JP5489325B2 - High frequency induction heating method and high frequency induction heating apparatus - Google Patents

High frequency induction heating method and high frequency induction heating apparatus Download PDF

Info

Publication number
JP5489325B2
JP5489325B2 JP2009167523A JP2009167523A JP5489325B2 JP 5489325 B2 JP5489325 B2 JP 5489325B2 JP 2009167523 A JP2009167523 A JP 2009167523A JP 2009167523 A JP2009167523 A JP 2009167523A JP 5489325 B2 JP5489325 B2 JP 5489325B2
Authority
JP
Japan
Prior art keywords
temperature
induction heating
workpiece
heating coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009167523A
Other languages
Japanese (ja)
Other versions
JP2011021242A (en
Inventor
潤二 己之上
哲正 渡邊
栄 奥出
Original Assignee
富士電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電子工業株式会社 filed Critical 富士電子工業株式会社
Priority to JP2009167523A priority Critical patent/JP5489325B2/en
Publication of JP2011021242A publication Critical patent/JP2011021242A/en
Application granted granted Critical
Publication of JP5489325B2 publication Critical patent/JP5489325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)
  • General Induction Heating (AREA)

Description

本発明は、軸状であって、外形形状や横断面の形状が一様ではないワークを誘導加熱する高周波誘導加熱方法及び高周波誘導加熱装置に関するものである。   The present invention relates to a high-frequency induction heating method and a high-frequency induction heating apparatus for induction heating a work that is axial and has a non-uniform outer shape or cross-sectional shape.

鉄鋼材料で作られたワークを焼き入れ処理した後、多くの場合焼戻しが行われる。焼戻しは、主として硬さ調整と、内部応力の除去及び靱性の付与を目的とするものである。焼戻しは、ワークを焼き入れ温度より低い温度に昇温し、その後に除冷する熱処理である。すなわち公知の通り、鉄鋼材料を昇温すると鉄鋼の組織がオーステナイトに変態する。そしてこれを急冷すると硬いマルテンサイトに変態し、焼き入れが行われる。
しかしながら焼き入れによって生じたマルテンサイトは硬くて脆く、また内部応力を内包する。そこでワークを再度昇温し、その後に除冷することによって、硬さ調整と、内部応力の除去及び靱性の付与を行う。
In many cases, tempering is performed after quenching a workpiece made of a steel material. Tempering is mainly intended for adjusting the hardness, removing internal stress and imparting toughness. Tempering is a heat treatment in which the workpiece is heated to a temperature lower than the quenching temperature and then cooled. That is, as is well known, when the temperature of a steel material is raised, the structure of the steel is transformed into austenite. When this is rapidly cooled, it transforms into hard martensite and quenching is performed.
However, martensite produced by quenching is hard and brittle and contains internal stress. Accordingly, the temperature of the workpiece is raised again, and thereafter the workpiece is cooled, thereby adjusting the hardness, removing internal stress, and imparting toughness.

高周波誘導加熱を利用して焼き入れを行う場合には、焼き入れ用の誘導加熱コイルによってワークを焼き入れ温度(A1変態点以上の温度)まで昇温し、これを急冷して焼き入れ処理を終え、その後に別の誘導加熱コイルによって焼戻しを行う。すなわち焼き入れ用とは別に、焼戻し専用の誘導加熱コイルを使用し、焼き入れによる急冷後に、焼戻し専用の誘導加熱コイルでワークを再度昇温する。   When quenching using high-frequency induction heating, the workpiece is heated to the quenching temperature (temperature above the A1 transformation point) by the induction heating coil for quenching, and this is quenched and quenched. Finish and then temper with another induction heating coil. That is, separately from quenching, an induction heating coil dedicated to tempering is used, and after quenching by quenching, the workpiece is heated again with the induction heating coil dedicated to tempering.

この様に高周波誘導加熱による焼き入れを行う場合には、焼戻し専用の誘導加熱コイルによって焼戻しが行われるのが通例である。例えば、特許文献1には、焼戻し専用の加熱コイルに関する発明が開示されている。   When quenching by high-frequency induction heating in this way, it is usual that tempering is performed by an induction heating coil dedicated to tempering. For example, Patent Document 1 discloses an invention related to a heating coil dedicated to tempering.

これに対して極めて稀であるが、焼き入れと焼戻しに同一の誘導加熱コイルを使用する例もある。すなわち同一の誘導加熱コイルを使用する表面焼き入れ・焼戻し方法が、特許文献2に開示されている。特許文献2に記載の発明は、焼き入れの際の残留応力を緩和するために、焼き入れ部分だけでなく、焼き入れ部分の周囲についても焼戻しを行うことを目的としている。すなわち焼き入れした領域よりも広い領域に渡って焼戻しを行う。そのため、一旦焼き入れした後に、再度同一の誘導加熱コイルを焼き入れ部分に近接して昇温し、その後に誘導加熱コイルをずらして焼き入れ部分以外の部分を同一の誘導加熱コイルで昇温する。   On the other hand, although rare, there is an example in which the same induction heating coil is used for quenching and tempering. That is, Patent Document 2 discloses a surface quenching / tempering method using the same induction heating coil. The invention described in Patent Document 2 is intended to perform tempering not only on the quenched portion but also on the periphery of the quenched portion in order to relieve the residual stress at the time of quenching. That is, tempering is performed over a wider area than the quenched area. Therefore, after quenching, the same induction heating coil is heated again near the quenching part, and then the induction heating coil is shifted and the temperature other than the quenching part is heated by the same induction heating coil. .

すなわち特許文献2に記載の発明で採用する誘導加熱コイルは、図14(特許文献の図2)の様に円形のワンターンコイルであり、軸方向の全長が極めて短い。特許文献2に記載の発明では、焼き入れの際には、ワークの焼き入れ希望箇所F(図13)及び薄肉部との境界部分に誘導加熱コイルを近接して焼き入れ希望箇所Fを昇温する(図14b)。そして当該部分を急冷して焼き入れ作業を終える(図14c)。   That is, the induction heating coil employed in the invention described in Patent Document 2 is a circular one-turn coil as shown in FIG. 14 (FIG. 2 of Patent Document), and has a very short total axial length. In the invention described in Patent Document 2, when quenching, the induction heating coil is brought close to the boundary portion between the desired portion F (FIG. 13) and the thin portion of the workpiece, and the desired quenching portion F is heated. (FIG. 14b). Then, the portion is rapidly cooled to finish the quenching operation (FIG. 14c).

続いて焼戻し作業を行うが、特許文献2に記載の発明では、焼き入れの際と同一の誘導加熱コイルを使用して焼戻し作業を行う。すなわち前記した誘導加熱コイルを、再度ワークの焼き入れ希望箇所Fに誘導加熱コイルを近接し、焼き入れ希望箇所Fを昇温する(図14d)。そして誘導加熱コイルをずらして前記した焼き入れ希望箇所Fから外れた位置にまで誘導加熱コイルを移動させる(図14e)。このとき、先に焼戻しのために昇温された部位は、温度降下が始まり、焼戻しの為の除冷が始まる。
一方、新たに誘導加熱コイルが移動された部位では、誘導加熱コイルによって新たに昇温される。また当該部位についても、一定温度まで昇温された後に、除冷が行われる。
Subsequently, a tempering operation is performed. In the invention described in Patent Document 2, the tempering operation is performed using the same induction heating coil as that used in the quenching. That is, the induction heating coil is again brought close to the desired quenching point F of the workpiece, and the desired quenching point F is heated (FIG. 14d). Then, the induction heating coil is shifted and moved to a position deviated from the desired quenching point F (FIG. 14e). At this time, the temperature of the portion that has been previously raised for tempering begins to drop, and the cooling for tempering begins.
On the other hand, at the part where the induction heating coil is newly moved, the temperature is newly increased by the induction heating coil. In addition, the part is also cooled after being heated to a certain temperature.

特開2008−150661号公報JP 2008-150661 A 特開昭63−238212号公報JP-A-63-238212

前記した様に、一般に、ワークを焼入する誘導加熱コイルと、焼戻しする誘導加熱コイルは別に設けられる。   As described above, generally, the induction heating coil for quenching the workpiece and the induction heating coil for tempering are separately provided.

ところが、昨今は装置の小型化や簡素化のために、焼入用の加熱コイルと焼戻し用の加熱コイルとを共用したいという要望が出てきた。
ここでワークの形状が、単純な円筒形等の形状である場合には、焼入用の加熱コイルを使用して焼戻しを行っても、特に不具合は生じない。
例えば特許文献1に開示した方策では、本来焼き入れを行う部位は、図13のF領域であり、表面は単純な円筒形状である。
そのため、焼き入れの際の温度上昇カーブと焼戻しの際の温度上昇カーブは同一であり、目標の焼戻し温度に図13のF領域を昇温することができる。
However, recently, there has been a demand for sharing a quenching heating coil and a tempering heating coil in order to reduce the size and simplify the apparatus.
Here, when the shape of the workpiece is a simple cylindrical shape or the like, there is no particular problem even if tempering is performed using a heating coil for quenching.
For example, in the measure disclosed in Patent Document 1, the part to be quenched is the F region in FIG. 13 and the surface has a simple cylindrical shape.
Therefore, the temperature rise curve at the time of quenching is the same as the temperature rise curve at the time of tempering, and the region F in FIG. 13 can be raised to the target tempering temperature.

しかしながら、外形形状が異形であって肉厚が著しく異なるワークに対して焼き入れ・焼戻しを行う場合に、焼入用の加熱コイルと焼戻し用の加熱コイルの共用を試みたところ、焼戻し後の表面硬度に予期しないばらつきが生じた。   However, when quenching and tempering workpieces with unusually different external shapes and extremely different wall thicknesses, an attempt was made to use both a heating coil for quenching and a heating coil for tempering. Unexpected variation in hardness occurred.

例えば、図1,2に示すワーク100の様に、一部に直径が大きい部位101があり、他の部位については直径が細いワークである場合の様に、軸方向の位置によって外形形状及び断面形状が異なり、昇温困難な部位Aと昇温容易な部位Bとを有するワークに対し高周波焼き入れ・焼戻しを行うと、昇温容易な部位Bと昇温困難な部位Aで硬度にばらつきが生じた。   For example, like the workpiece 100 shown in FIGS. 1 and 2, a part 101 has a part 101 having a large diameter, and the other part has a shape and a cross section depending on the position in the axial direction as in the case of a work having a small diameter. When induction hardening and tempering are performed on a workpiece having a different shape and a part A that is difficult to heat up and a part B that is easy to heat up, the hardness varies between the part B that is easy to heat up and the part A that is difficult to heat up. occured.

