JP2007204814A - Induction hardening method - Google Patents

Induction hardening method Download PDF

Info

Publication number
JP2007204814A
JP2007204814A JP2006024942A JP2006024942A JP2007204814A JP 2007204814 A JP2007204814 A JP 2007204814A JP 2006024942 A JP2006024942 A JP 2006024942A JP 2006024942 A JP2006024942 A JP 2006024942A JP 2007204814 A JP2007204814 A JP 2007204814A
Authority
JP
Japan
Prior art keywords
long workpiece
workpiece
temperature
long
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006024942A
Other languages
Japanese (ja)
Other versions
JP5060054B2 (en
Inventor
Kazuo Minemura
和男 峯村
Yukihiro Chikasawa
幸浩 近澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006024942A priority Critical patent/JP5060054B2/en
Priority to CN2007800040651A priority patent/CN101379203B/en
Priority to MYPI20082864A priority patent/MY157932A/en
Priority to US12/223,126 priority patent/US20090020194A1/en
Priority to PCT/JP2007/051425 priority patent/WO2007088825A1/en
Publication of JP2007204814A publication Critical patent/JP2007204814A/en
Application granted granted Critical
Publication of JP5060054B2 publication Critical patent/JP5060054B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction hardening method capable of omitting any cold straining removing process of a long workpiece consisting of a Fe-based alloy. <P>SOLUTION: In the induction hardening method, the heating process is performed in which a long workpiece LW consisting of a Fe-based alloy is heated by an induction heating coil 16 while turning the workpiece at the predetermined number of revolutions under the operation of rotary chucks 14a, 14b. After stopping the heating, the long workpiece LW is brought into contact with first to fourth straightening rollers 24a-24d while increasing the number of revolutions of the long workpiece LW, and the workpiece is cooled to the temperature zone of not higher than Pf temperature to the temperature exceeding the Ms temperature in such a state (first cooling step). The cooling time in this state is preferably 5-10 seconds. next, the number of revolutions of the long workpiece LW is decreased, preferably equal to the number of revolutions in the heating state, and the long workpiece LW is continuously cooled (second cooling step). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波焼入れ方法に関し、一層詳細には、軸線に沿って延在するFe基合金製の長尺ワークに対して施される高周波焼入れ方法に関する。   The present invention relates to an induction hardening method, and more particularly to an induction hardening method applied to a long workpiece made of an Fe-based alloy extending along an axis.

棒状の長尺ワーク、例えば、自動車の走行機関を構成するドライブシャフトに対して高周波焼入れ処理を施す手法としては、長尺ワークの全体に対して焼入れ処理を一度に行うシングルショット焼入れや、長尺ワークの一部を高周波加熱コイルで囲繞し、該長尺ワークを軸線方向に移送することによって加熱処理を施す部位を逐次的に変更する移動焼入れが例示される。いずれの焼入れ方法においても、長尺ワークは、高周波加熱コイルによる加熱が行われた後、冷却液で冷却される。   As a technique for subjecting a long rod-shaped workpiece, for example, induction hardening to a drive shaft that constitutes a traveling engine of an automobile, single shot quenching that performs quenching processing on the entire long workpiece at once, Moving quenching is exemplified in which a part of the work is surrounded by a high-frequency heating coil, and the part to be heat-treated is sequentially changed by transferring the long work in the axial direction. In any of the quenching methods, the long workpiece is cooled by the coolant after being heated by the high-frequency heating coil.

ここで、シングルショット焼入れでは、長尺ワークが両底面側からクランプされ、さらに、回転付勢される(例えば、特許文献1参照)。長尺ワークは、この状態で加熱され、次に、回転が続行された状態で冷却される。これにより、長尺ワークに対して焼入れが施される。この冷却の際に長尺ワークに歪が生じたときには、回転する当該部位が、長尺ワークに近接配置された矯正ローラに接触する。この接触によって、長尺ワークの歪矯正が営まれる。   Here, in the single shot quenching, the long workpiece is clamped from both bottom sides and is further urged to rotate (see, for example, Patent Document 1). The long workpiece is heated in this state, and then cooled while the rotation is continued. Thereby, quenching is performed on the long workpiece. When the long workpiece is distorted during the cooling, the rotating portion comes into contact with the correction roller disposed in proximity to the long workpiece. This contact corrects the distortion of the long workpiece.

特開平4−141523号公報JP-A-4-141523

しかしながら、矯正ローラのみでは歪が十分に抑制されるとは言い難い側面があり、焼入れ処理の後に冷間歪除去加工が行われるのが通例である。また、この加工によって長尺ワークに割れが発生することもあるので、割れの有無を確認するために磁気探傷検査が行われる。以上のことから、工程数が多くなり、このために長尺ワークの生産効率を向上させることが容易ではないという問題が顕在化している。   However, it is difficult to say that the distortion is sufficiently suppressed with the straightening roller alone, and cold strain removal processing is usually performed after the quenching process. Moreover, since a long workpiece may be cracked by this processing, a magnetic flaw inspection is performed to confirm the presence or absence of the crack. From the above, the number of processes is increased, and for this reason, it is not easy to improve the production efficiency of long workpieces.

