate temperature control of the same embodiment, and Fig. 3 is a diagram showing a conventional continuous annealing furnace heating zone and plate temperature control device B. FIG. 4 is a diagram showing the overall configuration of the annealing furnace, FIG. 4 is a heat cycle diagram for heat treatment in the conventional continuous annealing furnace, and FIG. 5 is a configuration diagram of the conventional continuous annealing furnace heating zone and plate temperature control device. 2... Heating zone, 12... Radiant tube, 13... Strip, 16... Fuel flow rate controller, 17... Line speed detector, 18, 19... Actuator, 20... ...Zone distributor. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 連続焼鈍炉の加熱帯に配設したラジアントチューブに供
給する燃料流量を燃料流量設定値になるよう操作して加
熱帯出口の板温を制御する方法において、あらかじめ作
成した炉内板温の動的伝熱モデルを用いて所定の制御周
期で現在のラインスピードおよび現在から将来の所定時
間までの板条件(板厚、板幅、板温目標値)変化に対し
て板温を目標値との最小限のはずれで追従させる最適燃
料流量時系列を算出し、上記燃料流量設定値を決めると
ともに、ラインスピードの変化が所定値以上になると同
時に前記制御周期をリセットし、即座に前記と同様の工
程を実施することを特徴とする連続焼鈍炉の板温制御方
法。
In the method of controlling the plate temperature at the outlet of the heating zone by manipulating the fuel flow rate supplied to the radiant tube arranged in the heating zone of a continuous annealing furnace to the fuel flow rate set value, the dynamic Using a heat transfer model, the plate temperature is determined to be the minimum value compared to the target value based on the current line speed and changes in plate conditions (plate thickness, plate width, plate temperature target value) from the present to a predetermined time in the future at a predetermined control cycle using a heat transfer model. The optimum fuel flow rate time series to be followed when the limit is exceeded is calculated, the fuel flow rate set value is determined, and the control cycle is reset as soon as the change in line speed exceeds a predetermined value, and the same process as above is immediately performed. A method for controlling plate temperature in a continuous annealing furnace, characterized in that the method is carried out.
JP33285589A 1989-12-25 1989-12-25 Method for controlling strip temperature in continuous annealing furnace Pending JPH03193826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33285589A JPH03193826A (en) 1989-12-25 1989-12-25 Method for controlling strip temperature in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33285589A JPH03193826A (en) 1989-12-25 1989-12-25 Method for controlling strip temperature in continuous annealing furnace

Publications (1)

Publication Number Publication Date
JPH03193826A true JPH03193826A (en) 1991-08-23

Family

ID=18259559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33285589A Pending JPH03193826A (en) 1989-12-25 1989-12-25 Method for controlling strip temperature in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH03193826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524041A (en) * 2013-05-22 2016-08-12 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for open-loop control and / or closed-loop control of an annealing furnace or heat treatment furnace of a production line for processing metal materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524041A (en) * 2013-05-22 2016-08-12 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for open-loop control and / or closed-loop control of an annealing furnace or heat treatment furnace of a production line for processing metal materials

Similar Documents

Publication Publication Date Title
US6866729B2 (en) Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device
US4606529A (en) Furnace controls
CN104894362A (en) Method for setting temperature of heating furnace in cold and hot steel billet mixed loading
EP0715550B1 (en) Rolling of metal strip
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPH03193826A (en) Method for controlling strip temperature in continuous annealing furnace
JPH10277620A (en) Method for controlling temperature in continuous hot rolling of steel tube
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JPH09239423A (en) Method for controlling water cooling in steel bar rolling equipment
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JPH0649546A (en) Strip temperature control method for continuous heat treatment furnace
RU2068006C1 (en) Method to control metal heating in flame heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JP3046467B2 (en) Heating furnace heating control method
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPS5819435A (en) Controlling method for continuous heating furnace
JPS56136215A (en) Method and apparatus for feedback control of water cooling for steel material in rolling line
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPS6315972B2 (en)
JPS6345454B2 (en)
JPH09253723A (en) Automatic thickness controller by absolute value in thick plate rolling
JP2021109990A (en) Plate temperature control method, heating control device and method for producing metal plate
JPH02303610A (en) Device for preventing generation of camber of rolled stock
JPS589931A (en) Controlling method for continuous heat treatment furnace