この問題を解決するために本発明者らが調査したところ、ワークを焼戻しする際に、ワークの表面温度にばらつきが生じ、この温度ばらつきが原因で表面硬度がばらつくことが判明した。
すなわち焼き入れ時においては、昇温困難な部位Aと昇温容易な部位Bの温度差に大きな相違は無かったが、焼戻しの際における昇温時には、昇温容易な部位Bの温度と昇温困難な部位Aの温度に相当の温度差があった。
より具体的には、昇温困難な部位Aの温度が昇温容易な部位Bの温度に比べて著しく高いものとなっていた。
すなわち焼戻しの際には、断面積等が大きくて昇温し難い部位Aの方が温度が高く、昇温容易であるはずの部位Bの温度が低くなる傾向にある。
本発明者らの実測によると、両者の間の温度差は、摂氏200度程度であり、無視できない温度差であった。
When the present inventors investigated to solve this problem, it was found that when the workpiece was tempered, the surface temperature of the workpiece varied, and the surface hardness varied due to this temperature variation.
That is, at the time of quenching, there was no significant difference in the temperature difference between the part A where it is difficult to raise the temperature and the part B where it is easy to raise the temperature. There was a considerable temperature difference in the temperature of difficult site A.
More specifically, the temperature of the part A that is difficult to raise is significantly higher than the temperature of the part B that is easy to raise.
That is, at the time of tempering, the temperature of the part A, which has a large cross-sectional area and the like and is difficult to raise, tends to be lower, and the temperature of the part B that should be easily raised tends to be lower.
According to the actual measurement by the present inventors, the temperature difference between the two is about 200 degrees Celsius, which is a temperature difference that cannot be ignored.

すなわち焼戻しには、高温焼戻しと称される焼戻しと低温焼戻しと称される焼戻しがあり、前者は、摂氏150度から摂氏200度程度に昇温され、後者は摂氏550度から摂氏650度程度に昇温される。この様に焼戻しは目的によって昇温させる目標温度が相違し、かつ理想的に焼戻しを行い得る温度幅は、摂氏50度程度と狭い。
そのため摂氏200度もの温度ばらつきが生じると、焼戻し後の表面硬度が目標値から外れてしまう懸念がある。
In other words, tempering includes tempering called high-temperature tempering and tempering called low-temperature tempering. The temperature is raised. In this way, the target temperature for raising the temperature is different depending on the purpose, and the temperature range at which tempering can be ideally performed is as narrow as about 50 degrees Celsius.
Therefore, when a temperature variation of 200 degrees Celsius occurs, there is a concern that the surface hardness after tempering may deviate from the target value.

そこで本発明者らは、焼き入れの際に温度ばらつきが小さいにも係わらず、焼戻しの際に大きな温度ばらつきが生じてしまう原因についてさらに調査研究した。
その結果、高周波誘導加熱を行う場合、常温からA1変態点を越える温度まで昇温すると、全体の温度ばらつきが小さくなり、かつ昇温時間のばらつきも小さいが、常温からA1変態点未満の昇温カーブだけに注目すると、昇温容易な部位Bと昇温し難い部位Aとの間に僅かに差異があり、この昇温カーブの相違が焼戻しの際に大きな温度ばらつきが生じてしまう原因であることが判明した。
以下、この理由について説明する。
Therefore, the present inventors further investigated and investigated the cause of the large temperature variation during tempering even though the temperature variation during quenching was small.
As a result, when high-frequency induction heating is performed, if the temperature is raised from room temperature to a temperature exceeding the A1 transformation point, the overall temperature variation becomes small and the temperature rise time variation is small, but the temperature rise from room temperature to less than the A1 transformation point. If attention is paid only to the curve, there is a slight difference between the portion B where the temperature rise is easy and the portion A where the temperature rise is difficult, and this difference in the temperature rise curve causes a large temperature variation during tempering. It has been found.
Hereinafter, this reason will be described.

前記した図1,2の様な、軸方向の位置によって外形形状及び断面形状が異なり、昇温困難な部位Aと昇温容易な部位Bとを有するワーク100に対し高周波焼き入れを行う場合は、昇温容易な部位Bを通過する磁力線密度が低く、昇温困難な部位Aを通過する磁力線密度が高い特性を有する誘導加熱コイル120が使用される。
すなわちワークの温度が均一になる様に、昇温容易な部位Bを通過する磁力線密度が低く、昇温困難な部位Aを通過する磁力線密度が高い特性を有する誘導加熱コイル120が使用される。
In the case where induction hardening is performed on the workpiece 100 having the part A in which the external shape and the cross-sectional shape are different depending on the position in the axial direction as shown in FIGS. The induction heating coil 120 having a characteristic that the magnetic line density passing through the part B where the temperature rise is easy and the magnetic line density passing through the part A where the temperature rise is difficult is high.
That is, the induction heating coil 120 having a characteristic that the magnetic line density passing through the part B where the temperature is easily raised is low and the magnetic line density passing through the part A where the temperature is difficult to raise is high so that the temperature of the workpiece is uniform.

より具体的には、図3に示すような、焼入を希望する部位の長さL及び再加熱を希望する部位の長さLに応じた全長Lを有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルが使用される。
すなわち図3に示す焼き入れ用誘導加熱コイル120は、半開放鞍形コイルであり、直線部102,103と、大径曲線部105及び小径曲線部106を有した形状であり、これらが直列形状に接続された構造をしている。
More specifically, as shown in FIG. 3, it has a total length L corresponding to the length L of the part desired to be quenched and the length L of the part desired to be reheated, and depends on the part in the axial direction. An induction heating coil having portions with different generated magnetic line densities is used.
That is, the induction heating coil 120 for quenching shown in FIG. 3 is a semi-open saddle coil, and has a shape having straight portions 102 and 103, a large-diameter curved portion 105, and a small-diameter curved portion 106, which are in series. It has a structure connected to.

また大径曲線部105と直線部102,103との間には、段部110、111が設けられている。
さらに大径曲線部105と段部110、111には、複数のコア121が設けられている。
従って誘導加熱コイル120は、大径曲線部105及び段部110、111たる軸方向a領域で発生する磁力線の強度が高く、直線部102,103たる軸方向b領域で発生する磁力線の強度が弱い。
そして図3に示す焼き入れ用誘導加熱コイル120は、図5に示す位置関係となる様に、ワーク100に近接される。すなわち発生する磁力線の強度が高いa領域は、ワーク100の昇温困難な部位Aを覆い、発生する磁力線の強度が弱いb領域は、ワーク100の昇温容易な部位Bを覆う。
Further, stepped portions 110 and 111 are provided between the large-diameter curved portion 105 and the straight portions 102 and 103.
Furthermore, the large-diameter curve portion 105 and the step portions 110 and 111 are provided with a plurality of cores 121.
Therefore, the induction heating coil 120 has a high strength of magnetic lines of force generated in the axial direction a region corresponding to the large-diameter curved portion 105 and the step portions 110 and 111, and a low strength of the magnetic force lines generated in the axial direction b region of the linear portions 102 and 103. .
And the induction heating coil 120 for hardening shown in FIG. 3 is adjoined to the workpiece | work 100 so that it may become the positional relationship shown in FIG. That is, the region a where the strength of the generated magnetic lines of force is high covers the portion A of the workpiece 100 where heating is difficult, and the region b where the strength of the generated magnetic lines of force is weak covers the portion B where the heating of the workpiece 100 is easy.

その結果、焼き入れ時においては、ワーク100の昇温困難な部位Aにより強い磁力線が通過し、全体の温度が均一となる。   As a result, at the time of quenching, strong lines of magnetic force pass through the portion A of the workpiece 100 where it is difficult to raise the temperature, and the entire temperature becomes uniform.

しかしながら、ワークの昇温困難な部位Aと昇温容易な部位Bの昇温カーブをより詳細に観察すると、図6の様に僅かながら差異を有するものであった。
ここで図6は、軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークに対し、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを使用して焼き入れした場合のワークの温度変化を模式的に表したグラフである。
However, when the temperature rise curves of the part A where the temperature of the workpiece is difficult to rise and the part B where the temperature is easy to raise are observed in more detail, there are slight differences as shown in FIG.
Here, FIG. 6 shows a case where a workpiece having a part that has a considerable length in the axial direction and has an easy-to-heat up part and a hard-to-heat up part whose outer shape and cross-sectional shape are different depending on the position in the axial direction. Quenching using an induction heating coil having a length corresponding to the length of the portion desired to be reheated and the length of the portion desired to be reheated, and having a portion with different magnetic field density generated by the axial portion. It is the graph which represented typically the temperature change of the workpiece | work at the time of doing.

図3に示す様な誘導加熱コイル120を使用して図1に示すようなワークを昇温すると、供給される磁力線密度が高いA部が先行して昇温し、わずかに遅れて供給される磁力線密度が高いB部が昇温する。すなわちA部とB部との間で温度上昇の傾きが相違し、供給される磁力線密度が高いA部の方が、B部よりも高い傾きで温度上昇する。
ところが、先に昇温したA部が変態点A1の温度を越えると、ワーク中のフェライト組織がオーステナイトに変態し、透磁率が著しく低下する。その結果、ワーク100のA部を流れる誘導電流が急激に低下し、温度上昇カーブが鈍化する。
これに対して、先に昇温したA部が変態点A1の温度を越えると、他の部位に流れる誘導電流が増大し、B部の温度上昇カーブが上向きとなり、短時間の内にB部についても、変態点A1の温度に達する。その後は、A部、B部共に同様の上昇カーブを描いて温度上昇する。そして急冷されて両者ともに温度降下する。
そのためワーク100のA部とB部の最終的な温度は略同一の温度となる。また所望の焼き入れ温度に達する時間についても大差は無い。そのため焼き入れの際にはワークの表面硬度にばらつきは生じない。
When the temperature of the workpiece as shown in FIG. 1 is increased using the induction heating coil 120 as shown in FIG. 3, the temperature of the portion A having a high magnetic force line density is increased in advance and supplied with a slight delay. B part with a high magnetic force line density heats up. That is, the inclination of the temperature rise differs between the A part and the B part, and the temperature of the A part having a higher magnetic line density to be supplied rises with a higher inclination than the B part.
However, when the temperature of the portion A that has been heated first exceeds the temperature of the transformation point A1, the ferrite structure in the workpiece is transformed into austenite, and the magnetic permeability is significantly lowered. As a result, the induced current flowing through the part A of the workpiece 100 is abruptly reduced, and the temperature increase curve is blunted.
On the other hand, when the temperature of the portion A that has been raised first exceeds the temperature of the transformation point A1, the induced current flowing in the other portion increases, the temperature rise curve of the portion B becomes upward, and the portion B is within a short time. Also reaches the temperature of the transformation point A1. After that, the temperature rises while drawing the same rising curve in both A part and B part. And it is cooled rapidly and both fall in temperature.
Therefore, the final temperatures of the A part and the B part of the workpiece 100 are substantially the same temperature. There is no great difference in the time required to reach the desired quenching temperature. Therefore, there is no variation in the surface hardness of the workpiece during quenching.