本発明は上記した問題を解決するためになされたもので、長尺ワークに歪が発生することを抑制することが可能であり、このために歪除去加工や磁気探傷検査を省略することも可能な高周波焼入れ方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can suppress the occurrence of distortion in a long workpiece. For this reason, it is possible to omit strain removal processing and magnetic flaw detection inspection. It aims to provide a simple induction hardening method.

前記の目的を達成するために、本発明は、Fe基合金からなる長尺ワークを回転させながら高周波誘導加熱を行い、前記長尺ワークに歪が生じた際に矯正ローラを接触させて歪矯正を行いながら焼入れを行う高周波焼入れ方法において、
前記長尺ワークを第1の回転数で回転させながらオーステナイトが生成する第1温度域まで前記高周波誘導加熱を行う加熱工程と、
前記長尺ワークを前記第1の回転数に比して回転数が大きな第2の回転数で回転させながら、パーライト析出終了温度以下マルテンサイト析出開始温度超の第2温度域まで冷却する第1冷却工程と、
長尺ワークの温度が前記第2温度域に到達した後、前記長尺ワークを前記第2の回転数に比して回転数が小さな第3の回転数で回転させながら冷却を続行する第2冷却工程と、
を有することを特徴とする。
In order to achieve the above object, the present invention performs high-frequency induction heating while rotating a long workpiece made of an Fe-based alloy, and when distortion occurs in the long workpiece, a correction roller is brought into contact with the distortion correction. In the induction hardening method of quenching while performing
A heating step of performing the high-frequency induction heating to a first temperature range where austenite is generated while rotating the long workpiece at a first rotational speed;
The first workpiece is cooled to a second temperature range not higher than the pearlite precipitation end temperature but higher than the martensite precipitation start temperature while rotating the long workpiece at a second rotation speed that is higher than the first rotation speed. A cooling process;
After the temperature of the long workpiece has reached the second temperature range, the cooling is continued while the long workpiece is rotated at a third rotational speed that is smaller than the second rotational speed. A cooling process;
It is characterized by having.

長尺ワークの材質であるFe基合金は、パーライト析出終了温度(Pf温度)に至るまでの温度域では、歪が容易に除去される組織となっている。従って、加熱工程が終了した後、長尺ワークの回転数を最大にして冷却し、歪が生じた場合には当該部位を矯正ローラに接触させることにより、長尺ワークに生じた歪を効率的に除去することが可能となる。矯正ローラへの長尺ワークの接触頻度が高くなるからである。   The Fe-based alloy that is the material of the long workpiece has a structure in which strain is easily removed in a temperature range up to the pearlite precipitation end temperature (Pf temperature). Therefore, after the heating process is completed, the rotation of the long workpiece is cooled to the maximum, and when the distortion occurs, the distortion generated in the long workpiece is efficiently brought into contact with the correction roller when the distortion occurs. Can be removed. This is because the frequency of contact of the long workpiece with the straightening roller increases.

このため、本発明によれば、第2冷却工程後の長尺ワークに歪が存在することがほとんどない。従って、冷間歪除去加工を省略することが可能となり、必然的に、冷間歪除去加工によって割れが発生したか否かを確認するための磁気探傷検査を省略することも可能となる。これらの工程を省略することにより、長尺ワークの生産効率が向上する。   For this reason, according to the present invention, there is almost no distortion in the long workpiece after the second cooling step. Therefore, it is possible to omit the cold strain removing process, and inevitably, it is possible to omit the magnetic flaw inspection for confirming whether or not a crack has occurred by the cold strain removing process. By omitting these steps, the production efficiency of long workpieces is improved.

しかも、長尺ワークの全体にわたって金属組織が略均一となるので、諸特性も全体にわたって略均等となる。   In addition, since the metal structure is substantially uniform over the entire long workpiece, the various characteristics are also substantially uniform throughout.

長尺ワークの回転数を最大とする第1冷却工程は、長尺ワークが所定の温度域(第2温度域)となるまで続行される。具体的には、Pf温度以下からマルテンサイト析出開始温度(Ms温度)超までの温度範囲であり、この中でもMs温度直上が特に好適である。   The first cooling step for maximizing the rotation speed of the long work is continued until the long work reaches a predetermined temperature range (second temperature range). Specifically, the temperature range is from the Pf temperature or lower to the martensite precipitation start temperature (Ms temperature), and the temperature just above the Ms temperature is particularly preferable.

なお、矯正ローラの回転数を変更する際、実際の回転数は、慣性のためになだらかに上昇又は下降する。従って、第1冷却工程の開始直後では回転数の上昇途中であり、第2冷却工程の開始直後では回転数の下降途中である。   In addition, when changing the rotation speed of the correction roller, the actual rotation speed gradually increases or decreases due to inertia. Therefore, immediately after the start of the first cooling process, the rotational speed is increasing, and immediately after the second cooling process is started, the rotational speed is decreasing.

矯正ローラの少なくとも1つは、他の矯正ローラの回転に追従することなく回転自在な、いわゆる自転フリーに設定することが好ましい。この場合、構成が簡素になるとともに、仮に他の矯正ローラが何らかの原因によって拘束されたとしても歪矯正が可能となるという利点がある。   It is preferable that at least one of the correction rollers is set so as to be rotatable without following the rotation of the other correction rollers, so-called rotation-free. In this case, there is an advantage that the configuration is simplified and distortion correction is possible even if another correction roller is constrained for some reason.

