JP2006002191A - Method for controlling heat treatment condition - Google Patents

Method for controlling heat treatment condition Download PDF

Info

Publication number
JP2006002191A
JP2006002191A JP2004177877A JP2004177877A JP2006002191A JP 2006002191 A JP2006002191 A JP 2006002191A JP 2004177877 A JP2004177877 A JP 2004177877A JP 2004177877 A JP2004177877 A JP 2004177877A JP 2006002191 A JP2006002191 A JP 2006002191A
Authority
JP
Japan
Prior art keywords
heat treatment
quenching
heat
shots
rack shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177877A
Other languages
Japanese (ja)
Inventor
Seiichi Sawatsubashi
精一 沢津橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2004177877A priority Critical patent/JP2006002191A/en
Publication of JP2006002191A publication Critical patent/JP2006002191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a heat treatment condition, which makes heat treatment (quenching treatment or tempering treatment) using a high-frequency direct-conducting system stably and successively form an adequate quench-hardened layer (a quench-hardened layer) having a value of standard on a part to be heat-treated, even when an abrasion loss of a contact electrode has increased with the increase of the number of heat treatment shots. <P>SOLUTION: The method for controlling the heat treatment condition in the heat treatment using a high-frequency direct-conducting system comprises the steps of: previously determining a plurality of the heat treatment conditions in correspondence with the number N of the heat treatment shots or a gap S between a part to be heat-treated (for instance, a gear tooth part 2 of a rack shaft 1) and a proximity conductor 11; detecting the number N of the heat treatment shots or the gap S, when heat-treating the part; selecting the heat treatment condition corresponding to a detected value among a plurality of the heat treatment conditions, on the basis of the detected value; and heat-treating the part, on the basis of thus selected heat treatment condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高周波焼入や高周波焼戻のような熱処理を行う際の熱処理条件調整方法に関し、更に詳しくは、高周波直接通電方式の熱処理(高周波直接通電焼入・焼戻)における熱処理条件調整方法に関する。更に具体的に述べると、本発明は、例えば、ラックシャフト(ラックバー)の歯部やその歯部に対応する背面部を高周波直接通電方式で熱処理を行うに際し、所望の焼入深さ,焼入幅,及び焼入焼戻硬さを得るための熱処理条件調整方法に関する。   The present invention relates to a heat treatment condition adjusting method when performing heat treatment such as induction hardening or induction tempering, and more specifically, a heat treatment condition adjusting method in high-frequency direct current heat treatment (high-frequency direct current quenching / tempering). About. More specifically, in the present invention, for example, when a heat treatment is performed on a tooth portion of a rack shaft (rack bar) or a back surface portion corresponding to the tooth portion by a high-frequency direct current method, a desired quenching depth, The present invention relates to a heat treatment condition adjusting method for obtaining a hardening width and quenching and tempering hardness.

図2に示すようなラックシャフト1の歯部2やその歯部2に対応する背面部3などを高周波焼入する場合には、図2〜図4に示すような高周波直接通電焼入装置4が用いられる場合が多い。   In the case of induction hardening of the tooth portion 2 of the rack shaft 1 as shown in FIG. 2 and the back surface portion 3 corresponding to the tooth portion 2, the high frequency direct current hardening apparatus 4 as shown in FIGS. Is often used.

この高周波直接通電焼入装置4は、図2〜図4に示すように、電気的絶縁材5を介して重ね合わされている第一導体6及び第二導体7と、第一導体6に連結されると共に第二導体7側に連結されている(すなわち、第一導体6の一端部から両側に分岐して第二導体7の他端部に接続されている)分岐導体8(図3及び図4参照)と、電気的絶縁材5が介在されている位置において第一導体6上に載置されて固定されている第一接触電極9と、第二導体7上に載置されて固定されている第二接触電極10と、第二導体7上に載置されて固定されている近接導体11と、近接導体11に設けられている冷却手段12(図4参照)と、第一接触電極9及び第二接触電極10間に接続されている高周波電源部13(図2参照)と、第一接触電極9及び第二接触電極10にそれぞれ対応する位置に配設されている一対のラックシャフト押圧用の油圧シリンダ14とを備えている。   As shown in FIGS. 2 to 4, the high-frequency direct current quenching apparatus 4 is connected to the first conductor 6 and the first conductor 6 and the second conductor 7 that are superposed via an electrical insulating material 5. And a branch conductor 8 connected to the second conductor 7 side (that is, branched from one end of the first conductor 6 to both sides and connected to the other end of the second conductor 7) (FIGS. 3 and 4), a first contact electrode 9 placed and fixed on the first conductor 6 at a position where the electrical insulating material 5 is interposed, and placed and fixed on the second conductor 7. The second contact electrode 10, the proximity conductor 11 placed and fixed on the second conductor 7, the cooling means 12 (see FIG. 4) provided on the proximity conductor 11, and the first contact electrode 9 and the second contact electrode 10, a high frequency power supply unit 13 (see FIG. 2) connected between the first contact electrode 9 and And a hydraulic cylinder 14 for the pair of rack shaft pressing the second contact are respectively the electrode 10 disposed in the corresponding positions.