ところが、同じ誘導コイル120を使用して焼戻しを行うと、図7の様な温度変化を遂げる。
すなわち前記した様に、図3に示す様な誘導加熱コイル120を使用して図1に示すようなワークを昇温すると、当初、供給される磁力線密度が高いA部の温度上昇勾配が高く、供給される磁力線密度が高いB部の温度上昇勾配が低いものとなる。
例えば図6,7のグラフで、B部側の温度が摂氏300度の場合、昇温し難い部位Aの温度は、摂氏450度に達している。
そのためB部側の温度が摂氏300度となった状態で、誘導加熱コイル120に対する通電を停止しても、昇温し難い部位Aの温度は、既に摂氏450度となっており、加熱し過ぎの状態となっている。
However, when tempering is performed using the same induction coil 120, a temperature change as shown in FIG. 7 is achieved.
That is, as described above, when the temperature of the workpiece as shown in FIG. 1 is increased using the induction heating coil 120 as shown in FIG. The temperature rise gradient of the B part where the magnetic line density supplied is high is low.
For example, in the graphs of FIGS. 6 and 7, when the temperature on the B portion side is 300 degrees Celsius, the temperature of the part A that is difficult to raise reaches 450 degrees Celsius.
Therefore, even when energization of the induction heating coil 120 is stopped in a state where the temperature on the B part side is 300 degrees Celsius, the temperature of the part A that is difficult to raise is already 450 degrees Celsius, and is heated too much. It is in the state of.

なお前記した特許文献1の様に、円形のワンターンコイルを使用し、ワンターンコイルを昇温困難な部位Aに近接させて当該部位Aを昇温した後に、ワンターンコイルを昇温容易な部位Bに移動させて当該B部位を昇温させれば、焼戻し時の温度ばらつきが解消し、硬度ばらつきも減少するが、全体の作業時間が著しく伸び、実用的ではない。
すなわち、円形のワンターンコイルを使用し、ワンターンコイルを昇温困難な部位Aに近接させて当該部位Aを昇温した後に、ワンターンコイルを昇温容易な部位Bに移動させて当該B部位を昇温させた場合は、図8に示すような昇温カーブを描き、部位Aを昇温している間は部位Bの温度上昇がない。そのため昇温工程を実質的に2回くり返すこととなり、作業時間が著しく延びる。
As described in Patent Document 1, a circular one-turn coil is used, and the one-turn coil is brought close to the part A where it is difficult to raise the temperature, and the part A is heated. If the temperature is increased by moving the portion B, the temperature variation during tempering is eliminated and the hardness variation is reduced, but the overall work time is remarkably increased, which is not practical.
That is, a circular one-turn coil is used, and after the one-turn coil is brought close to a portion A where heating is difficult and the portion A is heated, the one-turn coil is moved to a portion B where heating is easy and the B portion is raised. When the temperature is raised, a temperature rise curve as shown in FIG. 8 is drawn, and the temperature of the part B does not increase while the part A is being heated. Therefore, the temperature raising step is substantially repeated twice, and the working time is significantly increased.

そこで本発明は、従来技術の上記した問題点に注目し、焼き入れと焼戻しを一つの誘導加熱コイルで行い、且つ焼戻し時におけるワークの温度ばらつきを抑制して硬度ばらつきの少ない、高周波誘導加熱方法を提供することを課題とする。   Therefore, the present invention pays attention to the above-mentioned problems of the prior art, performs quenching and tempering with a single induction heating coil, suppresses temperature variation of the workpiece during tempering, and reduces hardness variation, thereby high-frequency induction heating method. It is an issue to provide.

上記課題を解決するための請求項1の発明は、軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークに対し高周波誘導加熱を行う方法であって、軸方向に相当の長さを有する領域を所定の焼入温度まで昇温した後に急冷する焼入工程と、その後に前記焼入温度よりも低い温度まで昇温した後に徐冷する再加熱工程を有する高周波誘導加熱を行う方法において、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを使用し、前記焼入工程及び再加熱工程においては、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、ワークの昇温困難な部位に近接させ、誘導加熱コイルの発生する磁界の磁力線密度が低い部位を、ワークの昇温容易な部位に近接させて、ワークの焼入及び再加熱を希望する部位を全体的に昇温させワークの温度上昇は、昇温困難な部位が昇温容易な部位よりも先行するものであり、再加熱工程におけるワークの昇温の最中に、誘導加熱コイルの発生する磁界の磁力線密度の低い部位を、ワークの昇温容易な部位に対向させながら、誘導加熱コイルとワークの軸方向の相対位置を変更して誘導加熱コイルの発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位から離すことを特徴とする高周波誘導加熱方法である。 The invention of claim 1 for solving the above-mentioned problem has a part that has a considerable length in the axial direction, has an outer shape and a cross-sectional shape that differ depending on the position in the axial direction, and a part that is difficult to raise. A quenching step in which a region having a considerable length in the axial direction is heated to a predetermined quenching temperature and then rapidly cooled, and then from the quenching temperature. In the method of performing high frequency induction heating having a reheating step of gradually cooling after raising the temperature to a lower temperature, the length of the part desired to be quenched and the total length corresponding to the length of the part desired to be reheated In addition, using an induction heating coil having a part where the magnetic field line density generated by the part in the axial direction is different, in the quenching step and the reheating step , a part having a high magnetic force line density of the magnetic field generated by the induction heating coil , of work NoboriAtsushikoma Is close to a site, induce generated magnetic force line density is lower portions of the magnetic field of the heating coil, in close proximity to the heated easy site of the work, quenching and reheating overall heating a site they wish to work In the reheating process , the temperature rise of the workpiece is preceded by the portion where heating is difficult, and the magnetic field line density of the magnetic field generated by the induction heating coil during the temperature rise of the workpiece in the reheating process. the low sites, while facing the heated easy site of the work, the induction heating coil and the generated magnetic lines dense portion of the magnetic field of the induction heating coil by changing the relative axial position of the workpiece the workpiece Atsushi Nobori This is a high-frequency induction heating method characterized by being separated from a difficult part.

請求項1の発明では、焼入工程においては、発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位に近接し、焼入を希望する部位を全体的に焼入温度に昇温して焼入するので、ワークの温度が一様に上昇し易い。その結果、ワークに一様な深さの焼入を施すことができる。
また、再加熱工程においては、焼入工程と同一の誘導加熱コイルを使用するので、焼入工程と再加熱工程とで誘導加熱コイルを入れ代える必要がない。
また再加熱工程においては、焼入工程と同一の誘導加熱コイルを使用するので、前記した様に、ワークの昇温困難な部位Aが先行して昇温する。しかしながら、本発明では、昇温の最中に誘導加熱コイルとワークの軸方向の相対位置を変更して磁界の磁力線密度が高い部位を昇温困難な部位から離すので、昇温の途中で、昇温困難な部位Bの温度上昇カーブが鈍化する。その結果、図9のグラフに示すように、当初、ワークの昇温困難な部位Aの温度上昇勾配が高く、部位Aが急速に昇温するが、誘導加熱コイルとワークの軸方向の相対位置を変更して磁界の磁力線密度が高い部位を昇温困難な部位から離すと、昇温困難な部位のAの温度上昇カーブは急速に鈍化する。一方、誘導コイルは、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有しているから、誘導加熱コイルとワークの軸方向の相対位置を変更しても、昇温容易な部位のBの温度上昇カーブは変化しない。そのため昇温容易な部位のBの温度が、昇温困難な部位のAの温度に追いつき、両者の間の温度ばらつきが減少する。
この状態で、誘導加熱コイルに対する通電を停止すれば硬度ばらつきを起こさずにワークの熱処理を行うことができる。
According to the first aspect of the present invention, in the quenching step, a portion where the magnetic field line density of the generated magnetic field is high is brought close to a portion where it is difficult to raise the temperature of the workpiece, and the portion where quenching is desired is raised to the quenching temperature as a whole. Therefore, the temperature of the workpiece is likely to rise uniformly. As a result, the workpiece can be quenched to a uniform depth.
Further, in the reheating process, the same induction heating coil as that used in the quenching process is used, so that it is not necessary to replace the induction heating coil between the quenching process and the reheating process.
Further, in the reheating process, the same induction heating coil as that used in the quenching process is used. Therefore, as described above, the temperature of the part A where it is difficult to raise the temperature of the work is increased in advance. However, in the present invention, during the temperature increase, the relative position in the axial direction of the induction heating coil and the work is changed to separate the part where the magnetic field line density of the magnetic field is high from the part where the temperature increase is difficult. The temperature rise curve of the part B where it is difficult to raise the temperature slows down. As a result, as shown in the graph of FIG. 9, initially, the temperature rise gradient of the part A where the temperature of the workpiece is difficult to rise is high and the temperature of the part A rapidly rises, but the relative position of the induction heating coil and the workpiece in the axial direction. When the region where the magnetic field line density of the magnetic field is high is separated from the region where it is difficult to raise the temperature, the temperature rise curve of A in the region where it is difficult to raise the temperature rapidly dulls. On the other hand, the induction coil has a total length corresponding to the length of the part desired to be hardened and the length of the part desired to be reheated, so the relative position of the induction heating coil and the workpiece in the axial direction is changed. However, the temperature rise curve of B in the part where the temperature can be easily raised does not change. For this reason, the temperature of B in the part where the temperature is easily raised catches up with the temperature of A in the part where the temperature is difficult to rise, and the temperature variation between the two is reduced.
In this state, if the energization to the induction heating coil is stopped, the workpiece can be heat-treated without causing hardness variation.

