JP4551154B2 - Continuous quenching and tempering method using high frequency direct current quenching equipment - Google Patents

Continuous quenching and tempering method using high frequency direct current quenching equipment Download PDF

Info

Publication number
JP4551154B2
JP4551154B2 JP2004230309A JP2004230309A JP4551154B2 JP 4551154 B2 JP4551154 B2 JP 4551154B2 JP 2004230309 A JP2004230309 A JP 2004230309A JP 2004230309 A JP2004230309 A JP 2004230309A JP 4551154 B2 JP4551154 B2 JP 4551154B2
Authority
JP
Japan
Prior art keywords
quenching
frequency power
tempering
frequency
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004230309A
Other languages
Japanese (ja)
Other versions
JP2006045636A (en
Inventor
精一 沢津橋
啓一 久保
淳 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2004230309A priority Critical patent/JP4551154B2/en
Publication of JP2006045636A publication Critical patent/JP2006045636A/en
Application granted granted Critical
Publication of JP4551154B2 publication Critical patent/JP4551154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Control Of Resistance Heating (AREA)
  • General Induction Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、例えば、ラックシャフトのような熱処理対象物(ワーク)の歯部やその背面部を高周波焼入及び高周波焼戻(熱処理)を行う場合に適用される高周波直接通電焼入装置を用いて高周波焼入及び高周波焼戻を順次に連続して行うための方法に係り、特に、高周波熱処理対象物(ワーク)を高周波直接通電焼入装置から取り外すことなく連続して焼入処理及び焼戻処理を施行することが可能な連続焼入焼戻方法に関するものである。   The present invention uses, for example, a high-frequency direct current quenching apparatus that is applied when induction-hardening and induction-tempering (heat treatment) are performed on a tooth portion of a heat treatment object (workpiece) such as a rack shaft or the back surface portion thereof. In particular, induction hardening and induction tempering are performed in succession, and in particular, induction treatment and tempering are continuously performed without removing the induction heat treatment object (workpiece) from the induction induction hardening apparatus. The present invention relates to a continuous quenching and tempering method capable of performing processing.

図3に示すようなラックシャフト1の歯部2やこの歯部2の反対側の背面部3などを高周波焼入する場合には、図2〜図4に示すような高周波直接通電焼入装置4が用いられる場合が多い。   In the case of induction hardening the tooth portion 2 of the rack shaft 1 as shown in FIG. 3 or the back portion 3 on the opposite side of the tooth portion 2, the high frequency direct current hardening apparatus as shown in FIGS. 4 is often used.

この高周波直接通電焼入装置4は、図3〜図5に示すように、電気的絶縁材5を介して重ね合わされている第一導体6及び第二導体7と、第一導体6に連結されると共に第二導体7側に連結されている(すなわち、第一導体6の一端部から両側に分岐して第二導体7の他端部に接続されている)分岐導体8(図4及び図5参照)と、電気的絶縁材5が介在されている位置において第一導体6上に載置されて固定されている第一接触電極9と、第二導体7上に載置されて固定されている第二接触電極10と、第二導体7上に載置されて固定されている近接導体11と、近接導体11に設けられている冷却手段12(図5参照)と、第一接触電極9及び第二接触電極10間に接続されている高周波電源部13(図3参照)と、第一接触電極9及び第二接触電極10にそれぞれ対応する位置に配設されている一対のラックシャフト押圧用の油圧シリンダ14とを備えている。   As shown in FIGS. 3 to 5, the high-frequency direct current quenching apparatus 4 is connected to the first conductor 6 and the first conductor 6 and the second conductor 7, which are superposed via an electrical insulating material 5. And a branch conductor 8 connected to the second conductor 7 side (that is, branched from one end of the first conductor 6 to both sides and connected to the other end of the second conductor 7) (FIGS. 4 and 5), a first contact electrode 9 placed and fixed on the first conductor 6 at a position where the electrical insulating material 5 is interposed, and placed and fixed on the second conductor 7. The second contact electrode 10, the proximity conductor 11 placed and fixed on the second conductor 7, the cooling means 12 (see FIG. 5) provided on the proximity conductor 11, and the first contact electrode 9 and the second contact electrode 10, a high frequency power supply unit 13 (see FIG. 3) connected to the first contact electrode 9, And a hydraulic cylinder 14 for the pair of rack shaft pressing the second contact are respectively the electrode 10 disposed in the corresponding positions.

かくして、ラックシャフト1は、図3及び図4に示すように第一接触電極9及び第二接触電極10の頂部α,β上に載置されてその歯部2が前記頂部α,βに当接せしめられた状態で支持されると共に、油圧シリンダ14により第一接触電極9及び第二接触電極10の側に押圧されて前記歯部2と前記頂部α,βとの電気的接触状態が確保されるようになっている。また、このようにしてラックシャフト1が第一接触電極9及び第二接触電極10上に配置されると、このラックシャフト1の歯部2と近接導体11との間には図3及び図5に示すように隙間Sが形成され、歯部2が近接導体11に近接配置されるように構成されている。   Thus, the rack shaft 1 is placed on the tops α and β of the first contact electrode 9 and the second contact electrode 10 as shown in FIG. 3 and FIG. 4, and the tooth portion 2 contacts the tops α and β. While being supported in contact with each other, it is pressed toward the first contact electrode 9 and the second contact electrode 10 by the hydraulic cylinder 14 to ensure an electrical contact state between the tooth portion 2 and the top portions α and β. It has come to be. In addition, when the rack shaft 1 is arranged on the first contact electrode 9 and the second contact electrode 10 in this manner, the rack shaft 1 is disposed between the tooth portion 2 of the rack shaft 1 and the adjacent conductor 11 in FIGS. As shown in FIG. 2, the gap S is formed, and the tooth portion 2 is arranged close to the proximity conductor 11.