かくして、ラックシャフト1は、図2及び図3に示すように第一接触電極9及び第二接触電極10の頂部α,β上に載置されてその歯部2が前記頂部α,βに当接せしめられた状態で支持されると共に、油圧シリンダ14により第一接触電極9及び第二接触電極10の側に押圧されて前記歯部2と前記頂部α,βとの電気的接触状態が確保されるようになっている。また、このようにしてラックシャフト1が第一接触電極9及び第二接触電極10上に配置されると、このラックシャフト1の歯部2と近接導体11との間には図2及び図4に示すように隙間Sが形成され、歯部2が近接導体11に近接配置されるように構成されている。   Thus, the rack shaft 1 is placed on the tops α and β of the first contact electrode 9 and the second contact electrode 10 as shown in FIGS. 2 and 3, and the tooth portion 2 contacts the tops α and β. While being supported in contact with each other, it is pressed toward the first contact electrode 9 and the second contact electrode 10 by the hydraulic cylinder 14 to ensure an electrical contact state between the tooth portion 2 and the top portions α and β. It has come to be. In addition, when the rack shaft 1 is arranged on the first contact electrode 9 and the second contact electrode 10 in this manner, the rack shaft 1 is disposed between the tooth portion 2 of the rack shaft 1 and the adjacent conductor 11 in FIGS. As shown in FIG. 2, the gap S is formed, and the tooth portion 2 is arranged close to the proximity conductor 11.

このような構成の高周波直接通電焼入装置4を用いてラックシャフト1の歯部2を焼入する際の動作について述べると、次の通りである、まず、高周波電源部13を通電状態にすると、高周波電流Iが第一導体6から第一接触電極9及び分岐導体8に流れ、ラックシャフト1内を通り、第二接触電極10及び近接導体11を通り、高周波電源部13に戻るように流れるか、またはその逆の経路で交互に流れる。すなわち、ある時点では、図2において矢印で示すようにラックシャフト1に高周波電流I'が流れると共に、近接導体1に流れる電流の誘導作用にて誘導電流(うず電流)I''が流れ、従ってラックシャフト1の歯部2の表面には(I'+I'')の電流が流れる。この際、高周波電源部13への戻る電流はIとなるが、それについての詳細な説明は省略する。 The operation at the time of quenching the teeth 2 of the rack shaft 1 using the high-frequency direct current quenching apparatus 4 having such a configuration will be described as follows. First, when the high-frequency power source 13 is energized, The high-frequency current I 1 flows from the first conductor 6 to the first contact electrode 9 and the branch conductor 8, passes through the rack shaft 1, passes through the second contact electrode 10 and the adjacent conductor 11, and returns to the high-frequency power supply unit 13. Flows alternately, or vice versa. That is, at a certain point in time, as indicated by an arrow in FIG. 2, a high-frequency current I 1 ′ flows through the rack shaft 1, and an induced current (eddy current) I 1 ″ flows through the inductive action of the current flowing through the adjacent conductor 1. Therefore, a current of (I 1 ′ + I 1 ″) flows on the surface of the tooth portion 2 of the rack shaft 1. At this time, the current returning to the high frequency power supply unit 13 is I 2 , but detailed description thereof is omitted.