第1冷却工程における冷却時間は、長尺ワークの寸法や質量、硬度に応じて設定される。例えば、長尺ワークが円柱体形状である場合、直径が大きくなるほど冷却時間を長く設定する。   The cooling time in the first cooling step is set according to the size, mass, and hardness of the long workpiece. For example, when the long workpiece has a cylindrical shape, the cooling time is set longer as the diameter increases.

なお、加熱工程時の回転数と第2冷却工程時の回転数、すなわち、第1の回転数と第3の回転数とは、等しく設定することができる。   In addition, the rotation speed at the time of a heating process and the rotation speed at the time of a 2nd cooling process, ie, a 1st rotation speed, and a 3rd rotation speed can be set equal.

本発明によれば、歪を容易に除去することが可能な組織が長尺ワークに形成されている温度域で、長尺ワークの回転数を最大にして矯正ローラに接触させ、長尺ワークの歪矯正を行うようにしている。従って、長尺ワークに歪が生じることを抑制することができ、これにより冷間歪除去加工及び磁気探傷検査を行う必要がなくなるので、長尺ワークの生産効率が向上する。   According to the present invention, in a temperature range where a tissue capable of easily removing strain is formed on a long workpiece, the rotation speed of the long workpiece is maximized and brought into contact with the correction roller. I try to correct distortion. Accordingly, it is possible to suppress the occurrence of distortion in the long workpiece, thereby eliminating the need to perform cold strain removal processing and magnetic flaw detection, thereby improving the production efficiency of the long workpiece.

以下、本発明に係る高周波焼入れ方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。   Preferred embodiments of the induction hardening method according to the present invention will be described below in detail with reference to the accompanying drawings.

本実施の形態に係る高周波焼入れ方法は、加熱工程と、第1冷却工程と、第2冷却工程とに大別される。すなわち、長尺ワークは、加熱工程で加熱され、第1冷却工程、及びその後に連続して行われる第2冷却工程で冷却される。   The induction hardening method according to the present embodiment is broadly divided into a heating process, a first cooling process, and a second cooling process. That is, the long workpiece is heated in the heating process, and then cooled in the first cooling process and the second cooling process performed continuously thereafter.

図1は、上記加熱工程、第1冷却工程及び第2冷却工程を行うための焼入れ処理装置10の側面図であり、図2及び図3は、それぞれ、図1のII−II線矢視断面図、上方矢視要部平面図である。この焼入れ処理装置10は、矯正機構12と、クランプ機構を構成する回転チャック14a、14bと、高周波加熱コイル16と、図示しない移動冷却ジャケットとを有する。   FIG. 1 is a side view of a quenching treatment apparatus 10 for performing the heating process, the first cooling process, and the second cooling process, and FIGS. 2 and 3 are cross-sectional views taken along line II-II in FIG. It is a figure and an upper arrow important part top view. The quenching apparatus 10 includes a correction mechanism 12, rotary chucks 14a and 14b constituting a clamp mechanism, a high-frequency heating coil 16, and a moving cooling jacket (not shown).

矯正機構12は、台座18上に立設された第1軸受20a〜第4軸受20dを有し、第1軸受20aと第2軸受20bで第1回転軸22aを軸支する一方、第3軸受20cと第4軸受20dで第2回転軸22bを軸支する。勿論、第1回転軸22a及び第2回転軸22bは、互いに独立して回転自在である。   The correction mechanism 12 has a first bearing 20a to a fourth bearing 20d erected on the pedestal 18. The first bearing 20a and the second bearing 20b support the first rotating shaft 22a, while the third bearing. The second rotary shaft 22b is pivotally supported by 20c and the fourth bearing 20d. Of course, the first rotating shaft 22a and the second rotating shaft 22b are rotatable independently of each other.

図1に示すように、第1回転軸22aには第1矯正ローラ24a及び第2矯正ローラ24bが位置決め固定されており、第2回転軸22bには、第1矯正ローラ24a及び第2矯正ローラ24bと干渉しない位置に第3矯正ローラ24c及び第4矯正ローラ24dが位置決め固定されている。これら第1矯正ローラ24a〜第4矯正ローラ24dの側周壁は、長尺ワークLWの側周壁から所定距離で離間している。   As shown in FIG. 1, a first correction roller 24a and a second correction roller 24b are positioned and fixed to the first rotation shaft 22a, and a first correction roller 24a and a second correction roller are fixed to the second rotation shaft 22b. The third correction roller 24c and the fourth correction roller 24d are positioned and fixed at positions that do not interfere with 24b. The side peripheral walls of the first correction roller 24a to the fourth correction roller 24d are separated from the side peripheral wall of the long workpiece LW by a predetermined distance.