また、本発明では、ワークの温度上昇を、昇温困難な部位が昇温容易な部位よりも先行するようにした。ここで昇温困難な部位とは、熱容量が大きく、昇温させるのに要する熱量(誘導電流)が多いことを意味する。この昇温困難な部位の昇温を先行させて、焼き入れ時においては、組成が変化する磁気変態点に差し掛かると、誘導電流が流れにくくなって温度上昇の仕方が小さくなる。そして、昇温困難な部位に流れるべき誘導電流の一部が昇温容易な部位に流れ、昇温容易な部位の温度上昇の仕方が向上し、比較的早期に昇温容易な部位の温度も磁気変態点に到達し、昇温困難な部位の温度に昇温容易な部位の温度が近付く。よって、ワークの焼入部位の全領域を均一に焼入することができる。 Further, in the present invention, the temperature rise of the work is preceded by the portion where it is difficult to raise the temperature before the portion where the temperature is easily raised. Here, the site where it is difficult to raise the temperature means that the heat capacity is large and the amount of heat (inductive current) required to raise the temperature is large. In the case of quenching prior to the temperature increase of the portion where it is difficult to raise the temperature, if the magnetic transformation point at which the composition changes is reached, the induced current is less likely to flow and the method of temperature rise is reduced. And a part of the induced current that should flow to the part where heating is difficult flows to the part where heating is easy, the way of raising the temperature of the part where heating is easy is improved, and the temperature of the part where heating is easy is also relatively early. The magnetic transformation point is reached, and the temperature of the part where heating is easy approaches the temperature of the part where heating is difficult. Therefore, it is possible to uniformly harden the entire region of the workpiece quenching region.

請求項に記載の発明は、再加熱工程の加熱を開始してから所定時間が経過した後に、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、昇温困難な部位から離すことを特徴とする請求項に記載の高周波誘導加熱方法である。 According to the second aspect of the present invention, after a predetermined time has elapsed after starting the heating in the reheating step, the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high is separated from the part where it is difficult to raise the temperature. The high frequency induction heating method according to claim 1 , wherein the method is a high frequency induction heating method.

請求項の発明では、再加熱工程の加熱を開始してから所定時間が経過した後に、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を昇温困難な部位から離すので、再加熱工程において加熱中のワークの熱処理部の温度が均一化される。その結果、ワークの熱処理部の硬度と粘り強さを均一化することができる。 In the invention of claim 2 , after a predetermined time has elapsed since the start of the heating in the reheating step, the portion where the magnetic field density of the magnetic field generated by the induction heating coil is separated from the portion where it is difficult to raise the temperature, the reheating step The temperature of the heat treatment part of the workpiece being heated is made uniform. As a result, the hardness and tenacity of the heat treatment part of the workpiece can be made uniform.

請求項の発明は、再加熱工程の加熱を開始し、昇温困難な部位の温度が所定温度に達すると、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、昇温困難な部位から離すことを特徴とする請求項に記載の高周波誘導加熱方法である。 The invention of claim 3 starts the heating in the reheating step, and when the temperature of the part where heating is difficult reaches a predetermined temperature, the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high The high frequency induction heating method according to claim 1 , wherein the method is separated from the high frequency induction heating method.

請求項の発明では、再加熱工程中に、昇温困難な部位の温度が所定温度に達すると、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を昇温困難な部位から離すので、再加熱工程において加熱中のワークの熱処理部の温度が均一化される。その結果、ワークの熱処理部の硬度と粘り強さを均一化することができる。 In the invention of claim 3 , during the reheating step, when the temperature of the part where heating is difficult reaches a predetermined temperature, the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high is separated from the part where heating is difficult. In the reheating process, the temperature of the heat treatment part of the workpiece being heated is made uniform. As a result, the hardness and tenacity of the heat treatment part of the workpiece can be made uniform.

請求項の発明は、ワークとしてアクスルチューブを加熱することを特徴とする請求項1乃至請求項のうちのいずれかに記載の高周波誘導加熱方法である。 A fourth aspect of the present invention is the high frequency induction heating method according to any one of the first to third aspects, wherein the axle tube is heated as a workpiece.

請求項の発明では、アクスルチューブを良好に焼入及び焼戻し等することができる。すなわち、アクスルチューブには軸方向の位置によって直径が異なる部位が存在し、段が形成されている。この段部分には応力が集中し易いが、請求項の発明を実施すると、同一の誘導加熱コイルで誘導加熱することによって、アクスルチューブにおける応力が集中し易い段部分に、所望する硬度及び粘り強さを提供することができる。 In the invention of claim 4 , the axle tube can be well quenched and tempered. That is, the axle tube has a portion having a different diameter depending on the position in the axial direction, and a step is formed. Although stress tends to concentrate on this step portion, when the invention of claim 4 is carried out, the desired hardness and tenacity can be applied to the step portion where stress in the axle tube tends to concentrate by induction heating with the same induction heating coil. Can provide.

請求項の発明は、軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークを誘導加熱する高周波誘導加熱装置であって、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルと、前記誘導加熱コイルに高周波交流電力を供給する高周波電源と、ワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させる移動手段を備え、ワークを所定の焼入温度に加熱する第1加熱モードが実行され、それに続いて前記第1加熱モードよりも低い温度に加熱する第2加熱モードが自動的に実行され、前記第1加熱モード及び第2加熱モードによる加熱の際には、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、ワークの昇温困難な部位に近接させ、誘導加熱コイルの発生する磁界の磁力線密度が低い部位を、ワークの昇温容易な部位に近接させて、ワークの焼入及び再加熱を希望する部位を昇温させ、ワークの温度上昇は、昇温困難な部位が昇温容易な部位よりも先行するものであり、前記第2加熱モードによる加熱の最中に、前記移動手段によってワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させて、誘導加熱コイルの発生する磁界の磁力線密度の低い部位を、ワークの昇温容易な部位に対向させながら、誘導加熱コイルとワークの軸方向の相対位置を変更して誘導加熱コイルの発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位から離す離反動作を行うことを特徴とする高周波誘導加熱装置である。 According to the invention of claim 5 , induction heating is performed on a workpiece having a considerable length in the axial direction and different in outer shape and cross-sectional shape depending on the position in the axial direction and having a portion where heating is difficult and a portion where heating is difficult. A high-frequency induction heating device having a total length corresponding to the length of a part desired to be quenched and the length of a part desired to be reheated, and a part having a different magnetic line density generated by an axial part. An induction heating coil, a high-frequency power source for supplying high-frequency AC power to the induction heating coil, and a moving means for moving the work and the induction heating coil by a predetermined distance relative to each other in the axial direction. first heating mode is performed heating to a temperature, a second heating mode is automatically executed followed by heating to a temperature lower than the first heating mode in which, according to the first heating mode and a second heating mode During heat generated to the magnetic field lines dense portions of the magnetic field of the induction heating coil, is close to the heated hard sites of the workpiece, the generated magnetic force line density is lower portions of the magnetic field of the induction heating coil, the workpiece temperature Increase the temperature of the part where the workpiece is desired to be hardened and reheated in the vicinity of the easy-to-heat part. During heating in the second heating mode, the moving means moves the work and the induction heating coil by a predetermined distance relative to each other in the axial direction so that the magnetic field generated by the induction heating coil has a low magnetic line density. , while opposed to the heated easy site of the work, the magnetic line density of the generated magnetic field of the induction heating coil by changing the relative axial position of the induction heating coil and the workpiece is high site from heated difficult sites of the workpiece Separate Is a high-frequency induction heating device which is characterized in that the anti operation.

請求項の発明の高周波誘導加熱装置は、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを備えているので、誘導加熱コイルに高周波電流を通じると、ワーク上には磁力線密度に応じた誘導電流が流れ、ワークを昇温させることができる。
またワークを焼入温度又は焼入温度以上に加熱する第1加熱モードから、前記第1加熱モードよりも低い温度に加熱する第2加熱モードに自動的に移行するので、焼入と焼戻し等の再加熱を同じ誘導加熱コイルで実施することができる。
また、第2加熱モードによる加熱の際には、前記移動手段によってワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させて誘導加熱コイルとワークの軸方向の相対位置を変更して磁界の磁力線密度が高い部位を昇温困難な部位から離す離反動作を行う。そのため前述した理由により、ワークの温度が均一化し、ワークの偏った昇温を防止することができる。
The high-frequency induction heating device according to the invention of claim 5 has a total length corresponding to the length of the part desired to be quenched and the length of the part desired to be reheated, and the magnetic line density generated by the part in the axial direction. Since the induction heating coil having different parts is provided, when a high frequency current is passed through the induction heating coil, an induction current according to the magnetic line density flows on the workpiece, and the workpiece can be heated.
In addition, since the workpiece is automatically shifted from the first heating mode in which the workpiece is heated to the quenching temperature or the quenching temperature to the second heating mode in which the workpiece is heated to a temperature lower than the first heating mode, quenching and tempering, etc. Reheating can be performed with the same induction heating coil.
Further, when heating in the second heating mode, the relative position of the induction heating coil and the workpiece in the axial direction is changed by moving the workpiece and the induction heating coil by a predetermined distance in the axial direction by the moving means. Thus, the separation operation is performed to separate the part where the magnetic field density of the magnetic field is high from the part where the temperature rise is difficult. Therefore, for the reasons described above, the temperature of the workpiece can be made uniform, and uneven temperature rise of the workpiece can be prevented.

請求項に記載の発明は、ワークの前記昇温困難な部位の温度を検出する温度検出手段を設け、第2加熱モードにおいて、前記温度検出手段が検出した温度が所定温度に達するか、又は加熱する時間が所定時間になると、前記離反動作を実行させる制御機構を設けたことを特徴とする請求項に記載の高周波誘導加熱装置である。 Invention of Claim 6 provides the temperature detection means which detects the temperature of the said site | part with a difficult temperature rising of a workpiece | work, The temperature detected by the said temperature detection means reaches predetermined temperature in 2nd heating mode, or 6. The high frequency induction heating apparatus according to claim 5 , further comprising a control mechanism that executes the separation operation when a heating time reaches a predetermined time.

請求項に記載の発明では、ワークの昇温困難な部位の温度を検出する温度検出手段を設け、第2加熱モードにおいて、温度検出手段が検出した温度が所定温度に達すると、移動手段を作動させる制御機構を設けたので、ワークの昇温困難な部位の過剰な昇温を回避でき、ワークの加熱部位の温度の均一化を図ることができる。 In the invention described in claim 6 , the temperature detecting means for detecting the temperature of the part where it is difficult to raise the temperature of the work is provided, and in the second heating mode, when the temperature detected by the temperature detecting means reaches a predetermined temperature, the moving means is Since the control mechanism to be operated is provided, it is possible to avoid an excessive temperature increase in a part where it is difficult to raise the temperature of the work, and to make the temperature of the heated part of the work uniform.