なお、上述のような構造の高周波直接通電焼入装置4によるラックシャフト1(ラックバー)の高周波直接通電焼入に関する公知技術としては、特願平10-183234号(特許文献1)が挙げられる。
特開平10−183234号公報
Japanese Patent Application No. 10-183234 (Patent Document 1) is known as a known technique related to high frequency direct current quenching of the rack shaft 1 (rack bar) by the high frequency direct current quenching apparatus 4 having the above-described structure. .
Japanese Patent Laid-Open No. 10-183234

上述のような高周波直接通電焼入装置4を用いてラックシャフト1の歯部2などを焼入処理する場合、熱処理作業の初期(高周波直接通電焼入装置4の使用開始時期、すなわち、第一接触電極9及び第二接触電極10が未だ摩耗し始めていない時期)には、歯部2などの表面に所望の焼入硬化層を形成することができる。しかしながら、熱処理ショット数(ショット回数;熱処理の施行回数)Nが増大すると、これに伴って第一接触電極9及び第二接触電極10の頂部α,βがラックシャフト1との接触により次第に摩耗し、ラックシャフト1が近接導体11の側に次第に近づき、焼入対象部であるラックシャフト1の歯部2と近接導体11との間の隙間Sが小さくなる。そのままの状態を放置し、熱処理条件を変更することなく同一の熱処理条件で熱処理を進めると、図5及び図6に示すように、ラックシャフト1の焼入深さ,焼入幅,及び焼入(焼戻)硬さが大きく変化し、規格値を越えてしまう不具合を生じる場合がある。なお、既述の特開平10−183234号公報においても、このような不具合を解消するための対策は何ら提案されていない。   When quenching the teeth 2 of the rack shaft 1 and the like using the high-frequency direct current quenching apparatus 4 as described above, the initial stage of the heat treatment operation (the use start time of the high-frequency direct current quenching apparatus 4, i.e., the first When the contact electrode 9 and the second contact electrode 10 have not yet started to wear), a desired hardened and hardened layer can be formed on the surface of the tooth portion 2 and the like. However, as the number of heat treatment shots (number of shots; number of heat treatments performed) N increases, the top portions α and β of the first contact electrode 9 and the second contact electrode 10 are gradually worn by contact with the rack shaft 1. The rack shaft 1 gradually approaches the proximity conductor 11 side, and the gap S between the tooth portion 2 of the rack shaft 1 that is the quenching target portion and the proximity conductor 11 is reduced. When the heat treatment is performed under the same heat treatment conditions without changing the heat treatment conditions, the rack shaft 1 has a quenching depth, a quenching width, and a quenching as shown in FIGS. (Tempering) Hardness changes greatly, which may cause a problem that exceeds the standard value. In the above-mentioned Japanese Patent Application Laid-Open No. 10-183234, no countermeasure is proposed for solving such a problem.

本発明は、上述の如き不具合を解消するためになされたものであって、その目的は、高周波直接通電方式の熱処理(焼入処理又は焼戻処理)において、熱処理ショット数が増大するのに伴って接触電極の摩耗量が増大しても、熱処理対象部に規格値内の良好な熱処理硬化層(焼入硬化層)を安定的に継続して形成することができるような熱処理条件調整方法を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to increase the number of heat treatment shots in high-frequency direct current heat treatment (quenching or tempering). A method for adjusting the heat treatment conditions so that a good heat treatment hardened layer (quenched hardened layer) within the standard value can be stably and continuously formed in the heat treatment target part even if the wear amount of the contact electrode increases. It is to provide.