クランプ機構を構成する回転チャック14a、14bは、長尺ワークLWの各底面に対して離間・接近可能、換言すれば、開閉可能である。これら回転チャック14a、14bは、閉じた際に双方で長尺ワークLWを両底面側から押止し、これにより該長尺ワークLWをクランプする。   The rotary chucks 14a and 14b constituting the clamp mechanism can be separated from and approached to the bottom surfaces of the long workpiece LW, in other words, can be opened and closed. When the rotary chucks 14a and 14b are closed, both of them hold the long workpiece LW from both bottom surfaces, thereby clamping the long workpiece LW.

また、これら回転チャック14a、14bは、図示しない回転制御モータの作用下に、回転数を適宜設定して回転動作させることが可能である。なお、回転数は、前記回転制御モータによる回転付勢力を設定することによって制御される。   Further, the rotary chucks 14a and 14b can be rotated by appropriately setting the number of rotations under the action of a rotation control motor (not shown). The rotation speed is controlled by setting a rotation biasing force by the rotation control motor.

高周波加熱コイル16は、長尺ワークLWの略端部に位置するとともに該長尺ワークLWの上半周部に沿って湾曲したアーチ部26a、26bと、これらアーチ部26a、26bの両端部同士を橋架するように設けられた直線部28a、28bを有する。また、アーチ部26a、26bには、一端が図示しない昇降機構に支持されたアーム部30a、30bがそれぞれ設けられており、これらアーム部30a、30bが前記昇降機構の作用下に昇降されることにより、高周波加熱コイル16が長尺ワークLWの上半周部を囲繞する位置まで接近する一方、該上半周部から離間するように回動する。   The high-frequency heating coil 16 is positioned at substantially the end of the long work LW and curved along the upper half circumference of the long work LW, and both ends of the arch parts 26a and 26b are connected to each other. It has the straight part 28a, 28b provided so that it might bridge. The arch portions 26a and 26b are provided with arm portions 30a and 30b, one end of which is supported by a lifting mechanism (not shown), and the arm portions 30a and 30b are lifted and lowered under the action of the lifting mechanism. Thus, the high-frequency heating coil 16 approaches the position surrounding the upper half circumference of the long workpiece LW, while rotating so as to be separated from the upper half circumference.

ここで、長尺ワークLWは、底面の直径寸法や、幅寸法及び奥行き寸法に比して高さ方向(軸線方向)の寸法が等しいかそれ以上であれば特に限定されるものではなく、好適な例としては、ドライブシャフトが挙げられる。   Here, the long workpiece LW is not particularly limited as long as the dimension in the height direction (axial direction) is equal to or larger than the diameter dimension of the bottom surface, the width dimension, and the depth dimension. An example is a drive shaft.

本実施の形態に係る高周波焼入れ方法は、次のようにして実施される。   The induction hardening method according to the present embodiment is performed as follows.

先ず、回転チャック14a、14bを閉じることにより、ドライブシャフト等の長尺ワークLWを両底面側からクランプする。その後、前記昇降機構を付勢して高周波加熱コイル16のアーム部30a、30bを降下させ、最終的に、図2に示すように、高周波加熱コイル16で長尺ワークLWの上半周部を囲繞する。   First, a long work LW such as a drive shaft is clamped from both bottom surfaces by closing the rotary chucks 14a and 14b. Thereafter, the lifting mechanism is energized to lower the arm portions 30a and 30b of the high-frequency heating coil 16, and finally the high-frequency heating coil 16 surrounds the upper half of the long work LW as shown in FIG. To do.

そして、前記回転制御モータの作用下に回転チャック14a、14bを回転動作させ、これにより長尺ワークLWを回転動作させる。回転数は、例えば、100〜200rpmとすればよい。   Then, the rotary chucks 14a and 14b are rotated under the action of the rotation control motor, thereby rotating the long workpiece LW. The rotational speed may be, for example, 100 to 200 rpm.

この状態で、高周波加熱コイル16に通電して加熱工程を開始し、電磁誘導加熱によって長尺ワークLWを900〜950℃程度まで昇温する。すなわち、高周波焼入れ処理の加熱工程を開始する。この電磁誘導加熱に伴い、Fe基合金である長尺ワークLWの金属組織にオーステナイト変態が生じる。   In this state, the high frequency heating coil 16 is energized to start the heating process, and the long work LW is heated to about 900 to 950 ° C. by electromagnetic induction heating. That is, the heating process of the induction hardening process is started. With this electromagnetic induction heating, austenite transformation occurs in the metal structure of the long workpiece LW, which is an Fe-based alloy.

所定時間が経過した後、高周波加熱コイル16への通電を停止し、加熱ジャケットを回動して長尺ワークLWから離間させる一方、回転チャック14a、14bの回転数を上昇する。回転チャック14a、14bの最終的な回転数は、例えば、240〜300rpmに設定すればよい。   After a predetermined time has elapsed, energization of the high-frequency heating coil 16 is stopped, and the heating jacket is rotated to be separated from the long work LW, while the rotation speed of the rotary chucks 14a and 14b is increased. What is necessary is just to set the final rotation speed of rotary chuck | zipper 14a, 14b to 240-300 rpm, for example.

また、加熱ジャケットを長尺ワークLWから離間させた直後、該長尺ワークLWを移動冷却ジャケットで囲繞する。   Further, immediately after the heating jacket is separated from the long work LW, the long work LW is surrounded by the moving cooling jacket.

