JP2020204081A - Quenching apparatus - Google Patents

Quenching apparatus Download PDF

Info

Publication number
JP2020204081A
JP2020204081A JP2019113286A JP2019113286A JP2020204081A JP 2020204081 A JP2020204081 A JP 2020204081A JP 2019113286 A JP2019113286 A JP 2019113286A JP 2019113286 A JP2019113286 A JP 2019113286A JP 2020204081 A JP2020204081 A JP 2020204081A
Authority
JP
Japan
Prior art keywords
work
cooling
unit
deformation amount
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019113286A
Other languages
Japanese (ja)
Inventor
羊治 佐藤
Youji Satou
羊治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019113286A priority Critical patent/JP2020204081A/en
Publication of JP2020204081A publication Critical patent/JP2020204081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To provide a quenching apparatus capable of suppressing the distortion of a long rod-shaped workpiece moving in an axial direction while rotating in a circumferential direction.SOLUTION: A quenching apparatus (1) is a device for quenching a long rod-shaped workpiece (W) moving in an axial direction while rotating in a circumferential direction, and comprises: a deformation amount detection unit (20) for detecting a deformation amount of the workpiece (W); a heating unit (30) for heating the workpiece (W); a cooling unit (40) for cooling the workpiece (W) by injecting cooling liquid to the heated workpiece (W); a shield (51) movable between a first position which is not located between the workpiece (W) and the cooling unit (40) and a second position which is located between the workpiece (W) and the cooling unit (40) and for shielding the injection of cooling liquid from the cooling unit (40) to the workpiece (W) when necessary; and a control unit (60) for controlling the movement of the shield (51) based on the deformation amount data of the workpiece (W) detected by the deformation amount detection unit (20).SELECTED DRAWING: Figure 1

Description

本発明は、焼入装置に関する。 The present invention relates to a quenching apparatus.

従来、長尺棒状のワークの表面焼入には、移動焼入が広く採用されている。移動焼入では、ワークは軸方向に移動されながら、表面焼入に必要な処理、具体的には加熱処理および冷却処理を受ける。
一般的に、長尺棒状のワークの移動焼入では、ワークの長さが断面積に比して大きいため、ワークの材質のばらつきおよび加工残留応力のばらつき等により、軸心線に対する歪みが発生しやすい。本明細書において、「軸心線」とは、長尺棒状のワークの歪みがない場合のワークの中心軸である。
Conventionally, mobile quenching has been widely used for surface quenching of long rod-shaped workpieces. In mobile quenching, the workpiece is moved axially and undergoes the treatments required for surface quenching, specifically heat treatment and cooling treatment.
Generally, in mobile quenching of a long rod-shaped workpiece, the length of the workpiece is large compared to the cross-sectional area, so that distortion occurs with respect to the axial core line due to variations in the material of the workpiece and variations in machining residual stress. It's easy to do. In the present specification, the "axis core line" is the central axis of the work when there is no distortion of the long rod-shaped work.

特許文献1は、長尺棒状のワークを軸方向に移動させながら焼入を行う高周波焼入装置に関する。特許文献1には、ワークの両側を誘導加熱する加熱コイルと、加熱されたワークの両側に対して焼入液を噴射する右側、左側冷却ジャケットと、軸方向の右側又は左側に歪むワークの歪みの量を検出するセンサと、センサにより検出されたデータと基準データとの偏差を求め、この偏差に基づいて前記冷却ジャケットの焼入液の噴射量を各々制御する制御部とを備えた高周波焼入装置が開示されている(請求項1)。
特許文献1に記載の高周波焼入装置では、移動焼入中にワークの歪みをリアルタイムで検出し、歪みが解消されるように焼入液のワーク軸回りの噴射量分布をリアルタイムで変更することができる(段落0011、0032)。
Patent Document 1 relates to an induction hardening apparatus that hardens while moving a long rod-shaped workpiece in the axial direction. Patent Document 1 describes a heating coil that induces and heats both sides of a work, a right-side and left-side cooling jacket that injects quenching liquid onto both sides of the heated work, and a strain of the work that is distorted to the right or left in the axial direction. Induction hardening is provided with a sensor that detects the amount of quenching, and a control unit that obtains the deviation between the data detected by the sensor and the reference data and controls the injection amount of the quenching liquid of the cooling jacket based on this deviation. The quenching device is disclosed (claim 1).
In the induction hardening apparatus described in Patent Document 1, strain of the work is detected in real time during mobile quenching, and the injection amount distribution of the quenching liquid around the work axis is changed in real time so that the strain is eliminated. Can be done (paragraphs 0011, 0032).