上述の目的を達成するために、本発明では、高周波熱処理対象物を一対の接触電極により支持して、前記一対の接触電極を介して高周波電流を前記高周波熱処理対象物の熱処理対象部に直接流すと共に、前記高周波熱処理対象物に近接して配置される近接導体に流れる高周波電流の誘導作用により前記熱処理対象部に誘導電流を流して、前記熱処理対象部を加熱し、次いで所要の焼入温度に加熱された前記熱処理対象部を冷却することにより、前記熱処理対象部を熱処理するようにした高周波直接通電方式の熱処理における熱処理条件調整方法において、
(a) 熱処理ショット数、又は、前記熱処理対象部と前記近接導体との間の隙間に対応して複数の熱処理条件を予め定めておくステップと、
(b) 熱処理時に前記熱処理ショット数又は前記隙間を検出するステップと、
(c) この検出した検出値に基づいて前記複数の熱処理条件の中から前記検出値に対応する熱処理条件を選択するステップと、
(d) これにより選択された熱処理条件に基づいて熱処理を行うステップと、
を有するようにしている。
また、本発明では、前記熱処理条件が、前記熱処理対象部の焼入深さ,焼入幅,及び焼入焼戻硬さに関連するものであるようにしている。
また、本発明では、前記熱処理対象部が、ラックシャフトの歯部、又は、前記歯部に対応する前記ラックシャフトの背面部であるようにしている。
In order to achieve the above object, in the present invention, a high frequency heat treatment object is supported by a pair of contact electrodes, and a high frequency current is directly passed through the pair of contact electrodes to a heat treatment target part of the high frequency heat treatment object. In addition, an induction current is caused to flow through the heat treatment target portion by an induction action of a high frequency current flowing in a proximity conductor disposed in proximity to the high frequency heat treatment target object to heat the heat treatment target portion, and then to a required quenching temperature. In the heat treatment condition adjustment method in the heat treatment of the high-frequency direct current method in which the heat treatment target part is heat treated by cooling the heated heat treatment target part,
(A) a step of predetermining a plurality of heat treatment conditions corresponding to the number of heat treatment shots or a gap between the heat treatment target portion and the adjacent conductor;
(B) detecting the number of heat treatment shots or the gap during heat treatment;
(C) selecting a heat treatment condition corresponding to the detected value from the plurality of heat treatment conditions based on the detected value;
(D) performing a heat treatment based on the heat treatment conditions selected thereby;
To have.
In the present invention, the heat treatment conditions are related to the quenching depth, the quenching width, and the quenching and tempering hardness of the heat treatment target part.
Moreover, in this invention, the said heat processing object part is made to be the back part of the rack shaft corresponding to the tooth part of a rack shaft, or the said tooth part.

請求項1に記載の本発明は、高周波直接通電方式の熱処理における熱処理条件調整方法において、熱処理ショット数、又は、熱処理対象部と近接導体との間の隙間に対応して複数の熱処理条件を予め定めておくステップと、熱処理時に熱処理ショット数又は隙間を検出するステップと、この検出した検出値に基づいて複数の熱処理条件の中から検出値に対応する熱処理条件を選択するステップと、これにより選択された熱処理条件に基づいて熱処理を行うステップとを施行するようにしたものであるから、本発明の熱処理条件調整方法によれば、接触電極の摩耗量が大きくなっても、熱処理ショット数の増大に伴って熱処理条件を適宜に変化させることにより、焼入対象部に所要の規格値内の熱処理硬化層(焼入硬化層)を常に安定的に継続して形成することができる。   According to the first aspect of the present invention, in the heat treatment condition adjusting method in the heat treatment of the high frequency direct current method, a plurality of heat treatment conditions are previously set corresponding to the number of heat treatment shots or the gap between the heat treatment target part and the adjacent conductor. A step of determining, a step of detecting the number of heat treatment shots or a gap during heat treatment, a step of selecting a heat treatment condition corresponding to the detected value from a plurality of heat treatment conditions based on the detected value, and a selection thereby In accordance with the heat treatment condition adjusting method of the present invention, the number of heat treatment shots can be increased even when the wear amount of the contact electrode is increased. By changing the heat treatment conditions accordingly, the heat treatment hardened layer (quenched hardened layer) within the required standard value is always stably maintained in the part to be hardened. It is possible to form Te.

また、請求項2に記載の本発明は、熱処理条件が、熱処理対象部の焼入深さ,焼入幅,及び焼入焼戻硬さに関連するものであるようにしたものであるから、本発明の熱処理条件調整方法によれば、接触電極の摩耗量が大きくなっても、所要の焼入深さ,焼入幅,及び焼入焼戻硬さを常に安定的に継続して得ることができる。   Further, the present invention according to claim 2 is that the heat treatment conditions are related to the quenching depth, the quenching width, and the quenching and tempering hardness of the heat treatment target part. According to the heat treatment condition adjusting method of the present invention, the required quenching depth, quenching width, and quenching and tempering hardness can always be stably and continuously obtained even when the wear amount of the contact electrode increases. Can do.

また、請求項3に記載の本発明は、熱処理対象部が、ラックシャフトの歯部、又は、歯部に対応するラックシャフトの背面部であるようにしたものであるから、本発明の熱処理条件調整方法によれば、ラックシャフトの歯部又は背面部に接触される接触電極が摩耗しても、ラックシャフトの歯部又は背面部に常に所望の硬化層深さ,硬化層幅,及び硬化層硬さの焼入(焼戻)硬化層を得ることができる。   Further, the present invention according to claim 3 is such that the heat treatment target portion is a tooth portion of the rack shaft or a back surface portion of the rack shaft corresponding to the tooth portion. According to the adjustment method, even if the contact electrode that is in contact with the tooth portion or back surface portion of the rack shaft is worn, the desired hardened layer depth, hardened layer width, and hardened layer are always applied to the tooth portion or back surface portion of the rack shaft. A hardened (tempered) hardened layer can be obtained.