このような構成の高周波直接通電焼入装置4を用いてラックシャフト1の歯部2を焼入する際の動作について述べると、次の通りである、まず、高周波電源部13を通電状態にすると、高周波電流I1が第一導体6から第一接触電極9及び分岐導体8に流れ、ラックシャフト1内を通り、第二接触電極10及び近接導体11を通り、高周波電源部13に戻るように流れるか、またはその逆の経路で交互に流れる。すなわち、ある時点では、図3において矢印で示すようにラックシャフト1に高周波電流I1'が流れると共に、近接導体1に流れる電流の誘導作用にて誘導電流(うず電流)I1''が流れ、従ってラックシャフト1の歯部2の表面には(I1'+I1'')の電流が流れる。この際、高周波電源部13への戻る電流はI2となるが、それについての詳細な説明は省略する。かくして、ラックシャフト1の歯部2の表面は、(I1'+I1'')の電流が流れるのに伴って所要の焼入温度まで加熱され、しかる後に冷却手段12に供給された冷却液が禁札導体11に設けられた多数の噴射孔15からラックシャフト1に噴射され、これによりラックシャフト1の歯部2或いは背面部3に焼入硬化層が形成される。 The operation at the time of quenching the teeth 2 of the rack shaft 1 using the high-frequency direct current quenching apparatus 4 having such a configuration will be described as follows. First, when the high-frequency power source 13 is energized, The high-frequency current I 1 flows from the first conductor 6 to the first contact electrode 9 and the branch conductor 8, passes through the rack shaft 1, passes through the second contact electrode 10 and the adjacent conductor 11, and returns to the high-frequency power supply unit 13. Flows alternately, or vice versa. That is, at a certain point in time, as indicated by an arrow in FIG. 3, a high-frequency current I 1 ′ flows through the rack shaft 1 and an induced current (eddy current) I 1 ″ flows through the inductive action of the current flowing through the adjacent conductor 1. Therefore, a current of (I 1 ′ + I 1 ″) flows on the surface of the tooth portion 2 of the rack shaft 1. At this time, the current returning to the high-frequency power supply unit 13 becomes I 2 , but detailed description thereof is omitted. Thus, the surface of the tooth portion 2 of the rack shaft 1 is heated to the required quenching temperature as the current of (I 1 ′ + I 1 ″) flows, and then the coolant supplied to the cooling means 12. Is sprayed to the rack shaft 1 from a large number of injection holes 15 provided in the forbidden conductor 11, whereby a hardened and hardened layer is formed on the teeth 2 or the back surface 3 of the rack shaft 1.

なお、図3に示した高周波直接通電焼入装置4の電源部12は単一のものからなるが、後に説明する本発明の方法において使用される電源部と近似するような複数の電源部としては、例えば特開2003-342633号公報(特許文献1)に開示されているものが公知技術として挙げられる。   In addition, although the power supply part 12 of the high frequency direct current hardening apparatus 4 shown in FIG. 3 consists of a single thing, as a several power supply part approximated to the power supply part used in the method of this invention demonstrated later, Examples of known techniques include those disclosed in JP-A-2003-342633 (Patent Document 1).

以上のようにラックシャフト1の焼入処理が行われるが、ラックシャフト1を焼入した後には靭性などの向上のために焼戻処理を行う必要がある。図6は、従来の連続焼入焼戻方法の1つの例を示すものであって、この従来方法では、まず焼入加熱用発振器を有する高周波直接通電焼入装置によってラックシャフト1を焼入処理し(ステップS1参照)、次いで、焼入処理されたラックシャフト1を焼戻加熱用発振器に接続された図外のソレノイド状炉体内に導入して誘導加熱によって焼戻加熱を行うか(ステップS2参照)、或いは、図外の電気炉による焼戻加熱を行い(ステップS3参照)、しかる後に冷却することにより一連の熱処理(焼入・焼戻処理)を完了するようにしている(ステップS4参照)。
特開2003-342633号公報
As described above, the rack shaft 1 is hardened, but after the rack shaft 1 is hardened, it is necessary to perform a tempering treatment in order to improve toughness and the like. FIG. 6 shows one example of a conventional continuous quenching and tempering method. In this conventional method, first, the rack shaft 1 is quenched by a high frequency direct current quenching apparatus having a quenching heating oscillator. and (see step S 1), then either performing tempering heated by induction heating by introducing the solenoidal furnace body outer FIG connected rack shaft 1 that is quenching treatment in a heating oscillator tempering (step S reference 2), or, see FIG perform tempering heating by outside of the electric furnace (step S 3), so that to complete the series of heat treatments (quenching and tempering process) by cooling thereafter ( see step S 4).
JP 2003-342633 A