特許第3452832号公報Japanese Patent No. 3452832

しかしながら、特許文献1に記載の焼入装置では、歪みの測定データの変動が大きい場合、冷却ジャケットから噴射される焼入液の噴射量をリアルタイムで適切に制御することは難しい。例えば、長尺棒状のワークが軸方向に回転しながら移動する場合、ワークの回転移動に合わせて歪みの測定データが大きく変動する。この場合、センサによる検出時間、制御回路の応答時間、焼入液の噴射量を調整する調整バルブの動作時間、および配管の容積に応じて変動する実流量変化の遅れ時間等が影響し、上記測定データの変動に合わせて、冷却ジャケットから噴射される焼入液の噴射量をリアルタイムで適切に制御することは難しい。特許文献1に記載の焼入装置では、ワークの歪みが検出されたときに、即座に冷却ジャケットから噴射される焼入液の噴射量を制御することが難しい。 However, in the quenching apparatus described in Patent Document 1, it is difficult to appropriately control the injection amount of the quenching liquid injected from the cooling jacket in real time when the fluctuation of the strain measurement data is large. For example, when a long rod-shaped work moves while rotating in the axial direction, the strain measurement data fluctuates greatly according to the rotational movement of the work. In this case, the detection time by the sensor, the response time of the control circuit, the operating time of the adjustment valve that adjusts the injection amount of the hardened liquid, the delay time of the actual flow rate change that fluctuates according to the volume of the pipe, etc. have an effect, and the above It is difficult to appropriately control the injection amount of the quenching liquid injected from the cooling jacket in real time according to the fluctuation of the measurement data. With the quenching apparatus described in Patent Document 1, it is difficult to immediately control the injection amount of the quenching liquid injected from the cooling jacket when the strain of the work is detected.

本発明は上記事情に鑑みてなされたものであり、周方向に回転しながら軸方向に移動する長尺棒状のワークの歪みを抑制することが可能な焼入装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a quenching apparatus capable of suppressing distortion of a long rod-shaped workpiece that moves in the axial direction while rotating in the circumferential direction. ..

本発明の焼入装置は、
周方向に回転しながら軸方向に移動する長尺棒状のワークの焼入装置であって、
前記ワークの変形量を検出する変形量検出部と、
前記ワークを加熱する加熱部と、
前記加熱部により加熱された前記ワークに対して冷却液を噴射して、前記ワークを冷却する冷却部と、
前記ワークと前記冷却部との間にない第1の位置と、前記ワークと前記冷却部との間にある第2の位置との間で移動可能で、かつ、少なくとも前記第2の位置にあるときに前記ワークの周方向に回転移動可能であり、前記第2の位置にあるときに、前記冷却部から前記ワークへの前記冷却液の噴射を遮蔽する遮蔽材と、
前記変形量検出部により検出された前記ワークの変形量のデータを取得し、前記ワークの最大変形量が規定値以上であるときに、前記ワークの前記冷却部に最も近接する最大変形部分を特定し、当該最大変形部分と前記冷却部との間に前記遮蔽材が位置するよう、前記遮蔽材の移動を制御する制御部とを有するものである。
The quenching apparatus of the present invention
It is a quenching device for long rod-shaped workpieces that move in the axial direction while rotating in the circumferential direction.
A deformation amount detection unit that detects the deformation amount of the work,
A heating unit that heats the work,
A cooling unit that cools the work by injecting a cooling liquid onto the work heated by the heating unit.
It is movable and is at least in the second position between the first position not between the work and the cooling unit and the second position between the work and the cooling unit. A shielding material that can sometimes rotate and move in the circumferential direction of the work and shields the injection of the cooling liquid from the cooling unit to the work when it is in the second position.
The data of the deformation amount of the work detected by the deformation amount detection unit is acquired, and when the maximum deformation amount of the work is equal to or more than a specified value, the maximum deformation portion closest to the cooling part of the work is specified. However, it has a control unit that controls the movement of the shielding material so that the shielding material is located between the maximum deformed portion and the cooling unit.

本発明によれば、周方向に回転しながら軸方向に移動する長尺棒状のワークの歪みを抑制することが可能な焼入装置を提供することができる。 According to the present invention, it is possible to provide a quenching device capable of suppressing distortion of a long rod-shaped workpiece that moves in the axial direction while rotating in the circumferential direction.

本発明に係る一実施形態の焼入装置とこの装置を通過しているワークを示す模式図である。It is a schematic diagram which shows the quenching apparatus of one Embodiment which concerns on this invention, and the work which passes through this apparatus. ワークの中心位置が軸心線よりずれた状態で、冷却部の内部をワークが通過している様子を進行方向先から見た模式断面図である。It is a schematic cross-sectional view which looked at the state which the work passes through the inside of the cooling part with the center position of the work deviated from the axis center line, as seen from the traveling direction. 歪み解消制御を行わない場合の変形量の検出データの例である。This is an example of the deformation amount detection data when the distortion elimination control is not performed. 歪み解消のための遮蔽材の移動制御の手順の例を示すフローチャートである。It is a flowchart which shows the example of the procedure of the movement control of a shielding material for distortion elimination.