以下、本発明の一実施形態に係る熱処理条件調整方法について図1を参照して説明する。ここでは、熱処理対象物(ワーク)として、例えば、ラックシャフトの歯部2を熱処理(焼入又は焼戻)する場合を例にとって説明する。なお、以下の説明においては、上記の説明並びに図2で使用した符号と同一の符号を用いることとする。   Hereinafter, a heat treatment condition adjusting method according to an embodiment of the present invention will be described with reference to FIG. Here, as an example of the heat treatment object (work), for example, a case in which the tooth portion 2 of the rack shaft is heat treated (quenched or tempered) will be described. In the following description, the same reference numerals as those used in the above description and FIG. 2 are used.

熱処理対象物(ワーク)として、例えば、ラックシャフト1を採用した場合には、熱処理ショット数としては約10,000回まで第一接触電極9及び第二接触電極10などを交換する必要がない。しかし、少なくとも約2,000回毎に熱処理条件を変化させる必要がある。なお、本実施形態では、検出値として熱処理ショット数Nを採用しているが、これに代えて、ラックシャフト1の歯部2と近接導体11との間の隙間Sを検出値として用いてもよい。また、熱処理条件としては、焼入深さ,焼入幅や焼入焼戻硬さに対応するものが挙げられるが、以下の説明では焼入深さを選定しているが、これに限定するものではない。   For example, when the rack shaft 1 is employed as the heat treatment object (work), it is not necessary to exchange the first contact electrode 9 and the second contact electrode 10 up to about 10,000 times as the number of heat treatment shots. However, it is necessary to change the heat treatment conditions at least about every 2,000 times. In this embodiment, the heat treatment shot number N is adopted as the detection value, but instead of this, the gap S between the tooth portion 2 of the rack shaft 1 and the adjacent conductor 11 may be used as the detection value. Good. In addition, the heat treatment conditions include those corresponding to the quenching depth, quenching width and quenching and tempering hardness, but the quenching depth is selected in the following description, but is limited to this. It is not a thing.

下記の表1は、熱処理ショット数Nと、予め定められた複数の熱処理条件との関係の一例を示したものである。   Table 1 below shows an example of the relationship between the heat treatment shot number N and a plurality of predetermined heat treatment conditions.

Figure 2006002191
Figure 2006002191

上記の表1に示すように、熱処理ショット数Nが1〜2,000の範囲では、条件1による熱処理(たとえば、焼入)を行う。次に、熱処理ショット数Nが2,001〜4,000の範囲では、条件1とは異なる条件2による熱処理を行う。これにより、条件1の場合とほぼ同一の焼入深さを得ることができる。次に、熱処理ショット数Nが4,001〜6,000の範囲では条件3とし、熱処理ショット数Nが6,001〜8,000の範囲では条件4とし、熱処理ショット数Nが8,001〜90,000の範囲では条件5を採用する。なお、熱処理ショット数Nは、熱処理作業中にカウンタなどの簡単な計測器にて自動的に検出可能であり、熱処理条件の変更も手動又は自動により比較的安価にかつ正確に行なうことが可能である。従って、熱処理ショット数Nについての検出値に基づいて、予め定めた複数の熱処理条件の中から熱処理ショット数Nに応じて実際の熱処理作業時における最適な熱処理条件を選択して焼入(又は焼戻)の熱処理を行う。   As shown in Table 1 above, when the number N of heat treatment shots is in the range of 1 to 2,000, heat treatment (for example, quenching) under condition 1 is performed. Next, when the number N of heat treatment shots is in the range of 2,001 to 4,000, heat treatment is performed under condition 2 different from condition 1. Thereby, substantially the same quenching depth as in the case of condition 1 can be obtained. Next, Condition 3 is set when the heat treatment shot number N is in the range of 4,001 to 6,000, Condition 4 is set when the heat treatment shot number N is in the range of 6,001 to 8,000, and the heat treatment shot number N is 8,001. Condition 5 is adopted in the range of 90,000. The heat treatment shot number N can be automatically detected by a simple measuring instrument such as a counter during the heat treatment operation, and the heat treatment conditions can be changed relatively manually and automatically at a relatively low cost. is there. Therefore, based on the detected value for the number of heat treatment shots N, the optimum heat treatment conditions for the actual heat treatment operation are selected from a plurality of predetermined heat treatment conditions according to the number of heat treatment shots N and quenched (or quenched). (Return) heat treatment is performed.