この移動冷却ジャケットは半円筒体形状であり、長尺ワークLWの上半周部の一部を長手方向に沿って囲繞するとともに、該長尺ワークLWの長手方向に沿って変位する。さらに、その内周壁には、長尺ワークLWに対して冷却液を噴出する噴射器が設置されている。   The moving cooling jacket has a semi-cylindrical shape and surrounds a part of the upper half circumference of the long workpiece LW along the longitudinal direction and is displaced along the longitudinal direction of the long workpiece LW. Further, an injector for ejecting a coolant to the long workpiece LW is installed on the inner peripheral wall.

すなわち、長尺ワークLWは、移動冷却ジャケットの内周壁から噴出される冷却液によって冷却され、これに伴い第1冷却工程が開始される。移動冷却ジャケットが長尺ワークLWの長手方向に沿って変位することによって、長尺ワークLW全体が冷却される。   That is, the long workpiece LW is cooled by the coolant sprayed from the inner peripheral wall of the moving cooling jacket, and the first cooling process is started accordingly. When the moving cooling jacket is displaced along the longitudinal direction of the long work LW, the entire long work LW is cooled.

この冷却過程で、長尺ワークLW(Fe基合金)の金属組織からフェライトやパーライトが析出する。このパーライト析出が終了するパーライト析出終了温度(Pf温度)に冷却されるまでの間、フェライト及びパーライトの析出に伴って長尺ワークLWの金属組織が変化を起こすことに伴い、該長尺ワークLWの一部が膨出して歪が発生することがある。この場合、歪が生じた部位が第1矯正ローラ24a〜第4矯正ローラ24dのいずれかに0.83〜5回/分の割合で接触し、これにより長尺ワークLWの歪矯正がなされる。勿論、この間、移動冷却ジャケットからの冷却液の噴出が継続される。   In this cooling process, ferrite and pearlite are precipitated from the metal structure of the long workpiece LW (Fe-based alloy). Until the pearlite deposition is cooled to the pearlite deposition finish temperature (Pf temperature), the long work LW is caused by the change in the metal structure of the long work LW accompanying the precipitation of ferrite and pearlite. A part of the bulge may bulge and cause distortion. In this case, the part where the distortion has occurred contacts any one of the first correction roller 24a to the fourth correction roller 24d at a rate of 0.83 to 5 times / minute, and thereby the distortion of the long workpiece LW is corrected. . Of course, during this time, ejection of the coolant from the moving cooling jacket is continued.

オーステナイト生成温度からPf温度に至るまでの温度域では、長尺ワークLWは、歪が容易に除去される組織を形成している。このため、第1冷却工程において、長尺ワークLWの回転数を最大としながら第1矯正ローラ24a〜第4矯正ローラ24dに接触させることにより、長尺ワークLWの歪を効率的に除去することができる。   In the temperature range from the austenite generation temperature to the Pf temperature, the long workpiece LW forms a structure in which strain is easily removed. For this reason, in the first cooling step, the distortion of the long workpiece LW is efficiently removed by bringing the long workpiece LW into contact with the first correction roller 24a to the fourth correction roller 24d while maximizing the rotation speed of the long workpiece LW. Can do.

すなわち、本実施の形態においては、高周波加熱時の回転数を超える回転数で長尺ワークLWを回転させ、この状態で冷却を行うことで、第1矯正ローラ24a〜第4矯正ローラ24dへの長尺ワークLWの接触頻度を高くするようにしている。これにより、長尺ワークLWに対する歪矯正効果が向上する。   That is, in the present embodiment, the long workpiece LW is rotated at a rotational speed exceeding the rotational speed at the time of high-frequency heating, and cooling is performed in this state, whereby the first straightening roller 24a to the fourth straightening roller 24d. The contact frequency of the long workpiece LW is increased. Thereby, the distortion correction effect with respect to the long workpiece | work LW improves.

しかも、この場合、長尺ワークLWの金属組織が全体にわたって略均一となるので、諸特性の均等化を図ることもできる。   In addition, in this case, the metal structure of the long workpiece LW is substantially uniform throughout the entire structure, so that various characteristics can be equalized.

回転チャック14a、14bの回転数の維持、ひいては第1冷却工程は、長尺ワークLWの温度が、該長尺ワークLWに大きな歪が発生することがほとんどない所定の温度域、具体的には、Pf温度以下となるまで続行される。しかしながら、マルテンサイト析出開始温度(Ms温度)以下となるまで第1冷却工程を行うと、マルテンサイトが析出するため、いわゆる焼割れが起こる懸念がある。これを回避するべく、第1冷却工程の最終温度は、Ms温度よりも高温とする。   In the maintenance of the number of rotations of the rotating chucks 14a and 14b, and in the first cooling step, the temperature of the long workpiece LW is a predetermined temperature range in which large distortion is hardly generated in the long workpiece LW, specifically, The process is continued until the temperature becomes lower than the Pf temperature. However, when the first cooling step is performed until the temperature reaches the martensite deposition start temperature (Ms temperature) or lower, martensite is precipitated, and so-called burning cracks may occur. In order to avoid this, the final temperature of the first cooling step is higher than the Ms temperature.