また、請求項の発明では、第2加熱モードにおいて、誘導加熱コイルのうち発生する磁界の磁力線密度が高い部位で、ワークの昇温困難な部位を加熱する時間が所定時間になると、移動手段を作動させる制御機構を設けたので、ワークの昇温困難な部位の加熱時間が制約され、当該部位の過剰な昇温を防止できると共に、ワークの加熱部位の温度の均一化を図ることができる。 In the sixth aspect of the invention, in the second heating mode, when the time for heating the portion of the induction heating coil in which the magnetic field line density of the generated magnetic field is high and the temperature of the workpiece that is difficult to heat up reaches a predetermined time, the moving means Is provided, the heating time of the part where it is difficult to raise the temperature of the work is restricted, and excessive temperature rise of the part can be prevented, and the temperature of the heated part of the work can be made uniform. .

請求項の発明は、前記誘導加熱コイルは、半開放鞍型コイルであることを特徴とする請求項又は請求項に記載の高周波誘導加熱装置である。 The invention of claim 7 is the high frequency induction heating apparatus according to claim 5 or 6 , wherein the induction heating coil is a semi-open saddle type coil.

請求項の発明では、誘導加熱コイルが半開放鞍型コイルであるので、ワークに誘導加熱コイルを対向配置させ易く、また、装置の小型化を図ることができる。 In the seventh aspect of the invention, since the induction heating coil is a half-open saddle type coil, the induction heating coil can be easily disposed opposite to the workpiece, and the apparatus can be miniaturized.

本発明の高周波誘導加熱方法を実施すると、焼入工程においては、発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位に近接して焼入を希望する部位を全体的に焼入温度以上に昇温して焼入するので、ワークの温度が一様に上昇し易い。その結果、ワークに一様な深さの焼入を施すことができる。
また、再加熱工程においては、焼入工程と同一の誘導加熱コイルを使用するので、焼入工程と再加熱工程とで誘導加熱コイルを入れ代える必要がない。また、ワークの昇温の際に誘導加熱コイルとワークの軸方向の相対位置を変更するので、ワークが一様に昇温し易くなる。そのため望ましい状態で熱処理を行うことができる。
When the high-frequency induction heating method of the present invention is performed, in the quenching process, the part where the magnetic field line density of the generated magnetic field is high is close to the part where the temperature of the workpiece is difficult to raise, and the part desired to be quenched is totally quenched. Since the temperature is raised above the temperature and quenching is performed, the temperature of the workpiece is likely to rise uniformly. As a result, the workpiece can be quenched to a uniform depth.
Further, in the reheating process, the same induction heating coil as that used in the quenching process is used, so that it is not necessary to replace the induction heating coil between the quenching process and the reheating process. In addition, since the relative position of the induction heating coil and the workpiece in the axial direction is changed when the workpiece is heated, the workpiece is easily heated uniformly. Therefore, heat treatment can be performed in a desired state.

本発明の高周波誘導加熱装置では、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを備えているので、誘導加熱コイルに高周波電流を通じると、ワーク上には磁力線密度に応じた誘導電流が流れ、ワークを昇温させることができる。
また、ワークを焼入温度又は焼入温度以上に加熱する第1加熱モードから、前記第1加熱モードよりも低い温度に加熱する第2加熱モードに自動的に移行するので、焼入と焼戻し等とを同じ誘導加熱コイルで実施することができる。
さらに、第2加熱モードにおいて、ワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させる移動手段を備えたので、誘導加熱コイルとワークの対向する部位が移動する。その結果、ワークの偏った昇温を防止することができ、良好に焼入と焼戻し等とを実施することができる。
In the high frequency induction heating device of the present invention, the length of the portion desired to be quenched and the total length according to the length of the portion desired to be reheated, and the magnetic field line density generated by the axial portion is different. Therefore, when a high-frequency current is passed through the induction heating coil, an induction current corresponding to the magnetic line density flows on the work, and the work can be heated.
Further, since the workpiece is automatically shifted from the first heating mode in which the workpiece is heated to the quenching temperature or higher than the quenching temperature to the second heating mode in which the workpiece is heated to a temperature lower than the first heating mode, quenching and tempering, etc. Can be implemented with the same induction heating coil.
Furthermore, in the second heating mode, since the moving means for moving the workpiece and the induction heating coil by a predetermined distance relative to each other in the axial direction is provided, the portion where the induction heating coil and the workpiece face each other moves. As a result, it is possible to prevent an uneven temperature increase of the workpiece, and it is possible to perform quenching and tempering well.

本発明によって焼き入れ及び焼戻しを行うワークの一例を示す斜視図である。It is a perspective view which shows an example of the workpiece | work which quenches and tempers by this invention. 図1のワークの断面図である。It is sectional drawing of the workpiece | work of FIG. 本発明の実施形態で採用する誘導加熱コイルの斜視図である。It is a perspective view of the induction heating coil employ | adopted by embodiment of this invention. 図3の誘導加熱コイルを反対側から観察した斜視図である。It is the perspective view which observed the induction heating coil of FIG. 3 from the opposite side. 図3,4の誘導加熱コイルを図1に示すワークに近接した状態を示す斜視図である。It is a perspective view which shows the state which the induction heating coil of FIG.3, 4 adjoined to the workpiece | work shown in FIG. 軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークに対し、焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを使用して焼き入れした場合のワークの温度変化を模式的に表したグラフである。The length of the part that you want to quench for a workpiece that has a considerable length in the axial direction, and that has different parts in the outer shape and cross-sectional shape depending on the position in the axial direction and that has parts that are easy to raise and difficult to raise. And the temperature of the workpiece when quenched using an induction heating coil having a length corresponding to the length of the portion desired to be reheated and having a different magnetic line density generated by the axial portion. It is a graph showing a change typically. 図6と同様のグラフであり、ワークの昇温容易な部位が一定温度に達した後にワークを除冷した場合の温度変化を模式的に表したグラフである。FIG. 7 is a graph similar to FIG. 6, schematically illustrating a temperature change when the work is removed after the part where the temperature of the work is easily increased reaches a certain temperature. 特許文献1に開示された方策を応用して焼き入れ・焼戻しを行った場合の温度変化を模式的に表したグラフである。It is the graph which represented typically the temperature change at the time of quenching and tempering applying the measure disclosed by patent document 1. FIG. 本発明の実施形態を採用してワークの昇温容易な部位が一定温度の至った後にワークを除冷した場合の温度変化を模式的に表したグラフである。It is the graph which represented typically the temperature change at the time of employ | adopting embodiment of this invention, and the workpiece | work is decooled after the site | part with easy temperature rising of a workpiece | work reached fixed temperature. 本発明を実施するための誘導加熱コイルと、誘導加熱されるワークの側面図であり、(a)はワークを焼入される第1モード時の状態を示し、(b)はワークを再加熱する第2モード時の状態を示し、(c)は熱処理後のワークの断面を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view of the induction heating coil for implementing this invention, and the workpiece | work which is induction-heated, (a) shows the state at the time of the 1st mode in which a workpiece is hardened, (b) reheats a workpiece | work. (C) shows a cross section of the workpiece after heat treatment. 本発明の高周波誘導加熱装置の信号系統図である。It is a signal system diagram of the high frequency induction heating device of the present invention. 本発明の高周波誘導加熱方法を実施する手順を示す流れ図である。It is a flowchart which shows the procedure which implements the high frequency induction heating method of this invention. 特許文献2の第1図を再掲した断面図である。It is sectional drawing which reprinted FIG. 1 of patent document 2. FIG. (a)〜(e)は、各々特許文献2の第2図(a)〜(e)を再掲した断面図である。(A)-(e) is sectional drawing which reposted FIG. 2 (a)-(e) of patent document 2, respectively.

以下、図面を参照しながら本発明の実施例を説明する。
以下の実施例では、ワーク10として自動車の車軸に使用されるアクスルチューブを例に挙げて、本発明の構成及び実施方法を説明する。
Embodiments of the present invention will be described below with reference to the drawings.
In the following embodiments, the structure and method of implementation of the present invention will be described by taking an axle tube used as a work 10 for an automobile axle as an example.

高周波誘導加熱装置1は、ワーク10に対向配置して誘導加熱を行う誘導加熱コイル2と、加熱コイル移動装置8,高周波電力供給装置9,ワーク回転駆動装置6,ワーク移動装置7,ワーク温度検出装置11,タイマー12,及び制御装置13を備えている。   The high-frequency induction heating device 1 includes an induction heating coil 2 that is disposed opposite to a work 10 to perform induction heating, a heating coil moving device 8, a high-frequency power supply device 9, a work rotation driving device 6, a work moving device 7, and a work temperature detection. A device 11, a timer 12, and a control device 13 are provided.

ワーク10は、軸状であって、直径が異なる部位を有する。すなわち、ワーク10は、大径部15と小径部16を有している。この大径部15と小径部16の接続部分にはコーナ部10aが形成されている。小径部16の直径は、多少の差があるものの、全長(図10で見て左右方向の長さ)に渡ってほぼ同じである。図10に示すように小径部16は、軸方向に相当な長さを有している。   The workpiece 10 has an axial shape and a portion having a different diameter. That is, the workpiece 10 has a large diameter portion 15 and a small diameter portion 16. A corner portion 10 a is formed at a connection portion between the large diameter portion 15 and the small diameter portion 16. The diameter of the small-diameter portion 16 is substantially the same over the entire length (the length in the left-right direction as viewed in FIG. 10), although there are some differences. As shown in FIG. 10, the small diameter portion 16 has a considerable length in the axial direction.

コーナ部10aは、ワーク10の他の部位(小径部16)よりも昇温が困難な部位である。すなわち、加熱されたコーナ部10aの熱は、大径部15の内部方向へ移動するために、他の部位よりも昇温しにくくなるものと考えられる。
そのためワーク10を軸方向の領域に分けて観察したとき、図10(a)のA領域は昇温困難な部位であり、B領域は、昇温容易な部位である。
The corner part 10a is a part where the temperature rise is more difficult than the other part (small diameter part 16) of the workpiece 10. That is, it is considered that the heat of the heated corner portion 10a is less likely to raise the temperature than other portions because it moves toward the inside of the large diameter portion 15.
For this reason, when the work 10 is observed by being divided into axial regions, the region A in FIG. 10A is a region where heating is difficult, and the region B is a region where heating is easy.

また、ワーク10は、熱処理時には両端がワーク支持部材5によって着脱可能に挟持される。ワーク支持部材5には、ワーク回転駆動装置6とワーク移動装置7(図11)が接続されている。すなわち、ワーク回転駆動装置6を動作させるとワーク10はワーク支持部材5と一体に回転する。また、ワーク10は、ワーク移動装置7によって水平方向(図10で見て左右方向)に移動可能である。ワーク回転駆動装置6とワーク移動装置7の動作は、制御装置13(図11)によって制御される。   Further, both ends of the work 10 are detachably held by the work support member 5 during heat treatment. A workpiece rotation driving device 6 and a workpiece moving device 7 (FIG. 11) are connected to the workpiece support member 5. That is, when the work rotation driving device 6 is operated, the work 10 rotates integrally with the work support member 5. Further, the workpiece 10 can be moved in the horizontal direction (left-right direction as viewed in FIG. 10) by the workpiece moving device 7. The operations of the workpiece rotation driving device 6 and the workpiece moving device 7 are controlled by the control device 13 (FIG. 11).