図面を参照して、本発明に係る一実施形態の焼入装置の構造とこれを用いた焼入方法について、説明する。図1は、本実施形態の焼入装置とこの装置を通過しているワークを示す模式図である。図中、ワークW、加熱部30、冷却部40、遮蔽材51、および支持部材52は、断面図で図示してある。 The structure of the quenching apparatus according to the embodiment of the present invention and the quenching method using the same will be described with reference to the drawings. FIG. 1 is a schematic view showing a quenching apparatus of this embodiment and a work passing through the quenching apparatus. In the figure, the work W, the heating unit 30, the cooling unit 40, the shielding material 51, and the support member 52 are shown in a cross-sectional view.

本実施形態の焼入装置1は、周方向に回転しながら軸方向に移動する長尺棒状のワークWの表面焼入を行う装置である。
図1中、符号CLは、長尺棒状のワークWの軸心線であり、ワークWの歪みがない場合のワークWの中心軸である。矢印D1はワークWの移動方向の例を示す。ワークWは、公知の移動機構(図示略)により、図示上側から図示下側に向かって矢印D1の方向に移動(搬送とも言う)されながら、焼入れに必要な各種の処理を順次受けるようになっている。
本実施形態において、ワークWは、回転モータ11により周方向に回転されるようになっている。矢印D2はワークWの回転方向の例を示す。
The quenching device 1 of the present embodiment is a device that performs surface quenching of a long rod-shaped work W that moves in the axial direction while rotating in the circumferential direction.
In FIG. 1, reference numeral CL is an axial core line of the long rod-shaped work W, and is a central axis of the work W when there is no distortion of the work W. The arrow D1 shows an example of the moving direction of the work W. The work W is sequentially subjected to various processes required for quenching while being moved (also referred to as transportation) in the direction of arrow D1 from the upper side in the drawing to the lower side in the drawing by a known moving mechanism (not shown). ing.
In the present embodiment, the work W is rotated in the circumferential direction by the rotary motor 11. The arrow D2 shows an example of the rotation direction of the work W.

本実施形態の焼入装置1は、ワークWを加熱する加熱部30と、加熱部30により加熱されたワークWに対して冷却液を噴射して、ワークWを冷却する冷却部40とを有する。
本実施形態において、加熱部30は、コイルとコイルに交流電流を供給する高周波電源とを含み、コイルの中を通るワークWを誘導加熱する高周波誘導加熱装置を含む。
本実施形態において、冷却部40は、ワークWの表面に対して冷却水等の冷却液を噴射する筒状等の冷却ジャケットを含む冷却装置を含む。
高周波誘導加熱装置および冷却ジャケットとしては、公知のものを用いることができる。なお、加熱部30および冷却部40の構成は、適宜設計変更可能である。
The quenching device 1 of the present embodiment has a heating unit 30 for heating the work W and a cooling unit 40 for injecting a cooling liquid onto the work W heated by the heating unit 30 to cool the work W. ..
In the present embodiment, the heating unit 30 includes a coil and a high-frequency power source that supplies an alternating current to the coil, and includes a high-frequency induction heating device that induces and heats a work W passing through the coil.
In the present embodiment, the cooling unit 40 includes a cooling device including a tubular cooling jacket that injects a cooling liquid such as cooling water onto the surface of the work W.
Known high-frequency induction heating devices and cooling jackets can be used. The configurations of the heating unit 30 and the cooling unit 40 can be appropriately redesigned.

本実施形態の焼入装置1は、ワークWの変形量を検出する変形量検出部20を有する。本実施形態では、加熱部30による加熱処理を受ける前に、変形量検出部20によりワークWの変形量が検出される。本実施形態において、変形量検出部20は変形量検出センサを含む。変形量検出センサとしては、ワークWの外周端の位置変化を検出することが可能な公知のセンサを用いることができる。図示例では、変形量検出部20は、ワークWの図示右側の外周端の位置変化を経時的に検出する。 The quenching device 1 of the present embodiment has a deformation amount detecting unit 20 for detecting the deformation amount of the work W. In the present embodiment, the deformation amount of the work W is detected by the deformation amount detection unit 20 before receiving the heat treatment by the heating unit 30. In the present embodiment, the deformation amount detection unit 20 includes a deformation amount detection sensor. As the deformation amount detection sensor, a known sensor capable of detecting a change in the position of the outer peripheral edge of the work W can be used. In the illustrated example, the deformation amount detecting unit 20 detects a change in the position of the outer peripheral edge on the right side of the work W over time.

図3に、歪み解消制御を行わない場合の変形量の検出データの例を示す。この例では、周方向に回転しながら軸方向に移動する長尺棒状のワークWの変形量は、sinカーブまたはそれに近い変動で、周期的に変動している。この例では、図1において、歪みがない場合のワークWの図示右側の外周端の位置を基準位置とし、ワークWの図示右側の外周端の位置が基準位置にあるときのワークWの変形量をゼロとする。ワークWの図示右側の外周端の位置が基準位置よりずれた場合、その位置の基準位置からのずれ量を変形量とする。なお、ワークWの図示右側の外周端の位置が基準位置より図示右側にずれた場合の変形量をプラス、ワークWの図示右側の外周端の位置が基準位置より図示左側にずれた場合の変形量をマイナスで表している。 FIG. 3 shows an example of the deformation amount detection data when the distortion elimination control is not performed. In this example, the amount of deformation of the long rod-shaped work W that moves in the axial direction while rotating in the circumferential direction fluctuates periodically with a sine curve or a fluctuation close to it. In this example, in FIG. 1, the position of the outer peripheral edge on the right side of the work W when there is no distortion is set as the reference position, and the amount of deformation of the work W when the position of the outer peripheral edge on the right side of the work W is the reference position. Is set to zero. When the position of the outer peripheral edge on the right side of the work W is deviated from the reference position, the amount of deviation from the reference position of that position is defined as the amount of deformation. The amount of deformation when the position of the outer peripheral edge on the right side of the work W is deviated from the reference position to the right side in the drawing is added, and the deformation when the position of the outer peripheral edge on the right side of the work W is deviated from the reference position to the left side in the drawing. The amount is shown as a minus.

図2は、ワークWの移動方向に対して垂直な断面において、ワークWの中心位置が軸心線CLより図示右側にずれ、ワークWの変形量がプラス側で最大である場合の模式断面図である。この図は、冷却部40の内部をワークWが通過している様子を進行方向先から見た模式断面図である。 FIG. 2 is a schematic cross-sectional view in a cross section perpendicular to the moving direction of the work W, in which the center position of the work W shifts to the right side of the drawing from the axis CL and the amount of deformation of the work W is maximum on the plus side. Is. This figure is a schematic cross-sectional view of the state in which the work W is passing through the inside of the cooling unit 40 as seen from the direction of travel.

従来技術では、図2に示すワークWの断面の中で、図示右側の外周端は、冷却部40に最も近接するため、最も速く冷却され、最も速く焼入れが完了する。
「焼入れ」とは、鋼を硬化させるために、変態点以上の温度に加熱した後(オーステナイト領域まで加熱した後)に急冷する操作である。炭素を含む鋼を焼入れすると、面心立方晶のオーステナイトが体心正方晶のマルテンサイトに変わることで、体積が膨張し、硬さが非常に高くなる。
従来技術では、上記のように、図2に示すワークWの断面の中で、図示右側の外周端は、図示左側の外周端より先に冷却され、先に体積膨張および硬化する結果、もともと図示右に凸の歪みがさらに増幅される。図3に示したように、ワークWの変形量がsinカーブまたはそれに近い変動で周期的に変動している場合、従来技術では、変形量が最大となる位相では、常に、図示右側の外周端が図示左側の外周端より先に体積膨張する結果、周期の繰返し数の増加に伴って最大変形量は増幅され、歪みが増幅される。
In the prior art, in the cross section of the work W shown in FIG. 2, the outer peripheral end on the right side in the drawing is closest to the cooling unit 40, so that the work W is cooled fastest and quenching is completed fastest.
"Quenching" is an operation of heating the steel to a temperature equal to or higher than the transformation point (after heating to the austenite region) and then quenching the steel in order to harden the steel. Quenching carbon-containing steel transforms face-centered cubic austenite into body-centered tetragonal martensite, resulting in volume expansion and very high hardness.
In the prior art, as described above, in the cross section of the work W shown in FIG. 2, the outer peripheral edge on the right side of the drawing is cooled before the outer peripheral edge on the left side of the drawing, and as a result of volume expansion and hardening first, the drawing is originally shown. The distortion that is convex to the right is further amplified. As shown in FIG. 3, when the deformation amount of the work W fluctuates periodically with a sine curve or a fluctuation close to it, in the prior art, the outer peripheral edge on the right side of the drawing is always in the phase where the deformation amount is maximum. As a result of the volume expansion before the outer peripheral edge on the left side of the drawing, the maximum amount of deformation is amplified and the strain is amplified as the number of repetitions of the cycle increases.

図1に示すように、本実施形態の焼入装置1は、ワークWの歪みを解消するために、必要なときに、冷却部40からワークWへの冷却液の噴射を遮蔽する遮蔽材51を有する。遮蔽材51の形状は、冷却部40からワークWへの冷却液の噴射を遮蔽することができる形状であればよく、板状および棒状等が挙げられる。
本実施形態の焼入装置1は、遮蔽材51を支持する支持部材52と、支持部材52に接続され、遮蔽材51および支持部材52をワークWの移動方向に対して平行方向(図示上下方向)に移動させる移動機構53と、ワークWの周方向に遮蔽材51を回転移動させる回転モータ54とを有する。図中、符号D3は、遮蔽材51の移動方向の例を示す。
As shown in FIG. 1, the quenching device 1 of the present embodiment has a shielding material 51 that shields the injection of the cooling liquid from the cooling unit 40 to the work W when necessary in order to eliminate the distortion of the work W. Has. The shape of the shielding material 51 may be any shape as long as it can shield the injection of the cooling liquid from the cooling unit 40 to the work W, and examples thereof include a plate shape and a rod shape.
The quenching device 1 of the present embodiment is connected to a support member 52 that supports the shielding material 51 and the support member 52, and the shielding material 51 and the support member 52 are parallel to the moving direction of the work W (vertical direction in the drawing). ), And a rotary motor 54 that rotationally moves the shielding material 51 in the circumferential direction of the work W. In the figure, reference numeral D3 indicates an example of the moving direction of the shielding material 51.

変形量検出部20により検出されたワークWの変形量が規定値未満であるとき、図示するように、遮蔽材51は、冷却部40の外側(図示例では、冷却部40より下方)に配置され、ワークWと冷却部40との間には配置されない。この状態では、遮蔽材51は、冷却部40からワークWへの冷却液の噴射を遮蔽しない。このときの遮蔽材51の位置を第1の位置と定義する。この位置は、初期位置または非遮蔽位置とも言う。 When the deformation amount of the work W detected by the deformation amount detection unit 20 is less than the specified value, the shielding material 51 is arranged outside the cooling unit 40 (below the cooling unit 40 in the illustrated example) as shown in the figure. It is not arranged between the work W and the cooling unit 40. In this state, the shielding material 51 does not shield the injection of the coolant from the cooling unit 40 to the work W. The position of the shielding material 51 at this time is defined as the first position. This position is also called the initial position or the unshielded position.

変形量検出部20により検出されたワークWの変形量が規定値以上であるとき、遮蔽材51は、移動機構53によりワークWの移動方向に対して平行方向(図示上下方向)に移動され、ワークWと冷却部40との間に配置される。この状態では、遮蔽材51は、冷却部40からワークWへの冷却液の噴射を遮蔽する。このときの遮蔽材51の位置を第2の位置と定義する。この位置は、遮蔽位置とも言う。
本実施形態において、遮蔽材51は、少なくとも第2の位置(遮蔽位置)にあるときに、ワークWの回転方向D2と同じ方向に回転移動することができる。
When the deformation amount of the work W detected by the deformation amount detection unit 20 is equal to or more than a specified value, the shielding material 51 is moved by the moving mechanism 53 in a direction parallel to the moving direction of the work W (up and down direction in the drawing). It is arranged between the work W and the cooling unit 40. In this state, the shielding material 51 shields the injection of the coolant from the cooling unit 40 to the work W. The position of the shielding material 51 at this time is defined as the second position. This position is also called a shielding position.
In the present embodiment, the shielding material 51 can rotate and move in the same direction as the rotation direction D2 of the work W when it is at least in the second position (shielding position).

本実施形態の焼入装置1はまた、変形量検出部20により検出されたワークWの変形量のデータを取得し、ワークWの最大変形量が規定値以上であるときに、ワークWの冷却部40に最も近接する最大変形部分(図3に示す例のデータでは、ピークトップに対応)を特定し、最大変形部分と冷却部40との間に遮蔽材51が位置するよう、遮蔽材51の移動を制御する制御部60を有する。 The quenching device 1 of the present embodiment also acquires data on the deformation amount of the work W detected by the deformation amount detection unit 20, and when the maximum deformation amount of the work W is equal to or more than a specified value, the work W is cooled. The maximum deformed portion closest to the portion 40 (corresponding to the peak top in the data of the example shown in FIG. 3) is specified, and the shielding material 51 is located between the maximum deformed portion and the cooling portion 40. It has a control unit 60 which controls the movement of.

本実施形態の焼入装置1では例えば、図4に示すフローチャートのように、遮蔽材51の移動を制御することができる。
はじめに、回転モータ11を用いて周方向に回転させながら、公知方法にて、長尺棒状のワークWを軸方向に移動させ、焼入れを開始する。
次いで、変形量検出部20は、ワークWの変形量を経時的に検出し、図3に示すようなワークWの変形量のデータを取得する。
次いで、変形量が検出されたワークWを加熱部30により加熱する。
次いで、加熱されたワークWを冷却部40により冷却する。
In the quenching device 1 of the present embodiment, for example, the movement of the shielding material 51 can be controlled as shown in the flowchart shown in FIG.
First, while rotating in the circumferential direction using the rotary motor 11, the long rod-shaped work W is moved in the axial direction by a known method to start quenching.
Next, the deformation amount detection unit 20 detects the deformation amount of the work W over time, and acquires data on the deformation amount of the work W as shown in FIG.
Next, the work W in which the amount of deformation is detected is heated by the heating unit 30.
Next, the heated work W is cooled by the cooling unit 40.

制御部60は、変形量検出部20からワークWの変形量のデータを受け取る。制御部60はまた、回転モータ11からワークWの回転情報を受け取る。制御部60は、ワークWの最大変形量が規定値以上であるか否かを判断し、規定値以上であれば、ワークWの歪みを解消するよう、以下の制御を行う。 The control unit 60 receives data on the amount of deformation of the work W from the amount of deformation detection unit 20. The control unit 60 also receives rotation information of the work W from the rotation motor 11. The control unit 60 determines whether or not the maximum deformation amount of the work W is equal to or more than the specified value, and if it is equal to or more than the specified value, performs the following control so as to eliminate the distortion of the work W.

制御部60は、ワークWの変形量のデータとワークWの回転情報に基づいて、ワークWが最大変形する位相(図3に示す例のデータでは、ピークトップの位相)を特定し、ワークWの最大変形部分の回転タイミングを特定する。
制御部60は、回転モータ54を制御し、ワークWの最大変形部分と遮蔽材51とが、同一位相、同一回転数で回転するよう、第1の位置(初期位置、非遮蔽位置)にある遮蔽材51をワークWの周方向に回転移動させる。例えば、ワークWの移動方向に対して垂直な断面において、軸心に対して、遮蔽材51の初期位置と変形量検出部20の位置とを同一位相に設定しておき、変形量のデータが図3に示すようなデータのピークトップの位相にあるときに、遮蔽材51の位置が遮蔽材51の回転の初期位置となるように、回転モータ54を制御することが好ましい。
次いで、制御部60は、移動機構53を制御し、遮蔽材51を回転移動させたままワークWの移動方向に対して平行方向に移動させ、ワークWの最大変形部分と冷却部40との間の位置(第2の位置、遮蔽位置)に遮蔽材51を移動させる。
The control unit 60 identifies the phase in which the work W is maximally deformed (in the example data shown in FIG. 3, the peak top phase) based on the data on the amount of deformation of the work W and the rotation information of the work W, and the work W Specify the rotation timing of the maximum deformation part of.
The control unit 60 controls the rotary motor 54 and is in the first position (initial position, non-shielding position) so that the maximum deformed portion of the work W and the shielding material 51 rotate at the same phase and the same rotation speed. The shielding material 51 is rotationally moved in the circumferential direction of the work W. For example, in a cross section perpendicular to the moving direction of the work W, the initial position of the shielding material 51 and the position of the deformation amount detecting unit 20 are set in the same phase with respect to the axis, and the deformation amount data is obtained. It is preferable to control the rotary motor 54 so that the position of the shielding material 51 becomes the initial position of the rotation of the shielding material 51 when the data is in the peak top phase as shown in FIG.
Next, the control unit 60 controls the moving mechanism 53 to move the shielding material 51 in a direction parallel to the moving direction of the work W while rotating the shielding material 51, and between the maximum deformed portion of the work W and the cooling unit 40. The shielding material 51 is moved to the position (second position, shielding position).

以上の操作により、遮蔽材51は、ワークWの最大変形部分と冷却部40との間に位置した状態で、ワークWの最大変形部分と同一位相、同一回転数で回転移動することができる。この状態では、遮蔽材51の存在により、冷却部40から、ワークWの最大変形部分への冷却液の噴射が遮蔽されるため、最大変形部分に対して冷却液がかかりづらく、最大変形部分の冷却が遅れる。図2に示すワークWの断面の中で、図示右側の外周端に対して、冷却部40からの冷却液の噴射が遮蔽された場合、反対側の図示左側の外周端の方が先に冷却され、先に体積膨張および硬化する。このように、図2において図示右側より図示左側が大きく膨張する結果、もともと図示右に凸の歪みを有するワークWに対して、逆方向に歪ませる力が作用し、歪みが低減される。 By the above operation, the shielding material 51 can rotate and move in the same phase and the same rotation speed as the maximum deformed portion of the work W while being located between the maximum deformed portion of the work W and the cooling portion 40. In this state, the presence of the shielding material 51 shields the injection of the cooling liquid from the cooling unit 40 to the maximum deformed portion of the work W, so that it is difficult for the coolant to be applied to the maximum deformed portion, and the maximum deformed portion Cooling is delayed. In the cross section of the work W shown in FIG. 2, when the injection of the cooling liquid from the cooling unit 40 is shielded from the outer peripheral end on the right side in the drawing, the outer peripheral end on the left side in the drawing on the opposite side is cooled first. And then volume expansion and hardening first. As described above, as a result of the left side of the drawing being expanded more than the right side of the drawing in FIG. 2, a force that distorts the work W originally having a convex distortion to the right of the drawing acts in the opposite direction, and the distortion is reduced.

制御部60は、ワークWの最大変形量が規定値未満であると判断した時点で、移動機構53を制御し、遮蔽材51を元の位置(第1の位置、初期位置、非遮蔽位置)に戻し、ワークWに対する冷却液の噴射の遮蔽を解除する。 When the control unit 60 determines that the maximum deformation amount of the work W is less than the specified value, the control unit 60 controls the moving mechanism 53 and places the shielding material 51 in the original position (first position, initial position, non-shielding position). To release the shielding of the injection of the coolant to the work W.

遮蔽材51の第1の位置(初期位置、非遮蔽位置)と第2の位置(遮蔽位置)との間の移動方向は、ワークWの移動方向に平行な直線方向に限らず、適宜設計変更可能である。例えば、第1の位置(初期位置、非遮蔽位置)から第2の位置(遮蔽位置)に遮蔽材51を円弧状に曲線移動させてもよい。
遮蔽材51は、少なくとも第2の位置(遮蔽位置)にあるときにワークWの周方向に回転移動可能であればよく、遮蔽材51の回転開始は、遮蔽材51を第2の位置(遮蔽位置)に移動させた後でもよい。
The moving direction between the first position (initial position, non-shielding position) and the second position (shielding position) of the shielding material 51 is not limited to the linear direction parallel to the moving direction of the work W, and the design is appropriately changed. It is possible. For example, the shielding material 51 may be curvedly moved from the first position (initial position, non-shielding position) to the second position (shielding position) in an arc shape.
The shielding material 51 may be rotatable and movable in the circumferential direction of the work W when it is at least in the second position (shielding position), and when the shielding material 51 starts rotating, the shielding material 51 is placed in the second position (shielding position). It may be after moving to the position).

以上説明したように、本実施形態によれば、周方向に回転しながら軸方向に移動する長尺棒状のワークWの歪みを抑制することが可能な焼入装置1を提供することができる。
本実施形態では、特許文献1に記載の技術のように複雑な冷却液の流量制御の必要がなく、必要なときにワークWに対する冷却液の噴射を遮蔽するだけでよいので、ワークWの冷却の制御がしやすく、ワークWの歪みが検出されたときに即座に歪みを解消する制御を行うことができる。
As described above, according to the present embodiment, it is possible to provide the quenching device 1 capable of suppressing the distortion of the long rod-shaped work W that moves in the axial direction while rotating in the circumferential direction.
In the present embodiment, unlike the technique described in Patent Document 1, it is not necessary to control the flow rate of the coolant in a complicated manner, and it is only necessary to shield the injection of the coolant to the work W when necessary, so that the work W is cooled. Is easy to control, and when the distortion of the work W is detected, the distortion can be immediately eliminated.

本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。
焼入装置1は、上記実施形態で説明した冷却液の遮蔽機構に合わせて、ワークの最大変形量が規定値以上であるときに、ワークの最大変形部分に対して、歪みを解消する方向に機械的に力をかける機械的歪み解消機構を有していてもよい。この場合も、変形量検出部により検出されたワークの変形量のデータに基づいて、制御部は機械的歪み解消機構を制御することができる。
The present invention is not limited to the above-described embodiment, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
The quenching device 1 is in the direction of eliminating distortion with respect to the maximum deformation portion of the work when the maximum deformation amount of the work is equal to or more than a specified value in accordance with the cooling liquid shielding mechanism described in the above embodiment. It may have a mechanical strain eliminating mechanism that applies a mechanical force. In this case as well, the control unit can control the mechanical strain eliminating mechanism based on the data of the deformation amount of the work detected by the deformation amount detection unit.

1 焼入装置
11 回転モータ
20 変形量検出部
30 加熱部
40 冷却部
51 遮蔽材
52 支持部材
53 移動機構
54 回転モータ
60 制御部
W ワーク
1 Quenching device 11 Rotary motor 20 Deformation amount detection unit 30 Heating unit 40 Cooling unit 51 Shielding material 52 Support member 53 Moving mechanism 54 Rotating motor 60 Control unit W work

Claims (1)

周方向に回転しながら軸方向に移動する長尺棒状のワークの焼入装置であって、
前記ワークの変形量を検出する変形量検出部と、
前記ワークを加熱する加熱部と、
前記加熱部により加熱された前記ワークに対して冷却液を噴射して、前記ワークを冷却する冷却部と、
前記ワークと前記冷却部との間にない第1の位置と、前記ワークと前記冷却部との間にある第2の位置との間で移動可能で、かつ、少なくとも前記第2の位置にあるときに前記ワークの周方向に回転移動可能であり、前記第2の位置にあるときに、前記冷却部から前記ワークへの前記冷却液の噴射を遮蔽する遮蔽材と、
前記変形量検出部により検出された前記ワークの変形量のデータを取得し、前記ワークの最大変形量が規定値以上であるときに、前記ワークの前記冷却部に最も近接する最大変形部分を特定し、当該最大変形部分と前記冷却部との間に前記遮蔽材が位置するよう、前記遮蔽材の移動を制御する制御部とを有する、焼入装置。
It is a quenching device for long rod-shaped workpieces that move in the axial direction while rotating in the circumferential direction.
A deformation amount detection unit that detects the deformation amount of the work,
A heating unit that heats the work,
A cooling unit that cools the work by injecting a cooling liquid onto the work heated by the heating unit.
It is movable and is at least in the second position between the first position not between the work and the cooling unit and the second position between the work and the cooling unit. A shielding material that can sometimes rotate and move in the circumferential direction of the work and shields the injection of the cooling liquid from the cooling unit to the work when it is in the second position.
The data of the deformation amount of the work detected by the deformation amount detection unit is acquired, and when the maximum deformation amount of the work is equal to or more than a specified value, the maximum deformation portion closest to the cooling part of the work is specified. A quenching device having a control unit that controls the movement of the shielding material so that the shielding material is located between the maximum deformed portion and the cooling unit.
JP2019113286A 2019-06-19 2019-06-19 Quenching apparatus Pending JP2020204081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113286A JP2020204081A (en) 2019-06-19 2019-06-19 Quenching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113286A JP2020204081A (en) 2019-06-19 2019-06-19 Quenching apparatus

Publications (1)

Publication Number Publication Date
JP2020204081A true JP2020204081A (en) 2020-12-24

Family

ID=73838649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113286A Pending JP2020204081A (en) 2019-06-19 2019-06-19 Quenching apparatus

Country Status (1)

Country Link
JP (1) JP2020204081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725605A (en) * 2020-12-25 2021-04-30 安徽台信科技有限公司 Quenching device for machining and producing direct-drive electric spindle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725605A (en) * 2020-12-25 2021-04-30 安徽台信科技有限公司 Quenching device for machining and producing direct-drive electric spindle

Similar Documents

Publication Publication Date Title
CN105586475B (en) Quenching apparatus and quenching method
JP2020204081A (en) Quenching apparatus
JP5026175B2 (en) Workpiece manufacturing method
JP2009197312A (en) Method for correcting deformation of annular member
JP5553440B2 (en) Heat treatment method and heat treatment apparatus
US20090020194A1 (en) Method of Induction Hardening
JP5489325B2 (en) High frequency induction heating method and high frequency induction heating apparatus
JP5546466B2 (en) Apparatus and method for induction heating of rotationally symmetric workpieces
JP5380812B2 (en) Quenching method for annular body
KR950007182B1 (en) Contorl of straightness in scanning induction hardening of steel
JP5527154B2 (en) Induction hardening equipment for shaft-shaped members
EP1960558A2 (en) Flash tempering process and apparatus
JP4917819B2 (en) Induction heating method using step heating and induction heating apparatus using the heating
JP2006009096A (en) Heat-treatment apparatus for crank shaft
JP6630577B2 (en) Quenching method
JP2019137890A (en) Pin for endless track belt
JP6438734B2 (en) Work heating and quenching methods
JP2008163394A (en) Apparatus for and method of hardening conductive hollow pipe
JP2008075109A (en) Supporting tool for tempering-heating cylindrical member having variation of wall thickness
JP2004315866A (en) Method for hardening inner peripheral surface of cylindrical member
JP2010024515A (en) Induction heating device
JPH05320741A (en) Induction heat treatment of cylindrical parts
JPH04341515A (en) Method for correcting strain caused by local quenching
JP2006283087A (en) Method for quenching outer surface of cylinder
JP4903993B2 (en) Partial carburizing method for steel parts