図1は、本発明に係る高周波直接通電焼入における熱処理条件調整方法を施行した場合の焼入深さの変化を示すものである。すなわち、図1は、横軸に熱処理ショット数Nとこれに対応して予め決められた条件1乃至5をとり、縦軸に焼入深さを表示したものである。図示のように熱処理ショット数Nが増加すると焼入深さは徐々に増大するが、夏処理条件を適宜に変えることにより、焼入深さが元の値(規格値内の値)に戻る。この調整を熱処理ショット数の最後の回数である10,000まで繰返して行い、条件1〜条件5を順次に変更して設定することにより焼入深さを極く狭い範囲の規格値内に入れることができる。   FIG. 1 shows changes in the quenching depth when the heat treatment condition adjusting method in the high frequency direct current quenching according to the present invention is performed. That is, in FIG. 1, the horizontal axis represents the number N of heat treatment shots and conditions 1 to 5 determined in advance corresponding thereto, and the vertical axis represents the quenching depth. As shown in the figure, the quenching depth gradually increases as the number N of heat treatment shots increases, but the quenching depth returns to the original value (value within the standard value) by appropriately changing the summer treatment conditions. This adjustment is repeated up to 10,000 which is the final number of heat treatment shots, and the quenching depth is set within a very narrow range of standard values by sequentially changing and setting conditions 1 to 5 be able to.

条件1乃至5は、以上のように熱処理ショット数Nに対応したものであるが、ラックシャフト1の種類や第一接触導体9及び第二接触導体10の材質などに応じて熱処理ショット数Nの設定も上記表1に記載の数値とは異なることとなり、これに対応する熱処理条件は前記条件1乃至5に限定されるものではない。また、本実施形態では熱処理条件として焼入深さを選定しているが、焼入幅や焼入(焼戻)硬さに対応するものであってもよい。また、熱処理ショット数Nに限らず、ラックシャフト1と近接導体11との間の隙間Sを検出値として、これに対応して条件を決めてもよい。なお、隙間Sは、熱処理作業中に簡単な距離計測器にて自動的に検出可能である。   Conditions 1 to 5 correspond to the number N of heat treatment shots as described above, but the number of heat treatment shots N depends on the type of rack shaft 1 and the materials of the first contact conductor 9 and the second contact conductor 10. The setting also differs from the numerical values described in Table 1 above, and the heat treatment conditions corresponding thereto are not limited to the above conditions 1 to 5. Further, in the present embodiment, the quenching depth is selected as the heat treatment condition, but it may correspond to a quenching width and a quenching (tempering) hardness. In addition to the number N of heat treatment shots, the gap S between the rack shaft 1 and the adjacent conductor 11 may be used as a detection value, and conditions may be determined corresponding to this. The gap S can be automatically detected by a simple distance measuring device during the heat treatment operation.

このような熱処理条件調整方法によれば、ラックシャフトの歯部2(又は歯部2に対応する背面部3)を高周波焼入・焼戻の如き熱処理を行う場合に適用される高周波直接通電焼入・焼戻を施行する際に、熱処理ショット数N、或いは、ラックシャフト1の熱処理対象部(歯部2や背面部3)と近接導体11との間の隙間Sの増大に伴なう焼入硬化層の変化を狭い範囲に抑えることができ、常に安定した焼入硬化層を継続して形成することができる。   According to such a heat treatment condition adjusting method, high-frequency direct current firing applied when heat treatment such as induction hardening and tempering is performed on the tooth portion 2 of the rack shaft (or the back surface portion 3 corresponding to the tooth portion 2). When performing heat treatment / tempering, the number of heat treatment shots N, or the heat treatment associated with the increase in the clearance S between the heat treatment target portion (tooth portion 2 or back surface portion 3) of the rack shaft 1 and the adjacent conductor 11 is performed. The change of the hardened layer can be suppressed to a narrow range, and a stable hardened layer can always be formed continuously.