本発明で使用される誘導加熱コイル2は半開放鞍型コイルであり、制御装置13によって動作が制御される加熱コイル移動装置8(図11)によって上下方向及び水平方向に移動可能である。誘導加熱コイル2は、導電が良好な銅製の管で構成されており、管内部に冷却液を流すことができる。また、誘導加熱コイル2には、高周波電力供給装置9(高周波電源)から高周波の交流電流が供給可能である。高周波電力供給装置9から電力が供給されると、対向するワーク10の表面に誘導電流を生じさせ、ワーク10を加熱(誘導加熱)することができる。   The induction heating coil 2 used in the present invention is a semi-open saddle type coil, and can be moved in the vertical and horizontal directions by a heating coil moving device 8 (FIG. 11) whose operation is controlled by the control device 13. The induction heating coil 2 is composed of a copper tube having good electrical conductivity, and a coolant can flow inside the tube. The induction heating coil 2 can be supplied with a high-frequency alternating current from a high-frequency power supply device 9 (high-frequency power supply). When power is supplied from the high-frequency power supply device 9, an induced current is generated on the surface of the opposing workpiece 10, and the workpiece 10 can be heated (induction heating).

また、誘導加熱コイル2は、両端に半円形部2a,2bが配置され、両端の半円形部2a,2bの間には直線部2cが配置されている。半円形部2aには複数のコア3が所定等角度毎に設置されており、直線部2cには複数のコア4が所定間隔毎に配置されている。   Moreover, the induction heating coil 2 has semicircular portions 2a and 2b disposed at both ends, and a linear portion 2c disposed between the semicircular portions 2a and 2b at both ends. A plurality of cores 3 are installed at predetermined equal angles in the semicircular portion 2a, and a plurality of cores 4 are arranged at predetermined intervals in the straight portion 2c.

コア3及びコア4は、誘導加熱コイル2に電流が流れた際に、周囲に生じさせる磁気の磁力線密度を密にする機能を有している。すなわち、誘導加熱コイル2に対向するワーク10のうち、コア3又はコア4に近接する部位は、特に大きい誘導電流が流れる。
本実施形態では、半円形部2aのコア3の間隔が直線部2cのコア4の間隔よりも狭く、半円形部2aの方がコア3が密に取り付けられている。またコア4よりもコア3の方が、透磁率が高くなるように設定されている。そのため誘導加熱コイル2を軸方向の領域に分けて観察したとき、図10(a)のa領域は発生する磁気の磁力線密度が大きく、b領域は発生する磁気の磁力線密度が小さい。
The core 3 and the core 4 have a function of increasing the density of magnetic lines of magnetic force generated around when the current flows through the induction heating coil 2. That is, a particularly large induction current flows through a portion of the work 10 facing the induction heating coil 2 that is close to the core 3 or the core 4.
In this embodiment, the space | interval of the core 3 of the semicircle part 2a is narrower than the space | interval of the core 4 of the linear part 2c, and the core 3 is more closely attached to the semicircle part 2a. Further, the core 3 is set to have higher magnetic permeability than the core 4. Therefore, when the induction heating coil 2 is observed by dividing it into the axial region, the region a in FIG. 10A has a large magnetic field line density and the region b has a small magnetic field line density.

高周波電力供給装置9は、制御装置13によってワーク10への電力の供給が制御される。すなわち、供給する電力量や電力供給時間が、制御装置13によって後述する第1加熱モード(焼入工程)や、第2加熱モード(再加熱工程)に設定され制御される。   The high frequency power supply device 9 is controlled by the control device 13 to supply power to the workpiece 10. That is, the amount of power to be supplied and the power supply time are set and controlled by the control device 13 in a first heating mode (quenching process) and a second heating mode (reheating process) described later.

制御装置13(制御機構)は、図示しないCPUやメモリ等を備えたコンピュータで構成されており、ワーク温度検出装置11やタイマー12から適宜信号を受信したり、加熱コイル移動装置8,高周波電力供給装置9,ワーク回転駆動装置6及びワーク移動装置7に制御信号を送信し、各装置を動作させる。   The control device 13 (control mechanism) is composed of a computer having a CPU and a memory (not shown), receives signals from the work temperature detection device 11 and the timer 12 as appropriate, and supplies the heating coil moving device 8 and high-frequency power supply. Control signals are transmitted to the device 9, the workpiece rotation driving device 6 and the workpiece moving device 7 to operate each device.

次に、ワーク10の誘導加熱(熱処理)の仕方を、図12を参照しながら説明する。図12に示すように、本発明の高周波誘導加熱方法は、ステップ1からステップ5までのステップで構成される。   Next, a method of induction heating (heat treatment) of the workpiece 10 will be described with reference to FIG. As shown in FIG. 12, the high-frequency induction heating method of the present invention includes steps 1 to 5.

まず、ステップ1において、ワーク10がワーク支持部材5で支持されると共に、ワーク移動装置7によって所定の位置まで搬送されて待機する。また、誘導加熱コイル2は、加熱コイル移動装置8によって所定の焼入実施位置まで搬送され、ワーク10に対向配置される。その際、誘導加熱コイル2のコア3は、図10(a)に示すようにワーク10のコーナ部10aに近接している。すなわち昇温困難な部位たる部位Aに、誘導加熱コイル2の磁力線密度が大きいa領域を近接させる。また昇温容易な部位たる部位Bには、誘導加熱コイル2の磁力線密度が小さいb領域が近接する。   First, in step 1, the workpiece 10 is supported by the workpiece support member 5, and is transported to a predetermined position by the workpiece moving device 7 and waits. Further, the induction heating coil 2 is transported to a predetermined quenching execution position by the heating coil moving device 8 and is disposed opposite to the workpiece 10. At that time, the core 3 of the induction heating coil 2 is close to the corner portion 10a of the workpiece 10 as shown in FIG. That is, the region a where the magnetic field density of the induction heating coil 2 is large is brought close to the region A that is a region where it is difficult to raise the temperature. Further, a region b where the magnetic field line density of the induction heating coil 2 is small is close to the region B which is a region where temperature rise is easy.

次にステップ2に移行し、ワーク10がワーク回転駆動装置6によって回転駆動されると共に、誘導加熱コイル2は高周波電力供給装置9から電力の供給を受ける。ステップ2では、第1加熱モード(焼入工程)でワーク10が誘導加熱され、焼入される。すなわち、第1加熱モードでは、ワーク10の温度がA1変態点を越えるまで昇温する。その際、コーナ部10aにはコア3が近接しているので、コーナ部10aには他の部位よりも誘導電流が多く流れ、一部の熱が大径部15側や内部方向に移動するが、良好に焼入される。すなわち昇温困難な部位たる部位Aに、誘導加熱コイル2の磁力線が強い(磁力線密度が大きい)a領域が近接され、昇温容易な部位たる部位Bに、誘導加熱コイル2の磁力線が弱い(磁力線密度が大きい)b領域が近接されているので、ワーク10は略均一に昇温される。ただしワーク10の各部位の昇温状況を詳細に観察すると、前記した図6のグラフの様に、昇温困難な部位たる部位Aの温度上昇勾配が大きく、A1変態点を越えると部位Aの昇温カーブが鈍化し、同時期に部位Bの昇温カーブが上向いてワーク10の温度が均一化する。 Next, the process proceeds to step 2, and the work 10 is rotationally driven by the work rotation driving device 6, and the induction heating coil 2 is supplied with electric power from the high-frequency power supply device 9. In step 2, the workpiece 10 is induction-heated and quenched in the first heating mode (quenching process). That is, in the first heating mode, the temperature of the workpiece 10 is increased until it exceeds the A1 transformation point. At that time, since the core 3 is close to the corner portion 10a, more induced current flows in the corner portion 10a than in other parts, and a part of heat moves toward the large diameter portion 15 or in the inner direction. Quenched well. That is, the region A where the magnetic field lines of the induction heating coil 2 are strong (the magnetic field line density is large) is close to the part A which is difficult to raise the temperature, and the magnetic field lines of the induction heating coil 2 are weak to the part B which is a part where the temperature increase is easy ( Since the b region (which has a high magnetic force line density) is close, the workpiece 10 is heated substantially uniformly. However, when the temperature rise state of each part of the workpiece 10 is observed in detail, as shown in the graph of FIG. 6 described above, the temperature rise gradient of the part A, which is a part where heating is difficult, is large. The temperature rise curve becomes dull, and at the same time, the temperature rise curve of the part B rises and the temperature of the workpiece 10 becomes uniform.

そして誘導加熱が完了すると、制御装置13は高周波電力供給装置9の電力供給を停止させると共に、図示しない冷却ジャケットから冷却液を噴射させ、ワーク10を急冷する。これにより第1加熱モード(焼入工程)が終了し、ワーク10の焼入が完了する。   When the induction heating is completed, the control device 13 stops the power supply of the high-frequency power supply device 9 and jets a coolant from a cooling jacket (not shown) to rapidly cool the workpiece 10. Thereby, the first heating mode (quenching process) is completed, and the quenching of the workpiece 10 is completed.

次に、ステップ3へ移行し、第2加熱モード(再加熱工程)が実施される。第2加熱モードでは、第1加熱モードよりも高周波電力供給装置9の供給電力が小さくなるように制御装置13によって制御され、ワーク10の加熱量は少ない。すなわち、第2加熱モードでは、ステップ3においてワーク10が再加熱されるが、ワーク10の硬度と粘り強さが、所望する値(又は所望する程度)になるようにワーク10の昇温が制御される。   Next, it transfers to step 3 and 2nd heating mode (reheating process) is implemented. In the second heating mode, control is performed by the control device 13 so that the power supplied from the high-frequency power supply device 9 is smaller than in the first heating mode, and the heating amount of the workpiece 10 is small. That is, in the second heating mode, the workpiece 10 is reheated in step 3, but the temperature rise of the workpiece 10 is controlled so that the hardness and tenacity of the workpiece 10 become desired values (or desired levels). The

ステップ3における再加熱時にもワーク10はワーク回転駆動装置6によって回転駆動されており、誘導加熱コイル2のコア3は、ワーク10のコーナ部10aに近接している。   Even during reheating in step 3, the work 10 is driven to rotate by the work rotation driving device 6, and the core 3 of the induction heating coil 2 is close to the corner portion 10 a of the work 10.