要するに、第1冷却工程が終了する際の長尺ワークLWの温度域は、Pf温度以下からMs温度超までである。なお、最終温度をMs温度の直上とすることが好ましい。この場合、長尺ワークLWの寸法精度が向上するからである。   In short, the temperature range of the long workpiece LW when the first cooling step is completed is from the Pf temperature or lower to the Ms temperature higher. It is preferable that the final temperature is just above the Ms temperature. This is because the dimensional accuracy of the long workpiece LW is improved in this case.

ここで、Pf温度やMs温度は、第1冷却工程を行う前に予め、連続変態曲線(CCT曲線)によって求めておく。長尺ワークLWの材質が、例えば、S40CMであれば、図4に示すCCT曲線を参照すればよい。なお、図4中のFs、Psは、それぞれ、フェライトの析出が開始するフェライト析出開始温度、パーライトの析出が開始するパーライト析出開始温度を表す。   Here, the Pf temperature and the Ms temperature are obtained in advance by a continuous transformation curve (CCT curve) before performing the first cooling step. If the material of the long workpiece LW is, for example, S40CM, the CCT curve shown in FIG. 4 may be referred to. Note that Fs and Ps in FIG. 4 represent a ferrite precipitation start temperature at which ferrite precipitation starts and a pearlite precipitation start temperature at which pearlite precipitation starts, respectively.

第1冷却工程での冷却時間が過度に短いと、長尺ワークLWが熱を帯びたままであるので、該長尺ワークLWがいわゆる熱戻し状態となり、硬度が低下する。一方、過度に長いと、処理効率の低下を招く。このため、第1冷却工程での冷却時間は、長尺ワークLWの硬度が低下せず、且つ処理効率が低下しない範囲内に設定される。   If the cooling time in the first cooling step is excessively short, the long workpiece LW remains heated, so that the long workpiece LW enters a so-called heat return state, and the hardness decreases. On the other hand, if it is excessively long, the processing efficiency is lowered. For this reason, the cooling time in the first cooling step is set within a range in which the hardness of the long workpiece LW does not decrease and the processing efficiency does not decrease.

冷却時間は、長尺ワークLWの直径や質量、硬度に応じて適宜設定する。換言すれば、冷却時間は一義的に決定されるものではないが、例えば、長尺ワークLWがS40CMからなる直径約20cmの円柱体形状である場合、10〜20秒に設定すればよい。   The cooling time is appropriately set according to the diameter, mass, and hardness of the long workpiece LW. In other words, the cooling time is not uniquely determined, but may be set to 10 to 20 seconds, for example, when the long work LW is a cylindrical body having a diameter of about 20 cm made of S40CM.

第1冷却工程を終了した後、回転チャック14a、14b、ひいては長尺ワークLWの回転数を下降させながら、移動冷却ジャケットからの冷却液の噴出を継続して長尺ワークLWの冷却を続行する(第2冷却工程)。なお、冷却液の噴出を停止してもよいし、第1冷却工程よりも冷却液を低温にして噴出するようにしてもよい。   After finishing the first cooling step, cooling of the long workpiece LW is continued by continuing to eject the coolant from the moving cooling jacket while lowering the rotational speed of the rotary chucks 14a, 14b and the long workpiece LW. (Second cooling step). Note that the ejection of the cooling liquid may be stopped, or the cooling liquid may be ejected at a lower temperature than in the first cooling step.

第2冷却工程での回転数は、例えば、加熱工程時の回転数と同等とすることができる。すなわち、例えば、100rpmで加熱工程を行った場合には100rpmに設定すればよいし、150rpmで加熱工程を行った場合には150rpmに設定すればよい。好ましくは、加熱工程時及び第2冷却工程での回転数を180rpmとする。これにより、マルテンサイト変態に伴って長尺ワークLWが変形することを抑制することもできる。   The number of rotations in the second cooling process can be made equal to the number of rotations in the heating process, for example. That is, for example, when the heating process is performed at 100 rpm, it may be set to 100 rpm, and when the heating process is performed at 150 rpm, it may be set to 150 rpm. Preferably, the number of rotations in the heating process and in the second cooling process is 180 rpm. Thereby, it can also suppress that the elongate workpiece | work LW deform | transforms with a martensitic transformation.

所定の時間が経過して冷却が終了することにより、高周波焼入れ処理の全工程が終了する。以上における時間経過と上記各工程での回転数との関係を図5に示す。なお、図5では、加熱工程時及び第2冷却工程での回転数を180rpmとし、第1冷却工程での回転数を250rpmとした例を示している。   When the predetermined time elapses and the cooling is finished, all the steps of the induction hardening process are finished. FIG. 5 shows the relationship between the passage of time and the number of rotations in each of the above steps. FIG. 5 shows an example in which the number of rotations in the heating process and the second cooling process is 180 rpm, and the number of rotations in the first cooling process is 250 rpm.