以上、本発明の一実施形態について述べたが、本発明はこの実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、既述の実施形態ではラックシャフト1の歯部2を熱処理する場合について述べたが、ラックシャフト1の背面部3を熱処理する場合にも本発明の熱処理条件調整方法を適用できる。さらに、ラックシャフト1以外の、高周波直接通電方式の熱処理が適用される各種の熱処理対象物に対しても、本発明の熱処理条件調整方法を適用できることは言う迄もない。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and changes can be made based on the technical idea of the present invention. For example, in the above-described embodiment, the case where the tooth portion 2 of the rack shaft 1 is heat treated has been described. However, the heat treatment condition adjusting method of the present invention can also be applied to the case where the back surface portion 3 of the rack shaft 1 is heat treated. Furthermore, it goes without saying that the heat treatment condition adjusting method of the present invention can be applied to various heat treatment objects to which the heat treatment of the high frequency direct current method other than the rack shaft 1 is applied.

本発明の一実施形態に係る熱処理条件調整方法による熱処理ショット数と焼入深さとの関係を示すグラフである。It is a graph which shows the relationship between the number of heat processing shots by the heat processing condition adjustment method which concerns on one Embodiment of this invention, and a quenching depth. 高周波直接通電焼入装置の側面図である。It is a side view of a high frequency direct current hardening apparatus. 図3におけるA−A線拡大断面図である。It is an AA line expanded sectional view in FIG. 図3におけるB−B線拡大断面図である。FIG. 4 is an enlarged sectional view taken along line BB in FIG. 3. 従来の熱処理条件調整方法による熱処理ショット数と焼入深さとの関係を示すグラフである。It is a graph which shows the relationship between the heat processing shot number by the conventional heat processing condition adjustment method, and quenching depth. 従来の熱処理条件調整方法による熱処理ショット数と焼入(焼戻)硬さとの関係を示すグラフである。It is a graph which shows the relationship between the number of heat processing shots by the conventional heat processing condition adjustment method, and quenching (tempering) hardness.

符号の説明Explanation of symbols

1 ラックシャフト
2 歯部
3 背面部
4 高周波直接通電焼入装置
9 第一接触導体
10 第二接触導体
11 近接導体
N 熱処理ショット数
S 隙間
α,β 頂部
DESCRIPTION OF SYMBOLS 1 Rack shaft 2 Tooth part 3 Back part 4 High frequency direct current hardening apparatus 9 1st contact conductor 10 2nd contact conductor 11 Proximity conductor N The number of heat processing shots S Clearance (alpha), (beta) Top part

Claims (3)

高周波熱処理対象物を一対の接触電極により支持して、前記一対の接触電極を介して高周波電流を前記高周波熱処理対象物の熱処理対象部に直接流すと共に、前記高周波熱処理対象物に近接して配置される近接導体に流れる高周波電流の誘導作用により前記熱処理対象部に誘導電流を流して、前記熱処理対象部を加熱し、次いで所要の焼入温度に加熱された前記熱処理対象部を冷却することにより、前記熱処理対象部を熱処理するようにした高周波直接通電方式の熱処理において、熱処理条件を調整するための方法であって、
(a) 熱処理ショット数、又は、前記熱処理対象部と前記近接導体との間の隙間に対応して複数の熱処理条件を予め定めておくステップと、
(b) 熱処理時に前記熱処理ショット数又は前記隙間を検出するステップと、
(c) この検出した検出値に基づいて前記複数の熱処理条件の中から前記検出値に対応する熱処理条件を選択するステップと、
(d) これにより選択された熱処理条件に基づいて熱処理を行うステップと、
を有することを特徴とする熱処理条件調整方法。
A high-frequency heat treatment object is supported by a pair of contact electrodes, and a high-frequency current is directly passed through the pair of contact electrodes to a heat treatment target part of the high-frequency heat treatment object, and is disposed in proximity to the high-frequency heat treatment object. By inducing an induced current through the heat treatment target part by the induction action of the high-frequency current flowing in the adjacent conductor, heating the heat treatment target part, and then cooling the heat treatment target part heated to a required quenching temperature, In the heat treatment of the high-frequency direct current method in which the heat treatment target part is heat treated, a method for adjusting heat treatment conditions,
(A) a step of predetermining a plurality of heat treatment conditions corresponding to the number of heat treatment shots or a gap between the heat treatment target portion and the adjacent conductor;
(B) detecting the number of heat treatment shots or the gap during heat treatment;
(C) selecting a heat treatment condition corresponding to the detected value from the plurality of heat treatment conditions based on the detected value;
(D) performing a heat treatment based on the heat treatment conditions selected thereby;
A method for adjusting a heat treatment condition, comprising:
前記熱処理条件が、前記熱処理対象部の焼入深さ,焼入幅,及び焼入焼戻硬さに関連するものであることを特徴とする請求項1に記載の熱処理条件調整方法。   The heat treatment condition adjusting method according to claim 1, wherein the heat treatment condition relates to a quenching depth, a quenching width, and a quenching and tempering hardness of the heat treatment target part. 前記熱処理対象部が、ラックシャフトの歯部、又は、前記歯部に対応する前記ラックシャフトの背面部であることを特徴とする請求項1又は2に記載の熱処理条件調整方法。   The heat treatment condition adjusting method according to claim 1, wherein the heat treatment target portion is a tooth portion of a rack shaft or a back surface portion of the rack shaft corresponding to the tooth portion.
JP2004177877A 2004-06-16 2004-06-16 Method for controlling heat treatment condition Pending JP2006002191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177877A JP2006002191A (en) 2004-06-16 2004-06-16 Method for controlling heat treatment condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177877A JP2006002191A (en) 2004-06-16 2004-06-16 Method for controlling heat treatment condition