そしてステップ4に移行し、再加熱が開始されてから所定時間が経過したか否か、又はワーク10のコーナ部10a(昇温困難な部位たる部位A)の温度が所定温度に達したか否かが判定される。制御装置13は、タイマー12やワーク温度検出装置11から信号を受信し、ステップ4の判定を行う。   Then, the process proceeds to step 4, whether or not a predetermined time has elapsed since reheating is started, or whether or not the temperature of the corner portion 10 a of the workpiece 10 (part A, which is difficult to raise) reaches the predetermined temperature. Is determined. The control device 13 receives signals from the timer 12 and the workpiece temperature detection device 11 and performs the determination in step 4.

再加熱が開始されてから所定時間が経過していなかったり、ワーク10のコーナ部10aの温度が所定温度に達していない場合には、再加熱が開始されてから所定時間が経過するまで、又はワーク10のコーナ部10aの温度が所定温度に達するまでステップ4に留まる。   When the predetermined time has not elapsed since the reheating was started, or when the temperature of the corner portion 10a of the workpiece 10 has not reached the predetermined temperature, or until the predetermined time has elapsed since the reheating was started, or It stays at step 4 until the temperature of the corner portion 10a of the workpiece 10 reaches a predetermined temperature.

再加熱における各部の昇温カーブは、前記した様にワーク10のコーナ部10a(昇温困難な部位たる部位A)が先行する。従ってワーク10のコーナ部10aの温度が所定温度に達した際の、ワーク10の小径部16(部位B)の温度は、コーナ部10aよりも低い。   As described above, the temperature rise curve of each part in the reheating is preceded by the corner part 10a of the work 10 (part A which is a part where the temperature rise is difficult). Accordingly, the temperature of the small diameter portion 16 (part B) of the workpiece 10 when the temperature of the corner portion 10a of the workpiece 10 reaches a predetermined temperature is lower than that of the corner portion 10a.

そして、タイマー12の経時が、再加熱が開始されてから所定時間が経過するか、又はワーク温度検出装置11によって検出されたワーク10のコーナ部10aの温度が所定温度に達したと制御装置13が判定すると、ステップ5へ移行する。   Then, when the predetermined time elapses from the start of reheating or the temperature of the corner portion 10a of the workpiece 10 detected by the workpiece temperature detection device 11 reaches the predetermined temperature, the control device 13 If determined, the process proceeds to step 5.

ステップ5では、制御装置13は、ワーク移動装置7に制御信号を送り、ワーク10を所定距離だけ移動させる。すなわち、ワーク10は、熱処理(誘導加熱)されながら、ワーク移動装置7によって図10(a)に示す位置から図10(b)に示す位置まで矢印Aで示す方向に所定距離を移動し、ワーク10のコーナ部10a(昇温困難な部位たる部位A)から誘導加熱コイル2の半円形部2a(発生する磁気磁力線が強いa領域)を離す(離反動作)。
ここで、ワーク10を矢印Aで示す方向に移動させる代わりに、加熱コイル移動装置8で誘導加熱コイル2を矢印Aで示す方向と反対方向に移動させてもよい。
In step 5, the control device 13 sends a control signal to the workpiece moving device 7 to move the workpiece 10 by a predetermined distance. That is, the workpiece 10 is moved by a predetermined distance in the direction indicated by the arrow A from the position shown in FIG. 10A to the position shown in FIG. 10B by the workpiece moving device 7 while being subjected to heat treatment (induction heating). The semicircular portion 2a (region a where the generated magnetic lines of magnetic force are generated) of the induction heating coil 2 is separated from the ten corner portions 10a (the portion A that is difficult to raise the temperature) (separation operation).
Here, instead of moving the workpiece 10 in the direction indicated by the arrow A, the induction heating coil 2 may be moved in the direction opposite to the direction indicated by the arrow A by the heating coil moving device 8.

ステップ4における判定がYESになると、ワーク10は図10(b)に示す位置まで移動しながら誘導加熱される。その結果、最も温度が高いコーナ部10aは温度上昇が鈍化する。一方、誘導加熱コイル2は相当の全長を持つので、ワーク10との軸方向の相対位置が多少変化しても、ワーク10の小径部16(部位B)については依然として同じペースで昇温され続ける。   If the determination in step 4 is YES, the workpiece 10 is induction heated while moving to the position shown in FIG. As a result, the temperature rise is slowed at the corner portion 10a having the highest temperature. On the other hand, since the induction heating coil 2 has a considerable length, even if the relative position in the axial direction with respect to the workpiece 10 slightly changes, the temperature of the small-diameter portion 16 (part B) of the workpiece 10 continues to be raised at the same pace. .

なおワーク10の移動は、予め設定された時間をかけて行われ、移動が完了すると同時に高周波電力供給装置9による電力供給も停止され、誘導加熱も終了する。その後、ワーク10は徐々に冷却され、再加熱工程である第2加熱モード(再加熱工程)が完了する。   The movement of the workpiece 10 is performed over a preset time. At the same time as the movement is completed, the power supply by the high-frequency power supply device 9 is stopped and the induction heating is also terminated. Then, the workpiece | work 10 is cooled gradually and the 2nd heating mode (reheating process) which is a reheating process is completed.

その結果、図10(c)において、左上から右下に傾斜するハッチング領域で示す良好な焼入パターン14が得られる。すなわち、応力が集中し易いコーナ部10aにも十分な深さの焼入が施される。   As a result, in FIG. 10C, a good quenching pattern 14 shown by a hatched area inclined from the upper left to the lower right is obtained. That is, the corner portion 10a where stress is likely to concentrate is also quenched to a sufficient depth.

図12のステップ4における所定時間,所定温度,ステップ5におけるワーク10の移動距離及び移動時間は、ワーク10の形状や大きさによって任意に設定可能である。例えば、ワーク10の内径を50mmとし、大径部15の直径(外径)を120mm、小径部16の直径(外径)を90mmとすると、ステップ4における所定時間は、例えば1〜3秒であり、所定温度は、例えば摂氏200度〜300度とすることができる。   The predetermined time and predetermined temperature in step 4 in FIG. 12 and the moving distance and moving time of the workpiece 10 in step 5 can be arbitrarily set according to the shape and size of the workpiece 10. For example, when the inner diameter of the workpiece 10 is 50 mm, the diameter (outer diameter) of the large diameter portion 15 is 120 mm, and the diameter (outer diameter) of the small diameter portion 16 is 90 mm, the predetermined time in step 4 is, for example, 1 to 3 seconds. Yes, the predetermined temperature may be, for example, 200 degrees Celsius to 300 degrees Celsius.

また、ステップ5におけるワーク10の移動距離は、コア4の配置間隔の半分程度(例えば30mm〜50mm)であり、移動時間は6〜10秒とすることができる。例えば、コア3がコーナ部10aに近接してワーク10を誘導加熱する時間を2秒、移動時間を8秒として、全体の再加熱時間は10秒(2秒+8秒)とすることができる。このようにワーク10を誘導加熱コイル2で再加熱することにより、ワーク10には良好な焼入及び焼戻しが施される。   Further, the moving distance of the workpiece 10 in step 5 is about half of the arrangement interval of the cores 4 (for example, 30 mm to 50 mm), and the moving time can be 6 to 10 seconds. For example, the time for induction heating of the workpiece 10 when the core 3 is close to the corner portion 10a is 2 seconds, the moving time is 8 seconds, and the total reheating time is 10 seconds (2 seconds + 8 seconds). By reheating the workpiece 10 with the induction heating coil 2 in this way, the workpiece 10 is subjected to good quenching and tempering.

本発明者が実験した結果、ワークの表面硬度の許容範囲は550Hv〜720Hvであるところ、図12のステップ5でワーク10を移動させずに再加熱を実施すると、ワーク10の表面硬度は570Hv〜700Hvとなり、許容範囲内には入っているもののばらつきが大きかった。しかし、本発明を実施してステップ5でワーク10を移動させると、ワーク10の表面硬度は、610Hv〜670Hvの範囲に収まるという極めて良好な結果が得られた。   As a result of experiments conducted by the inventor, the allowable range of the surface hardness of the workpiece is 550 Hv to 720 Hv. When reheating is performed without moving the workpiece 10 in Step 5 of FIG. 12, the surface hardness of the workpiece 10 is 570 Hv to It was 700 Hv, and the variation of what was within the allowable range was large. However, when the present invention was carried out and the workpiece 10 was moved in step 5, a very good result was obtained that the surface hardness of the workpiece 10 was within the range of 610 Hv to 670 Hv.

すなわち、本発明を実施すると、ワークの表面硬度は、許容範囲に収まるだけではなく、許容範囲内のさらに狭い範囲の値に仕上げることができる。本発明者が実験した結果では上述の通りであるが、ワーク毎に図12におけるステップ4の所定時間,所定温度,ステップ5の移動時間,移動距離をチューニングすることで、さらに良好な結果が得られるものと予想できる。   That is, when the present invention is carried out, the surface hardness of the workpiece is not only within the allowable range, but can be finished to a value within a narrower range within the allowable range. The results of experiments conducted by the inventor are as described above, but better results can be obtained by tuning the predetermined time in step 4, the predetermined temperature, the moving time in step 5, and the moving distance in FIG. 12 for each work. Can be expected.

1 高周波誘導加熱装置
2 誘導加熱コイル
3 誘導加熱コイルの半円形部に設けられるコア
4 誘導加熱コイルの直線部に設けられるコア
7 ワーク移動装置
8 加熱コイル移動装置
9 高周波電力供給装置(高周波電源)
10 ワーク
11 ワーク温度検出装置
12 タイマー
DESCRIPTION OF SYMBOLS 1 High frequency induction heating apparatus 2 Induction heating coil 3 Core provided in the semicircle part of induction heating coil 4 Core provided in the linear part of induction heating coil 7 Work moving apparatus 8 Heating coil moving apparatus 9 High frequency electric power supply apparatus (high frequency power supply)
10 Work 11 Work temperature detector 12 Timer

Claims (7)

軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークに対し高周波誘導加熱を行う方法であって、
軸方向に相当の長さを有する領域を所定の焼入温度まで昇温した後に急冷する焼入工程と、その後に前記焼入温度よりも低い温度まで昇温した後に徐冷する再加熱工程を有する高周波誘導加熱を行う方法において、
焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルを使用し、
前記焼入工程及び再加熱工程においては、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、ワークの昇温困難な部位に近接させ、誘導加熱コイルの発生する磁界の磁力線密度が低い部位を、ワークの昇温容易な部位に近接させて、ワークの焼入及び再加熱を希望する部位を全体的に昇温させ
ワークの温度上昇は、昇温困難な部位が昇温容易な部位よりも先行するものであり、
再加熱工程におけるワークの昇温の最中に、誘導加熱コイルの発生する磁界の磁力線密度の低い部位を、ワークの昇温容易な部位に対向させながら、誘導加熱コイルとワークの軸方向の相対位置を変更して誘導加熱コイルの発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位から離すことを特徴とする高周波誘導加熱方法。
A method of performing high-frequency induction heating on a workpiece having a part that has a considerable length in the axial direction, has an outer shape and a cross-sectional shape that differ depending on the position in the axial direction, and has a part that is easily heated and a part that is difficult to raise. ,
A quenching step in which a region having a considerable length in the axial direction is heated to a predetermined quenching temperature and then rapidly cooled, and then a reheating step in which the temperature is gradually lowered after being heated to a temperature lower than the quenching temperature. In the method of performing high frequency induction heating having,
Use an induction heating coil having a length corresponding to the length of the part desired to be hardened and the length of the part desired to be reheated, and having a part having a different magnetic line density generated by the part in the axial direction,
In the quenching process and the reheating process , a part where the magnetic field line density of the magnetic field generated by the induction heating coil is close to a part where it is difficult to raise the temperature of the work, and a part where the magnetic field line density of the magnetic field generated by the induction heating coil is low Close to the part where the temperature of the workpiece is easily raised , and raise the overall temperature of the part where the workpiece is desired to be quenched and reheated .
The temperature rise of the workpiece is preceded by the part where heating is difficult, and the part where heating is easy,
During the heating of the workpiece in the reheating process, the part of the induction heating coil and the workpiece in the axial direction is relatively opposed to the part where the magnetic field line density of the magnetic field generated by the induction heating coil is low and the part where the heating of the workpiece is easy. A high frequency induction heating method characterized by changing a position and separating a portion where the magnetic field line density of a magnetic field generated by an induction heating coil is high from a portion where it is difficult to raise the temperature of a workpiece .
再加熱工程の加熱を開始してから所定時間が経過した後に、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、昇温困難な部位から離すことを特徴とする請求項1に記載の高周波誘導加熱方法。 2. The part according to claim 1, wherein after a predetermined time has elapsed since the start of the heating in the reheating step, the part having a high magnetic force line density of the magnetic field generated by the induction heating coil is separated from the part where it is difficult to raise the temperature . High frequency induction heating method. 再加熱工程の加熱を開始し、昇温困難な部位の温度が所定温度に達すると、誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、昇温困難な部位から離すことを特徴とする請求項に記載の高周波誘導加熱方法。 The heating of the reheating process is started, and when the temperature of the part where heating is difficult reaches a predetermined temperature, the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high is separated from the part where heating is difficult. The high frequency induction heating method according to claim 1 . ワークとしてアクスルチューブを加熱することを特徴とする請求項1乃至3のいずれかに記載の高周波誘導加熱方法。 High-frequency induction heating method according to any one of claims 1 to 3, wherein that you heat the axle tube as a work. 軸方向に相当の長さを有し、且つ、軸方向の位置によって外形形状及び断面形状が異なり昇温容易な部位と昇温困難な部位を有するワークを誘導加熱する高周波誘導加熱装置であって、A high-frequency induction heating apparatus that induction-heats a workpiece that has a considerable length in the axial direction, has an outer shape and a cross-sectional shape that differ depending on the position in the axial direction, and has a part that is easily heated and a part that is difficult to raise. ,
焼入を希望する部位の長さ及び再加熱を希望する部位の長さに応じた全長を有し、且つ、軸方向の部位によって発生する磁力線密度が異なる部位を有する誘導加熱コイルと、前記誘導加熱コイルに高周波交流電力を供給する高周波電源と、ワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させる移動手段を備え、An induction heating coil having a length corresponding to the length of the part desired to be quenched and the length of the part desired to be reheated, and having a part having a different magnetic line density generated by the part in the axial direction; A high-frequency power source for supplying high-frequency AC power to the heating coil, and a moving means for moving the work and the induction heating coil in a relative distance in the axial direction,
ワークを所定の焼入温度に加熱する第1加熱モードが実行され、それに続いて前記第1加熱モードよりも低い温度に加熱する第2加熱モードが自動的に実行され、A first heating mode for heating the workpiece to a predetermined quenching temperature is executed, and subsequently, a second heating mode for heating to a temperature lower than the first heating mode is automatically executed.
前記第1加熱モード及び第2加熱モードによる加熱の際には、During heating in the first heating mode and the second heating mode,
誘導加熱コイルの発生する磁界の磁力線密度が高い部位を、ワークの昇温困難な部位に近接させ、誘導加熱コイルの発生する磁界の磁力線密度が低い部位を、ワークの昇温容易な部位に近接させて、ワークの焼入及び再加熱を希望する部位を昇温させ、Place the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high near the part where it is difficult to raise the temperature of the work, and place the part where the magnetic field line density of the magnetic field generated by the induction heating coil is low close to the part where the temperature of the work is easy to heat up. Let the temperature of the part you want to quench and reheat the workpiece,
ワークの温度上昇は、昇温困難な部位が昇温容易な部位よりも先行するものであり、The temperature rise of the workpiece is preceded by the part where heating is difficult, and the part where heating is easy,
前記第2加熱モードによる加熱の最中に、前記移動手段によってワークと誘導加熱コイルとを軸方向に相対的に所定距離だけ移動させて、誘導加熱コイルの発生する磁界の磁力線密度の低い部位を、ワークの昇温容易な部位に対向させながら、誘導加熱コイルとワークの軸方向の相対位置を変更して誘導加熱コイルの発生する磁界の磁力線密度が高い部位をワークの昇温困難な部位から離す離反動作を行うことを特徴とする高周波誘導加熱装置。During heating in the second heating mode, the moving means moves the work and the induction heating coil by a predetermined distance relative to each other in the axial direction so that the magnetic field generated by the induction heating coil has a low magnetic line density. By changing the relative position of the induction heating coil and the workpiece in the axial direction while facing the part where the workpiece is easy to heat up, the part where the magnetic field line density of the magnetic field generated by the induction heating coil is high is A high frequency induction heating apparatus characterized by performing a separating operation.
ワークの前記昇温困難な部位の温度を検出する温度検出手段を設け、第2加熱モードにおいて、前記温度検出手段が検出した温度が所定温度に達するか、又は加熱する時間が所定時間になると、前記離反動作を実行させる制御機構を設けたことを特徴とする請求項5に記載の高周波誘導加熱装置。Provided with temperature detection means for detecting the temperature of the part of the workpiece that is difficult to raise temperature, in the second heating mode, when the temperature detected by the temperature detection means reaches a predetermined temperature, or when the heating time reaches a predetermined time, The high-frequency induction heating apparatus according to claim 5, further comprising a control mechanism that performs the separation operation. 前記誘導加熱コイルは、半開放鞍型コイルであることを特徴とする請求項5又は請求項6に記載の高周波誘導加熱装置。 The high-frequency induction heating apparatus according to claim 5 or 6, wherein the induction heating coil is a semi-open saddle type coil .
JP2009167523A 2009-07-16 2009-07-16 High frequency induction heating method and high frequency induction heating apparatus Active JP5489325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167523A JP5489325B2 (en) 2009-07-16 2009-07-16 High frequency induction heating method and high frequency induction heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167523A JP5489325B2 (en) 2009-07-16 2009-07-16 High frequency induction heating method and high frequency induction heating apparatus

Publications (2)

Publication Number Publication Date
JP2011021242A JP2011021242A (en) 2011-02-03
JP5489325B2 true JP5489325B2 (en) 2014-05-14

Family

ID=43631558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167523A Active JP5489325B2 (en) 2009-07-16 2009-07-16 High frequency induction heating method and high frequency induction heating apparatus

Country Status (1)

Country Link
JP (1) JP5489325B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740895A (en) * 2013-12-16 2014-04-23 浙江欧迪恩传动科技股份有限公司 Constant velocity universal joint bell-shaped case quenching inductor
JP7473961B2 (en) 2020-08-28 2024-04-24 富士電子工業株式会社 Induction Heating Method
CN112961969A (en) * 2021-02-02 2021-06-15 鑫光热处理工业(昆山)有限公司 Anti-cracking low-frequency quenching process for bolt for engineering machinery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048565B2 (en) * 1982-05-24 1985-10-28 富士電子工業株式会社 High frequency heat treatment method
JPH0141193Y2 (en) * 1985-06-21 1989-12-06
JPH0610302B2 (en) * 1987-03-26 1994-02-09 トヨタ自動車株式会社 Partial surface quenching and tempering method for uneven thickness cylindrical members
JP2779764B2 (en) * 1994-03-04 1998-07-23 富士電子工業株式会社 Cooling device for cylindrical work

Also Published As

Publication number Publication date
JP2011021242A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
EP2441849A2 (en) Selective case depth thermo-magnetic processing and apparatus
JP6211366B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
JP5489325B2 (en) High frequency induction heating method and high frequency induction heating apparatus
WO2016014424A2 (en) System and method for producing a hardened and tempered structural member
JP6108612B2 (en) Moving quenching device for long workpiece and moving quenching method
JP5026175B2 (en) Workpiece manufacturing method
JP4708158B2 (en) Surface hardened steel and surface hardening method of steel
JP5553440B2 (en) Heat treatment method and heat treatment apparatus
JP2007204814A (en) Induction hardening method
KR20110040021A (en) Local heat treatment system of the automatic borrowing body parts which uses diode laser and the heat treatment method
JP6438734B2 (en) Work heating and quenching methods
JP2020204081A (en) Quenching apparatus
JP5346368B2 (en) High frequency induction heating coil
JP2009518543A (en) Flash tempering method and apparatus
JPH05320741A (en) Induction heat treatment of cylindrical parts
JP5527154B2 (en) Induction hardening equipment for shaft-shaped members
JP5496478B2 (en) High frequency induction heating tempering apparatus and high frequency induction heating tempering method
JP2006083412A (en) Induction heat treatment device, induction heat treatment method, and wrought product manufactured with the method
JP6343443B2 (en) Induction heating coil and induction heating method
JP2012007202A (en) Method for cooling workpiece and device for heat treating workpiece
JP5101217B2 (en) Tubular member manufacturing method and tubular member
JP2007262461A (en) Method and apparatus for induction-heating using stepwise heating
JP2004315866A (en) Method for hardening inner peripheral surface of cylindrical member
WO2007032154A1 (en) Method of induction tempering, induction tempering equipment and induction tempering product
JP2019137890A (en) Pin for endless track belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5489325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250