上述の如く、従来の連続焼入焼戻方法にあっては、焼入処理後の焼戻処理に際してソレノイド状炉体或いは電気炉による焼戻加熱を行う必要があるが、ソレノイド状炉体或いは電気炉は高周波直接通電焼入装置4とは別の位置にあるので、焼入処理後にラックシャフト1を高周波直接通電焼入装置4から取り外してソレノイド状炉体或いは電気炉に搬送しなければならず、その搬送の分だけ作業効率が低下するという不具合がある。また、高周波直接通電焼入装置4とは別の位置にソレノイド状炉体或いは電気炉を設置しているので、全体としての設備の設置(配置)スペースが大きくなり、省スペース化を図ることができないという問題点がある。さらに、従来方法では加熱用発振器の発振周波数が固定されているため、焼入深さの仕様やモジールが異なるワーク(例えば、ラックシャフト1)に対しての熱処理が困難であるという不具合があった。   As described above, in the conventional continuous quenching and tempering method, it is necessary to perform tempering heating with a solenoid furnace body or an electric furnace in the tempering process after the quenching process. Since the furnace is located at a position different from the high frequency direct current quenching apparatus 4, the rack shaft 1 must be removed from the high frequency direct current quenching apparatus 4 and transferred to a solenoid-like furnace body or electric furnace after the quenching process. There is a problem that the work efficiency is lowered by the amount of the conveyance. Further, since the solenoid-like furnace body or the electric furnace is installed at a position different from the high-frequency direct current quenching apparatus 4, the installation (arrangement) space for equipment as a whole becomes large, and space saving can be achieved. There is a problem that it is not possible. Further, in the conventional method, since the oscillation frequency of the heating oscillator is fixed, there is a problem that it is difficult to heat-treat a workpiece (for example, the rack shaft 1) having different quenching depth specifications and modules. .

また、上述の特開2003−342633号公報に開示されている「高周波誘導加熱における加熱深さ調整方法」によれば、電源部は2つのものからなる。しかしながら、この方法の場合には、高低2種類の周波数の高周波加熱電力を高周波誘導加熱コイルに同時に供給して、ワークの加熱深さを任意に調整するためのものであり、焼入・焼戻処理を連続して行うもの、すなわち、焼入処理を行った後にこれに引き続いて焼戻処理を連続して行うものではない。   Further, according to the “heating depth adjustment method in high-frequency induction heating” disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2003-342633, the power supply unit is composed of two components. However, in this method, high-frequency heating power of two types of high and low frequencies is supplied simultaneously to the high-frequency induction heating coil to arbitrarily adjust the heating depth of the workpiece. The treatment is not performed continuously, that is, after the quenching process is performed, the tempering process is not performed subsequently.

本発明は、以上の事情に鑑みてなされたものであって、その目的は、高周波熱処理対象物(ワーク)を高周波直接通電焼入装置から取り外すことなく高周波直接通電焼入装置に高周波熱処理対象物を保持した状態のままで焼入処理及び焼戻処理を順次に連続して行うことができ、しかも、所望の焼入れ硬さの焼入硬化層を形成することができるような高周波直接通電焼入装置による連続焼入焼戻方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to subject a high-frequency direct current quenching apparatus to a high-frequency direct current quenching apparatus without removing the high-frequency heat treatment target (workpiece) from the high-frequency direct current quenching apparatus. The induction hardening and tempering treatment can be carried out successively in the state of holding the high-frequency direct current quenching that can form a hardened hardened layer with a desired quenching hardness. The object is to provide a continuous quenching and tempering method using an apparatus.

上述の目的を達成するために、本発明では、ラックシャフトの長手方向に沿って複数の歯から形成されるラック部を挟んで、その長手方向に互いに間隔を空けて配置した一対の接触電極によって、前記ラックシャフトを支持し、前記一対の電極にそれぞれ対応して配置された押圧手段によって、それぞれ前記ラックシャフトを前記一対の電極側に押圧し、前記一対の接触電極を介して高周波電流を前記ラック部に直接流すと共に、前記ラックシャフトに近接して配置される近接導体に流れる高周波電流の誘導作用により前記ラック部に誘導電流を流して、前記ラック部を加熱し、次いで所要の焼入温度に加熱された前記ラック部を冷却することにより前記ラック部に焼入硬化層を形成するように構成した高周波直接通電焼入装置を用いて、前記ラックシャフトの焼入処理及び焼戻処理を連続的に行う連続焼入焼戻方法において、前記ラックシャフトを前記高周波直接通電焼入装置に保持した状態のままで、異なる周波数の複数の高周波電力を前記高周波直接通電焼入装置に同時に又は時間差をもって供給することにより、焼入処理及び焼戻処理を順次に連続して行うようにしている。
また、本発明では、前記異なる周波数の複数の高周波電力を高周波電力及び低周波電力として高周波電力及び低周波電力のとりうる最大電力をそれぞれ100%とした場合、所望の焼入深さ・焼戻硬さを得るように、焼入加熱時には、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼入加熱を行い、焼戻加熱時には、高周波電力と低周波電力との合計が焼入加熱時における高周波電力と低周波電力との合計よりも低電力の状態の下で、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼戻加熱を行うようにしている。
In order to achieve the above-described object, in the present invention, a pair of contact electrodes are disposed with a rack portion formed between a plurality of teeth along the longitudinal direction of the rack shaft and spaced apart from each other in the longitudinal direction . The rack shafts are supported, and the rack shafts are respectively pressed toward the pair of electrodes by pressing means arranged corresponding to the pair of electrodes, and the high-frequency current is transmitted through the pair of contact electrodes. The rack portion is heated by flowing an induction current to the rack portion by inductive action of a high-frequency current flowing in a close conductor arranged close to the rack shaft , while flowing directly to the rack portion , and then the required quenching temperature. using a high frequency direct current hardening device configured to form a quench-hardened layer to said rack unit by cooling the rack portion which is heated, before In a continuous quenching and tempering process of performing quenching treatment and tempering process of the rack shaft continuously, in the state holding the rack shaft to the high-frequency direct current hardening apparatus, a plurality of high-frequency power of different frequencies By supplying the high-frequency direct current quenching apparatus simultaneously or with a time difference, the quenching process and the tempering process are successively performed.
In the present invention, when the maximum power that the high frequency power and the low frequency power can take is set to 100% as the high frequency power and the low frequency power, the desired quenching depth and tempering, respectively. In order to obtain hardness, during quenching heating, high-frequency power and low-frequency power are each set in an optimal distribution ratio in the range of 0 to 100% to perform quenching heating, and during tempering heating, The high-frequency power and the low-frequency power are within the range of 0 to 100% in the range of 0 to 100%, respectively, under the condition that the sum of the high-frequency power and the low-frequency power is lower than the sum of the high-frequency power and the low-frequency power during quenching heating . Tempering heating is performed by setting the optimal distribution ratio and combining them.