Publications (1)

Publication Number Publication Date
JP2006002191A true JP2006002191A (en) 2006-01-05

Family

ID=35770836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177877A Pending JP2006002191A (en) 2004-06-16 2004-06-16 Method for controlling heat treatment condition

Country Status (1)

Country Link
JP (1) JP2006002191A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251225A (en) * 1984-05-25 1985-12-11 Yamada Seisakusho:Kk Method and device for high-frequency hardening of steering rack
JPS62132165U (en) * 1986-02-13 1987-08-20
JPS62132164U (en) * 1986-02-13 1987-08-20
JPS6338531A (en) * 1986-08-05 1988-02-19 Nippon Steel Corp Method for controlling induction heating of weld zone of seam welded steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251225A (en) * 1984-05-25 1985-12-11 Yamada Seisakusho:Kk Method and device for high-frequency hardening of steering rack
JPS62132165U (en) * 1986-02-13 1987-08-20
JPS62132164U (en) * 1986-02-13 1987-08-20
JPS6338531A (en) * 1986-08-05 1988-02-19 Nippon Steel Corp Method for controlling induction heating of weld zone of seam welded steel pipe

Similar Documents

Publication Publication Date Title
US2338496A (en) Heat treating gears and the like
US3592703A (en) Method for treating circular saw blades and product produced thereby
JP2021038462A (en) Production method of whole-steel card clothing
JP2006002191A (en) Method for controlling heat treatment condition
JP2006028589A (en) Hardening and tempering method with direct electric-conduction hardening apparatus
JP5489325B2 (en) High frequency induction heating method and high frequency induction heating apparatus
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP4551154B2 (en) Continuous quenching and tempering method using high frequency direct current quenching equipment
JP2005310645A (en) High-frequency induction hardening device
JP5390868B2 (en) Induction heating coil
JP4508956B2 (en) Induction heat treatment method and induction heat treatment apparatus
SE509205C2 (en) Process for the manufacture of a hard surface and tough core steel component
JP4655684B2 (en) Heat treatment method for steel sheet
KR20060118587A (en) Heat treating device for steel plate and steel plate manufacturing line having the heat treating device
JP6175101B2 (en) Steel products with fine ferrite grain boundary precipitation type martensite structure
JP2010090920A (en) Curve movement guide device
Rudnev et al. Tempering of induction hardened steels
JP6179055B2 (en) Heating method, heat treatment method and composite coil for deformed workpiece
JP2005330520A (en) High frequency induction hardening method and its apparatus
JP2002235112A (en) Heat treatment method for steel material and heat treatment apparatus
US1188148A (en) Heat treatment of rails.
JP5098201B2 (en) Method for tempering thick steel plates
JP2007217759A (en) Induction hardening method, induction hardening facility and induction-hardened product
JP2006083412A (en) Induction heat treatment device, induction heat treatment method, and wrought product manufactured with the method
JP2007231367A (en) Heat treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100723