このようにして得られた長尺ワークLWは歪がほとんどなく、従って、歪を除去するための冷間歪除去加工を行う必要がない。必然的に、冷間歪除去加工によって長尺ワークLWに割れが発生しているか否かを確認するための磁気探傷検査を行う必要もない。このため、長尺ワークLWの処理効率が向上し、結局、長尺ワークLWの生産効率が向上する。   The long workpiece LW obtained in this way has almost no distortion, and therefore it is not necessary to perform cold distortion removal processing for removing the distortion. Inevitably, it is not necessary to perform a magnetic flaw inspection for confirming whether or not the long workpiece LW is cracked by the cold strain removing process. For this reason, the processing efficiency of the long work LW is improved, and eventually the production efficiency of the long work LW is improved.

なお、上記した実施の形態においては、S40CM材のCCT曲線を参照するようにしているが、長尺ワークLWの材質に対応したCCT曲線を参照すれば、S40CM以外の材質においても、Pf温度及びMs温度等を決定することができる。すなわち、長尺ワークLWの材質はFe基合金であればよく、特に限定されるものではない。   In the above-described embodiment, the CCT curve of the S40CM material is referred to. However, if the CCT curve corresponding to the material of the long workpiece LW is referred to, the Pf temperature and the material other than S40CM are also referred to. Ms temperature etc. can be determined. That is, the material of the long workpiece LW is not particularly limited as long as it is an Fe-based alloy.

また、長尺ワークLWは、底面が球形の円柱体形状のものに限定されるものではなく、底面が多角形の多角形柱体であってもよい。また、両底面が同形状である必要も特にない。   Further, the long workpiece LW is not limited to a cylindrical body having a spherical bottom surface, and may be a polygonal column having a polygonal bottom surface. Further, there is no need for both bottom surfaces to have the same shape.

本実施の形態に係る高周波焼入れ方法を実施するための焼入れ処理装置の側面図である。It is a side view of the hardening processing apparatus for enforcing the induction hardening method which concerns on this Embodiment. 図1のII−II線矢視断面図である。It is the II-II sectional view taken on the line of FIG. 図1の焼入れ処理装置の上方矢視要部平面図である。It is an upper arrow important part top view of the hardening processing apparatus of FIG. S40CM材のCCT曲線である。It is a CCT curve of S40CM material. 高周波焼入れ方法の各工程における回転数を示すグラフである。It is a graph which shows the rotation speed in each process of an induction hardening method.

符号の説明Explanation of symbols

10…焼入れ処理装置 12…矯正機構
14a、14b…回転チャック 16…高周波加熱コイル
22a、22b…回転軸 24a〜24d…矯正ローラ
LW…長尺ワーク
DESCRIPTION OF SYMBOLS 10 ... Quenching processing apparatus 12 ... Straightening mechanism 14a, 14b ... Rotary chuck 16 ... High frequency heating coil 22a, 22b ... Rotary shaft 24a-24d ... Straightening roller LW ... Long work

Claims (2)

Fe基合金からなる長尺ワークを回転させながら高周波誘導加熱を行い、前記長尺ワークに歪が生じた際に矯正ローラを接触させて歪矯正を行いながら焼入れを行う高周波焼入れ方法において、
前記長尺ワークを第1の回転数で回転させながらオーステナイトが生成する第1温度域まで前記高周波誘導加熱を行う加熱工程と、
前記長尺ワークを前記第1の回転数に比して回転数が大きな第2の回転数で回転させながら、パーライト析出終了温度以下マルテンサイト析出開始温度超の第2温度域まで冷却する第1冷却工程と、
長尺ワークの温度が前記第2温度域に到達した後、前記長尺ワークを前記第2の回転数に比して回転数が小さな第3の回転数で回転させながら冷却を続行する第2冷却工程と、
を有することを特徴とする高周波焼入れ方法。
In the induction hardening method in which high-frequency induction heating is performed while rotating a long workpiece made of an Fe-based alloy, and when the distortion occurs in the long workpiece, the correction roller is brought into contact with the correction roller to perform hardening while performing distortion correction.
A heating step of performing the high-frequency induction heating to a first temperature range where austenite is generated while rotating the long workpiece at a first rotational speed;
The first workpiece is cooled to a second temperature range not higher than the pearlite precipitation end temperature but higher than the martensite precipitation start temperature while rotating the long workpiece at a second rotation speed that is higher than the first rotation speed. A cooling process;
After the temperature of the long workpiece has reached the second temperature range, the cooling is continued while the long workpiece is rotated at a third rotational speed that is smaller than the second rotational speed. A cooling process;
Induction hardening method characterized by having.
請求項1記載の焼入れ方法において、前記第1の回転数と前記第3の回転数とを等しくすることを特徴とする高周波焼入れ方法。

2. The induction hardening method according to claim 1, wherein the first rotational speed and the third rotational speed are made equal.