請求項1に記載の本発明は、ラックシャフトを前記高周波直接通電焼入装置に保持した状態のままで、周波数の異なる複数の高周波電力を高周波直接通電焼入装置に同時に又は時間差をもって供給することにより、焼入処理及び焼戻処理を順次に連続して行うようにしたものであるから、周波数の異なる複数の高周波電力をその電力比を調整しながら供給することにより所望の深さの焼入硬化層を形成し、焼戻硬さを得ることができると共に、焼入処理後には、焼入処理が施されたラックシャフトを高周波直接通電焼入装置から取り外すことなく焼入処理時と同じ状態すなわち高周波直接通電焼入装置に取り付けた状態のままで、電力比を調整した複数の高周波電力を高周波直接通電焼入装置に供給して焼戻処理を行うことができる。従って、従来において用いていたような高周波誘導焼戻処理用のソレノイド状炉体コイル或いは電気炉を別途に設ける必要がないため、設備の占める設置スペースを大幅に小さくし得て省スペース化を図ることが可能となる上に、ラックシャフトを搬送移動する必要がないため、その分だけ作業効率を向上させることができる。さらに、多様な熱処理仕様やモジールの異なるラックシャフトについて適宜に対応することができ、従って高周波直接通電焼入装置の機能の向上を図ることができる。 In the first aspect of the present invention, a plurality of high frequency powers having different frequencies are supplied to the high frequency direct current quenching apparatus simultaneously or with a time difference while the rack shaft is held in the high frequency direct current quenching apparatus. Therefore, the quenching process and the tempering process are sequentially performed in succession, so that a plurality of high frequency powers having different frequencies can be supplied while adjusting the power ratio, thereby quenching at a desired depth. A hardened layer can be formed to obtain tempering hardness. After quenching, the rack shaft that has been subjected to quenching is not removed from the high-frequency direct current quenching device, and is in the same state as during quenching. That is, the tempering process can be performed by supplying a plurality of high-frequency powers with adjusted power ratios to the high-frequency direct current quenching apparatus while being attached to the high-frequency direct current quenching apparatus. Accordingly, there is no need to separately provide a solenoid-type furnace body coil or electric furnace for high-frequency induction tempering treatment that has been used in the past, so that the installation space occupied by the equipment can be greatly reduced, thereby saving space. In addition, since it is not necessary to transport and move the rack shaft , work efficiency can be improved accordingly. Furthermore, various heat treatment specifications and rack shafts having different modules can be appropriately dealt with, and hence the function of the high-frequency direct current quenching apparatus can be improved.

また、請求項2に記載の本発明は、異なる周波数の複数の高周波電力を高周波電力及び低周波電力として高周波電力及び低周波電力のとりうる最大電力をそれぞれ100%とした場合、所望の焼入深さ・焼戻硬さを得るように、焼入加熱時には、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼入加熱を行い、焼戻加熱時には、高周波電力と低周波電力との合計が焼入加熱時における高周波電力と低周波電力との合計よりも低電力の状態の下で、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼戻加熱を行うようにしたものであるから、電力比を必要に応じて自由に調整でき、熱処理仕様やモジールの異なる任意のラックシャフトの焼入処理及び焼戻処理を良好にしかも効率的に行うことができる。 Further, the present invention described in claim 2 is that when a plurality of high-frequency powers having different frequencies are set as high-frequency power and low-frequency power and the maximum power that can be taken by the high-frequency power and low-frequency power is 100%, a desired quenching is achieved. In order to obtain depth and tempering hardness, at the time of quenching heating, high frequency power and low frequency power are each set in an optimal distribution ratio in the range of 0 to 100% and combined to perform quenching heating. At the time of tempering heating, each of the high frequency power and the low frequency power is set to 0 to 0 under a state where the sum of the high frequency power and the low frequency power is lower than the sum of the high frequency power and the low frequency power at the time of quenching heating. since is obtained to perform the tempering heating in combination with set at an optimal distribution ratio of the 100% coverage, freely be adjusted as needed power ratio, any of different heat treatment specifications and Mojiru Rakkusha The quenching treatment and tempering process of bets can satisfactorily yet be efficiently performed.

以下、本発明の一実施形態に係る高周波直接通電焼入装置による連続焼入焼戻方法について図1及び図2を参照して説明する。   Hereinafter, a continuous quenching and tempering method using a high frequency direct current quenching apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明の一実施形態に係る連続焼入焼戻方法を施行するために用いられる高周波直接通電焼入装置20を示している。なお、本装置20は、電源部以外の構造が図3〜図5に示した高周波直接通電焼入装置4と同様であるため、図1においては図3〜図5と同様の部分に同一の符号を付して重複する説明を省略する。   FIG. 1 shows a high-frequency direct current quenching apparatus 20 used for enforcing a continuous quenching and tempering method according to an embodiment of the present invention. Since the structure of the apparatus 20 is the same as that of the high-frequency direct current quenching apparatus 4 shown in FIGS. 3 to 5 except for the power supply unit, the same parts as those in FIGS. The description which attaches a code | symbol and overlaps is abbreviate | omitted.

図1に示すように、高周波直接通電焼入装置20の電源部21は、第一の高周波電源部21Aと第二の高周波電源部21Bとからなるが、これに限定するものではない。なお、本実施形態において、第一の高周波電源部21Aの電源周波数は31〜400kHzであり、第二の高周波電源部21Bの電源周波数は0.5〜30kHzである。そして、これ等の第一の高周波電源部21A及び第二の高周波電源部21Bには、電力値をコントロールするための制御部22A及び22Bが付設されている。第一の高周波電源部21Aからは高周波電力が出力され、第二の高周波電源部21Bからは低周波電力が出力されるように構成されている。かくして、制御部22a,22bを適宜に操作することによって、第一の高周波電源部21Aから供給される高周波電力と、第二の高周波電源部21Bから供給される低周波電力との電力比(出力比)が、所定の範囲内において任意に調整し得るようになっている。すなわち、例えば、第一の高周波電源部21Aから供給される高周波電力が100kWでありかつ第二の高周波電源部21Bから供給される高周波電力が50kWである場合には、高周波直接通電焼入装置20に供給される電力が100kW+50kW=150kWであり、既述の第一の高周波電源部21Aから供給される電力と第二の高周波電源部21Bから供給される電力との比(電力比)は、2:1となる。   As shown in FIG. 1, the power supply unit 21 of the high-frequency direct current quenching apparatus 20 includes a first high-frequency power supply unit 21 </ b> A and a second high-frequency power supply unit 21 </ b> B, but is not limited thereto. In the present embodiment, the power frequency of the first high frequency power supply unit 21A is 31 to 400 kHz, and the power frequency of the second high frequency power supply unit 21B is 0.5 to 30 kHz. The first high frequency power supply unit 21A and the second high frequency power supply unit 21B are provided with control units 22A and 22B for controlling the power value. The high frequency power is output from the first high frequency power supply unit 21A, and the low frequency power is output from the second high frequency power supply unit 21B. Thus, by appropriately operating the control units 22a and 22b, a power ratio (output) between the high frequency power supplied from the first high frequency power supply unit 21A and the low frequency power supplied from the second high frequency power supply unit 21B. Ratio) can be arbitrarily adjusted within a predetermined range. That is, for example, when the high frequency power supplied from the first high frequency power supply unit 21A is 100 kW and the high frequency power supplied from the second high frequency power supply unit 21B is 50 kW, the high frequency direct current quenching apparatus 20 is used. Is 100 kW + 50 kW = 150 kW, and the ratio (power ratio) between the power supplied from the first high frequency power supply unit 21A and the power supplied from the second high frequency power supply unit 21B is 2 : 1.

焼入・焼戻処理に際しては、まず、一対の接触電極9,10上に支持されたラックシャフト1を例えば上述の如き電力比(2:1)により加熱した後に、ラックシャフト1をそのままの状態に保持して冷却し、これによりラックシャフト1の歯部2又は背面部3に所要の焼入硬化層を形成せしめる。次いで、このようにして焼入処理を施したラックシャフト1を引続きそのままの状態で焼戻加熱を行ない、その後に冷却せしめてラックシャフト1の熱処理を完了する。なお、焼戻加熱時においても第一の高周波電源部21A及び第二の高周波電源部21Bから所定の電力比による電力を供給する。但し、焼戻加熱時における高周波電力と低周波電力の合計は、焼入加熱時における高周波電力と低周波電力の合計よりも相対的に低く設定する。   In the quenching / tempering treatment, first, the rack shaft 1 supported on the pair of contact electrodes 9 and 10 is heated at a power ratio (2: 1) as described above, for example, and then the rack shaft 1 is left as it is. Then, a required hardened and hardened layer is formed on the teeth 2 or the back 3 of the rack shaft 1. Next, the rack shaft 1 thus subjected to the quenching treatment is continuously tempered and heated as it is, and then cooled to complete the heat treatment of the rack shaft 1. In addition, also at the time of tempering heating, electric power with a predetermined power ratio is supplied from the first high-frequency power supply unit 21A and the second high-frequency power supply unit 21B. However, the sum of the high frequency power and the low frequency power during tempering heating is set to be relatively lower than the sum of the high frequency power and the low frequency power during quenching heating.

ここで、高周波電力と低周波電力との電力比についてさらに具体的に述べると、高周波電力及び低周波電力のとりうる最大電力をそれぞれ100%とした場合、焼入加熱時には、高周波電力と低周波電力とをそれぞれ0〜100%の範囲で任意に設定して組み合わせて焼入加熱を行い、焼戻加熱時には、高周波電力と低周波電力との合計が焼入加熱時における高周波電力と低周波電力との合計よりも低電力の状態の下で、高周波電力と低周波電力とをそれぞれ0〜100%の範囲で任意に設定して組み合わせて焼戻加熱を行う。すなわち、高周波電力及び低周波電力の最大電力をそれぞれ100%とした場合、設定しうる高周波電力と低周波電力との電力比は、(100%:0%)〜(100%:100%)〜(0%:100%)の範囲内で任意の割合に設定される。   Here, the power ratio between the high-frequency power and the low-frequency power will be described in more detail. When the maximum power that the high-frequency power and the low-frequency power can take is 100%, the high-frequency power and the low-frequency power can be reduced during quenching heating. Quenching heating is performed by arbitrarily setting and combining electric power in the range of 0 to 100%, and during tempering heating, the sum of high frequency power and low frequency power is the high frequency power and low frequency power during quenching heating. Tempering heating is performed by arbitrarily setting and combining high-frequency power and low-frequency power in the range of 0 to 100% under a state of lower power than the sum of. That is, when the maximum power of the high frequency power and the low frequency power is 100%, the power ratio between the high frequency power and the low frequency power that can be set is (100%: 0%) to (100%: 100%) to It is set to an arbitrary ratio within the range of (0%: 100%).

例えば、高周波電力の最大値が100kWであり、低周波電力の最大値が50kWである場合には、下記のような例が挙げられる。
(a) 100%(高周波電力):0%(低周波電力)→100kW:0kW
加熱電力の合計=100kW+0kW=100kW
(b) 50%(高周波電力):20%(低周波電力)→50kW:10kW
加熱電力の合計=50kW+10kW=60kW
(c) 100%(高周波電力):100%(低周波電力)→100kW:50kW
加熱電力の合計=100kW+50kW=150kW
(d) 20%(高周波電力):50%(低周波電力)→20kW:25kW
加熱電力の合計=20kW+25kW=45kW
(e) 0%(高周波電力):100%(低周波電力)→0kW:50kW
加熱電力の合計=0kW+50kW=50kW
For example, when the maximum value of the high frequency power is 100 kW and the maximum value of the low frequency power is 50 kW, the following examples are given.
(A) 100% (high frequency power): 0% (low frequency power) → 100 kW: 0 kW
Total heating power = 100 kW + 0 kW = 100 kW
(B) 50% (high frequency power): 20% (low frequency power) → 50 kW: 10 kW
Total heating power = 50 kW + 10 kW = 60 kW
(C) 100% (high frequency power): 100% (low frequency power) → 100 kW: 50 kW
Total heating power = 100 kW + 50 kW = 150 kW
(D) 20% (high frequency power): 50% (low frequency power) → 20 kW: 25 kW
Total heating power = 20 kW + 25 kW = 45 kW
(E) 0% (high frequency power): 100% (low frequency power) → 0 kW: 50 kW
Total heating power = 0 kW + 50 kW = 50 kW

図2は、上述の連続焼入焼戻方法を時系列的に表示したものである。図2に示すように、高周波電力と低周波電力の電力比を上述の如く例えば2:1として2種類の電力を投入して焼入を行う。次に、空冷時間をおき、焼入冷却を行い、その後に空冷を行う。次いで、既述のようにラックシャフト1を高周波直接通電焼入装置20の一対の接触電極9,10上から取り外すことなく、焼入処理時の状態のままで、高周波電力と低周波電力との電力比を適宜に設定して焼戻加熱を行う。しかる後に、空冷にて冷却することにより一連の焼入・焼戻の熱処理を完了する。   FIG. 2 shows the continuous quenching and tempering method described above in time series. As shown in FIG. 2, the power ratio between the high frequency power and the low frequency power is set to, for example, 2: 1 as described above, and quenching is performed by supplying two types of power. Next, an air cooling time is set, quenching cooling is performed, and then air cooling is performed. Next, as described above, the rack shaft 1 is not removed from the pair of contact electrodes 9 and 10 of the high-frequency direct current quenching apparatus 20, and the high-frequency power and the low-frequency power are maintained in the quenching state. Tempering heating is performed with an appropriate power ratio. Thereafter, a series of quenching and tempering heat treatments is completed by cooling with air cooling.

上述の如き連続焼入焼戻方法によりラックシャフト1の歯部2について焼入・焼戻を行ったところ、歯部2に形成された焼入硬化層の焼入硬度は779Hv(ビッカース硬度)であり、焼戻後の硬度が706Hvであり、十分な焼戻が行われたことが確認された。   When the teeth 2 of the rack shaft 1 were quenched and tempered by the continuous quenching and tempering method as described above, the quenching hardness of the hardened hardened layer formed on the teeth 2 was 779 Hv (Vickers hardness). Yes, the hardness after tempering was 706 Hv, and it was confirmed that sufficient tempering was performed.

以上、本発明の一実施形態について述べたが、本発明はこの実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、述の実施形態では、電力比を2:1に設定しているが、これに限定されるものではない。また、既述の実施形態では、第一の高周波電源部21Aからの高周波電力と第二の高周波電源部21Bからの低周波電力を同時に供給するようにしているが、これに限らず、これらの電力を時間差をつけて供給するようにしてもよい。すなわち、ラックシャフト1の仕様やモジュール等に応じて最適な供給方法が選択されてよい。また、本発明に係る連続焼入焼戻方法は、ラックシャフト1に限らず、高周波直接通電焼入装置を用いて熱処理を行うような各種の全ての高周波熱処理対象物に対しても適用可能であることは言う迄もない。 Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and changes can be made based on the technical idea of the present invention. For example, in the embodiment described above, the power ratio 2: is set to 1, but is not limited thereto. In the above-described embodiment, the high frequency power from the first high frequency power supply unit 21A and the low frequency power from the second high frequency power supply unit 21B are supplied simultaneously. Electric power may be supplied with a time difference. That is, an optimal supply method may be selected according to the specifications of the rack shaft 1, modules, and the like. Further, the continuous quenching and tempering method according to the present invention is not limited to the rack shaft 1 and can be applied to all types of induction heat treatment objects such as heat treatment using a high frequency direct current quenching apparatus. Needless to say, there is.

本発明の焼入焼戻方法が行われる高周波直接通電焼入装置の全体構造を示す側面図である。It is a side view which shows the whole structure of the high frequency direct current quenching apparatus with which the quenching and tempering method of this invention is performed. 本発明による焼入焼戻のフローを示す工程図である。It is process drawing which shows the flow of quenching and tempering by this invention. 従来の高周波直接通電焼入装1置の全体構造を示す側面図である。It is a side view which shows the whole structure of the conventional high frequency direct current quenching 1 apparatus. 図3におけるA−A線断面図であるである。It is the sectional view on the AA line in FIG. 図3におけるB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 従来の焼入焼戻方法を説明するためのフローチャートである。It is a flowchart for demonstrating the conventional quenching and tempering method.

符号の説明Explanation of symbols

1 ラックシャフト(高周波熱処理対象物;ワーク)
9 第一接触電極
10 第二接触電極
11 近接導体
12 冷却手段
20 高周波直接通電焼入装置
21 電源部
21A 第一の高周波電源部
21B 第二の高周波電源部
22A,22B 制御部


1 Rack shaft (high frequency heat treatment object; workpiece)
DESCRIPTION OF SYMBOLS 9 1st contact electrode 10 2nd contact electrode 11 Proximity conductor 12 Cooling means 20 High frequency direct current hardening apparatus 21 Power supply part 21A 1st high frequency power supply part 21B 2nd high frequency power supply part 22A, 22B Control part


Claims (2)

ラックシャフトの長手方向に沿って複数の歯から形成されるラック部を挟んで、その長手方向に互いに間隔を空けて配置した一対の接触電極によって、前記ラックシャフトを支持し、
前記一対の電極にそれぞれ対応して配置された押圧手段によって、それぞれ前記ラックシャフトを前記一対の電極側に押圧し、
前記一対の接触電極を介して高周波電流を前記ラック部に直接流すと共に、
前記ラックシャフトに近接して配置される近接導体に流れる高周波電流の誘導作用により前記ラック部に誘導電流を流して、
前記ラック部を加熱し、
次いで所要の焼入温度に加熱された前記ラック部を冷却することにより前記ラック部に焼入硬化層を形成するように構成した高周波直接通電焼入装置を用いて、前記ラックシャフトの焼入処理及び焼戻処理を連続的に行う連続焼入焼戻方法であって、
前記ラックシャフトを前記高周波直接通電焼入装置に保持した状態のままで、異なる周波数の複数の高周波電力を前記高周波直接通電焼入装置に同時に又は時間差をもって供給することにより、焼入処理及び焼戻処理を順次に連続して行うことを特徴とする高周波直接通電焼入装置による連続焼入焼戻方法。
The rack shaft is supported by a pair of contact electrodes that are spaced apart from each other in the longitudinal direction across a rack portion formed from a plurality of teeth along the longitudinal direction of the rack shaft,
By pressing means arranged corresponding to the pair of electrodes, respectively, the rack shaft is pressed to the pair of electrodes,
While flowing a high-frequency current directly to the rack part through the pair of contact electrodes,
An induced current is caused to flow through the rack portion by an induction action of a high-frequency current flowing in a proximity conductor arranged close to the rack shaft ,
Heating the rack part ;
Then using a predetermined high-frequency direct current hardening device configured to form a quench-hardened layer to said rack unit by cooling the rack portion which is heated to a quenching temperature, quenching treatment of the rack shaft And a continuous quenching and tempering method for continuously performing a tempering process,
While the rack shaft is held in the high frequency direct current quenching apparatus, a plurality of high frequency powers having different frequencies are supplied to the high frequency direct current quenching apparatus simultaneously or with a time difference, thereby quenching and tempering. A continuous quenching and tempering method using a high-frequency direct current quenching apparatus characterized in that the treatment is performed sequentially and continuously.
前記異なる周波数の複数の高周波電力を高周波電力及び低周波電力として高周波電力及び低周波電力のとりうる最大電力をそれぞれ100%とした場合、
所望の焼入深さ・焼戻硬さを得るように、焼入加熱時には、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼入加熱を行い、焼戻加熱時には、高周波電力と低周波電力との合計が焼入加熱時における高周波電力と低周波電力との合計よりも低電力の状態の下で、高周波電力と低周波電力とをそれぞれ0〜100%の範囲のうち最適な配分比率で設定して組み合わせて焼戻加熱を行うことを特徴とする請求項1に記載の高周波直接通電焼入装置による連続焼入焼戻方法。
When the maximum power that can be taken by the high-frequency power and the low-frequency power is set to 100% as the high-frequency power and the low-frequency power as the plurality of high-frequency powers having different frequencies
In order to obtain the desired quenching depth and tempering hardness, during quenching heating, the high frequency power and the low frequency power are each set in an optimal distribution ratio within the range of 0 to 100% and combined and quenched. When heating and tempering heating, the high-frequency power and the low-frequency power are less than the total of the high-frequency power and the low-frequency power during quenching heating, and the high-frequency power and the low-frequency power are The continuous quenching and tempering method using the high frequency direct current quenching apparatus according to claim 1, wherein the tempering heating is performed by setting and combining them in an optimal distribution ratio within a range of 0 to 100%.
JP2004230309A 2004-08-06 2004-08-06 Continuous quenching and tempering method using high frequency direct current quenching equipment Expired - Lifetime JP4551154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230309A JP4551154B2 (en) 2004-08-06 2004-08-06 Continuous quenching and tempering method using high frequency direct current quenching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230309A JP4551154B2 (en) 2004-08-06 2004-08-06 Continuous quenching and tempering method using high frequency direct current quenching equipment

Publications (2)

Publication Number Publication Date
JP2006045636A JP2006045636A (en) 2006-02-16
JP4551154B2 true JP4551154B2 (en) 2010-09-22

Family

ID=36024558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230309A Expired - Lifetime JP4551154B2 (en) 2004-08-06 2004-08-06 Continuous quenching and tempering method using high frequency direct current quenching equipment

Country Status (1)

Country Link
JP (1) JP4551154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190510A (en) * 2010-03-16 2011-09-29 Miyaden Co Ltd Energization-heating method and energization-heating apparatus
CN105296719A (en) * 2015-09-29 2016-02-03 宫电高周波设备(上海)有限公司 Ohmic heating device for rack for steering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226714A (en) * 2000-02-10 2001-08-21 Aisin Seiki Co Ltd High-frequency hardening method for metal mold and high-frequency hardening and heating device for metal mold usable for the same
JP2003342633A (en) * 2002-05-29 2003-12-03 Denki Kogyo Co Ltd Method for adjusting heating depth in high-frequency induction heating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226714A (en) * 2000-02-10 2001-08-21 Aisin Seiki Co Ltd High-frequency hardening method for metal mold and high-frequency hardening and heating device for metal mold usable for the same
JP2003342633A (en) * 2002-05-29 2003-12-03 Denki Kogyo Co Ltd Method for adjusting heating depth in high-frequency induction heating

Also Published As

Publication number Publication date
JP2006045636A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
KR101158697B1 (en) Multi frequency heat treatment of a workpiece by induction heating
US20190030584A1 (en) Heating method, heating apparatus, and hot press molding method for plate workpiece
CN106688308B (en) Induction heating device for metal band plate
JP4551154B2 (en) Continuous quenching and tempering method using high frequency direct current quenching equipment
JP2006028589A (en) Hardening and tempering method with direct electric-conduction hardening apparatus
JP2021038462A (en) Production method of whole-steel card clothing
JP2009019230A (en) Method for manufacturing workpiece
JP2023512702A (en) Split multi-coil electric induction heating system for heating multiple features of bearing components simultaneously
US6770858B2 (en) Device for inductively heating metallic strips
JP5390868B2 (en) Induction heating coil
JP2009019237A (en) Induction hardening apparatus and method for manufacturing member
JP2010111886A (en) Heat treatment method and apparatus
JP2009068049A (en) Annealing method and annealing apparatus
JP2014173147A (en) Blank material, method for producing automobile component, blank material and automobile component
JP6179055B2 (en) Heating method, heat treatment method and composite coil for deformed workpiece
JP2003342633A (en) Method for adjusting heating depth in high-frequency induction heating
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP2016201241A (en) High frequency induction heating coil
ATE447232T1 (en) METHOD AND DEVICE FOR THE HEAT TREATMENT OF A FUELINE BOX MADE OF A ZIRCONIUM ALLOY
JP2005330520A (en) High frequency induction hardening method and its apparatus
JP2008144230A (en) Heat-treatment method and apparatus for thin sheet-made member
JP2004307967A (en) Induction hardening and tempering device
JP2007231367A (en) Heat treatment method and device
US9000336B2 (en) Device for hardening a cylindrical section of a workpiece and use of such a device
WO2023211718A1 (en) Magnetically enhanced induction heat treating application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Ref document number: 4551154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250