JP2006024942A 2006-02-01 2006-02-01 Induction hardening method Expired - Fee Related JP5060054B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006024942A JP5060054B2 (en) 2006-02-01 2006-02-01 Induction hardening method
CN2007800040651A CN101379203B (en) 2006-02-01 2007-01-30 Method of induction hardening
MYPI20082864A MY157932A (en) 2006-02-01 2007-01-30 Method of induction hardening
US12/223,126 US20090020194A1 (en) 2006-02-01 2007-01-30 Method of Induction Hardening
PCT/JP2007/051425 WO2007088825A1 (en) 2006-02-01 2007-01-30 Method of induction hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024942A JP5060054B2 (en) 2006-02-01 2006-02-01 Induction hardening method

Publications (2)

Publication Number Publication Date
JP2007204814A true JP2007204814A (en) 2007-08-16
JP5060054B2 JP5060054B2 (en) 2012-10-31

Family

ID=38327398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024942A Expired - Fee Related JP5060054B2 (en) 2006-02-01 2006-02-01 Induction hardening method

Country Status (5)

Country Link
US (1) US20090020194A1 (en)
JP (1) JP5060054B2 (en)
CN (1) CN101379203B (en)
MY (1) MY157932A (en)
WO (1) WO2007088825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194787A (en) * 2012-03-16 2013-09-30 Honda Motor Co Ltd Method of manufacturing drive shaft

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012830B4 (en) 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and body component
CN105930605A (en) * 2016-04-29 2016-09-07 河海大学常州校区 Quench hardening layer depth measurement method for induction quenching treatment shaft part
JP7336129B2 (en) * 2019-05-16 2023-08-31 富士電子工業株式会社 Induction hardening device and long workpiece support device
JP7354591B2 (en) 2019-05-29 2023-10-03 マツダ株式会社 Induction hardening method and induction hardening equipment
CN112871882B (en) * 2021-01-12 2022-11-22 绵阳市川星锅厂 Method and device for removing graphite powder stains on surface of pot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141523A (en) * 1990-10-02 1992-05-15 Fuji Denshi Kogyo Kk Induction hardening method
JPH08225851A (en) * 1994-12-20 1996-09-03 Nippon Seiko Kk Quenching distortion straightening of annular body
JPH10273729A (en) * 1997-03-28 1998-10-13 Sumitomo Metal Ind Ltd Method for cooling material to be quenched
JP2000063937A (en) * 1998-08-18 2000-02-29 Honda Motor Co Ltd Heat treatment of cast product with die
JP2004332089A (en) * 2003-05-12 2004-11-25 Hitachi Metals Ltd Method for hardening bar steel with little bending

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944446A (en) * 1975-05-22 1976-03-16 Park-Ohio Industries, Inc. Method of inductively heating and quench hardening camshafts
JPH0538037Y2 (en) * 1989-12-07 1993-09-27
NO320153B1 (en) * 1997-02-25 2005-10-31 Sumitomo Metal Ind Stable with high toughness and high tensile strength, as well as manufacturing methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141523A (en) * 1990-10-02 1992-05-15 Fuji Denshi Kogyo Kk Induction hardening method
JPH08225851A (en) * 1994-12-20 1996-09-03 Nippon Seiko Kk Quenching distortion straightening of annular body
JPH10273729A (en) * 1997-03-28 1998-10-13 Sumitomo Metal Ind Ltd Method for cooling material to be quenched
JP2000063937A (en) * 1998-08-18 2000-02-29 Honda Motor Co Ltd Heat treatment of cast product with die
JP2004332089A (en) * 2003-05-12 2004-11-25 Hitachi Metals Ltd Method for hardening bar steel with little bending

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194787A (en) * 2012-03-16 2013-09-30 Honda Motor Co Ltd Method of manufacturing drive shaft

Also Published As

Publication number Publication date
CN101379203B (en) 2011-06-22
WO2007088825A1 (en) 2007-08-09
US20090020194A1 (en) 2009-01-22
CN101379203A (en) 2009-03-04
JP5060054B2 (en) 2012-10-31
MY157932A (en) 2016-08-15

Similar Documents

Publication Publication Date Title
JP5060054B2 (en) Induction hardening method
WO2013099821A1 (en) Spring production method and spring
JP6842664B2 (en) Cooling method of main roll for ring rolling and manufacturing method of ring rolled body
KR20160132837A (en) Heat-treatment device and heat-treatment method
JP5771399B2 (en) Hardening method for crankshaft and crankshaft thereof
US5766378A (en) Stainless steel surface claddings of continuous caster rolls
JP5026175B2 (en) Workpiece manufacturing method
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP5433932B2 (en) Annular deformation correction method
JP2002047515A (en) Induction heating coil for shaft member having various- shaped parts to be heat-treated and heat treatment method
JP4752789B2 (en) Induction hardening apparatus and induction hardening method
JPS63274713A (en) Heat treatment method for bar-like parts
JP5274762B2 (en) Heat treatment method
JP2009203525A (en) Production line for rolling bearing
JP5089109B2 (en) Induction tempering method of crankshaft and induction induction apparatus used in this method
JP5489325B2 (en) High frequency induction heating method and high frequency induction heating apparatus
JP6630577B2 (en) Quenching method
US20050039829A1 (en) Induction heat treatment method and article treated thereby
JPS62240149A (en) Casting slab guide roll for continuous caster
KR101834371B1 (en) High frequency-heating treatment apparatus
JP5101217B2 (en) Tubular member manufacturing method and tubular member
JP3535061B2 (en) Method and apparatus for controlling quenching distortion of uneven thickness work
JPH05320741A (en) Induction heat treatment of cylindrical parts
JP2008106307A (en) Induction hardening method for metallic ring
JP2008073702A (en) Manufacturing method of drive plate and sensor ring for automatic vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees