JPS6336474B2 - - Google Patents

Info

Publication number
JPS6336474B2
JPS6336474B2 JP56008385A JP838581A JPS6336474B2 JP S6336474 B2 JPS6336474 B2 JP S6336474B2 JP 56008385 A JP56008385 A JP 56008385A JP 838581 A JP838581 A JP 838581A JP S6336474 B2 JPS6336474 B2 JP S6336474B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
peak
pulse
reference level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008385A
Other languages
Japanese (ja)
Other versions
JPS57122372A (en
Inventor
Yukio Yoshida
Hitoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP56008385A priority Critical patent/JPS57122372A/en
Publication of JPS57122372A publication Critical patent/JPS57122372A/en
Publication of JPS6336474B2 publication Critical patent/JPS6336474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals

Description

【発明の詳細な説明】 本発明は超音波流量計、超音波レベル計などの
超音波パルスの送受信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic pulse transmission/reception system for ultrasonic flowmeters, ultrasonic level meters, and the like.

一般に、超音波送信器はタイムベースからの信
号によつて定められた時間間隔ごとに第1図aま
たはbに示される波形で送波器を励振し、この送
波器より超音波パルスを発射し、この超音波パル
スの伝播媒体を介して受信器に受信される超音波
受信信号は第2図実線で示される波形で得られ
る。この場合の超音波伝播時間を安定して計測す
るために第2図のような波形の受信波において、
なるべく安定してトリガできる波、つまり前後の
振動波に対して振幅差のある振動波をトリガ波
(一般に受信波のうちの振動波が所定のレベルを
越えたとき受信波の到来時と判断する計測方法に
おいてその振動波をトリガ波という)として使用
することが最良である。
Generally, an ultrasonic transmitter excites the transmitter with a waveform shown in Figure 1 a or b at every time interval determined by a signal from a time base, and emits ultrasonic pulses from this transmitter. However, the ultrasonic reception signal received by the receiver via the propagation medium of the ultrasonic pulse has a waveform shown by the solid line in FIG. 2. In order to stably measure the ultrasonic propagation time in this case, for the received wave with the waveform shown in Figure 2,
A wave that can be triggered as stably as possible, that is, a vibration wave with an amplitude difference between the previous and succeeding vibration waves, is used as a trigger wave (generally, when the vibration wave of the received wave exceeds a predetermined level, it is determined that the received wave has arrived) It is best to use the vibration wave as a trigger wave in the measurement method.

そこで第2図においてV′rなる基準レベルを設
け、たとえば振動波a2をトリガ波として使用し
た。この方法によりトリガ波を検出する場合、受
信波が第2図一点鎖線または破線の如く変化した
場合にはただちにトリガ波は前者の場合は振動波
a1となり、後者の場合は振動波a3と変つてしまい
計測上問題となる。こうした受信波の変動は伝播
媒体中に気泡や異物などが含まれていた場合には
頻繁に発生する。このような場合に従来では受信
波の変動をAGCで制御させるため2つの方法が
あつた。1つは受信波のうち特定のトリガ波に着
目してその波の振幅を一定レベルにするように
AGCをかける方法である(以下この場合の波を
AGC着目波という)。この方法では第2図の実線
に示すような受信波がAGCの追従より早く一点
鎖線や破線のように変化した場合にはトリガ波は
もとよりAGC着目波も変化してしまい、実線で
示すもとの波にトリガ波およびAGC波が復帰し
なくなつてしまう。また他の方法として受信波の
ピークに着目してAGCをかける方法がある。し
かし、この場合には一般にトリガ波とAGC着目
波とは一致していないので時間的なズレがあるた
め予定した程、効果的にトリガ波にAGCがかか
らないことが多い。これは伝播媒体中に気泡、異
物が混入している場合、第2図の実線のような受
信波が破線または一点鎖線の波のように受信波の
包絡線が変動するからである。そこでトリガ波が
不安定とならざるを得ない。さらにこの点を改良
する目的で受信波に、第2図中実線とか一点鎖線
または破線で表現されているような変化がある場
合には基準レベルV′rをVrにしてしまうことによ
り振動波a3をトリガ波として使う方法も考案され
ているが根本的に前述の問題点を解決したとは云
えない。また、前述の2つのAGCによるトリガ
波の安定化方法の欠点を補うために受信波のピー
クにAGCをかけそのピーク波をトリガ波にしよ
うとした場合、第2図からわかるようにどの振動
波がピークの波であるのか判然としない場合が多
く、この方法の実現は困難であつた。したがつ
て、上記の如く問題を含んだ超音波送受信器を現
場で調整や設定を行うためには熟練した技術者が
必要であり、だれにでも簡単に設定出来るもので
はなかつた。
Therefore, in FIG. 2, a reference level V'r is provided and, for example, the vibration wave a2 is used as a trigger wave. When detecting a trigger wave using this method, if the received wave changes as shown by the dashed line or dashed line in Figure 2, the trigger wave is immediately changed to a vibration wave in the former case.
In the latter case, the vibration wave changes to a 3 , which poses a measurement problem. Such fluctuations in received waves frequently occur when the propagation medium contains bubbles, foreign matter, etc. In such cases, there have conventionally been two methods for controlling fluctuations in the received waves using AGC. One is to focus on a specific trigger wave among the received waves and keep the amplitude of that wave at a constant level.
This is a method of applying AGC (hereinafter, the wave in this case is
(referred to as AGC focus wave). In this method, if the received wave as shown by the solid line in Figure 2 changes faster than the AGC tracking as shown by the dashed-dotted line or broken line, not only the trigger wave but also the AGC target wave will change, and the source shown by the solid line will change. The trigger wave and AGC wave no longer return to the current wave. Another method is to focus on the peak of the received wave and apply AGC. However, in this case, the trigger wave and the AGC target wave generally do not match, and there is a time lag, so AGC is often not applied to the trigger wave as effectively as planned. This is because if bubbles or foreign matter are mixed into the propagation medium, the envelope of the received wave changes as shown by the solid line in FIG. 2 or the wave shown by the broken line or the dashed line. Therefore, the trigger wave inevitably becomes unstable. Furthermore, in order to improve this point, if there is a change in the received wave as shown by the solid line, dashed line, or broken line in Figure 2, the reference level V'r is set to Vr, so that the oscillating wave a 3 as a trigger wave has been devised, but it cannot be said that the above-mentioned problems have been fundamentally solved. In addition, if you try to apply AGC to the peak of the received wave and use that peak wave as the trigger wave in order to compensate for the drawbacks of the two methods of stabilizing the trigger wave using AGC, as shown in Figure 2, which vibration wave In many cases, it is not clear whether a wave is a peak wave or not, making it difficult to implement this method. Therefore, a skilled engineer is required to adjust and set up the ultrasonic transmitter/receiver with the problems described above on-site, and it is not something that anyone can easily set up.

本発明は上述のような問題点を解決するために
なされたもので、第2図のような従来の超音波受
信波に比してその振動波数が極めて少くかつ受信
波の包絡線の立上りが急峻となつた第3図に示す
ような受信波形が常に得られるような超音波送受
信方法および装置を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and as shown in Fig. 2, the vibration wave number is extremely small compared to the conventional ultrasonic reception wave, and the envelope of the reception wave has a small rise. It is an object of the present invention to provide an ultrasonic transmitting/receiving method and apparatus that can always obtain a steep received waveform as shown in FIG.

そこで、第3図のような受信波を得るために、
受信されている波形を監視する機能と第2図の破
線または一点鎖線のように変動した波形を修正さ
せる機能とによつて第3図のような受信波を受信
信号として得られるようになされている。このよ
うにして得られた第3図のような受信波によつて
後述するようにAGC着目波とトリガ波を同じピ
ークの波にすることが可能となり、伝播経路中に
気泡や異物および妨害物などが含まれているよう
な場合でも超音波伝播時間を正確かつ安定に計測
することができ、さらに誰にでも簡単に正確な調
整が可能となる。
Therefore, in order to obtain the received wave as shown in Figure 3,
The received wave as shown in Fig. 3 can be obtained as a received signal by the function of monitoring the waveform being received and the function of correcting the waveform that fluctuates as shown by the broken line or the dashed-dotted line in Fig. 2. There is. The received wave obtained in this way as shown in Fig. 3 makes it possible to make the AGC target wave and the trigger wave the same peak wave as described later, and eliminates air bubbles, foreign objects, and obstructions in the propagation path. Ultrasonic propagation time can be measured accurately and stably even in cases where ultrasonic waves are included, and furthermore, anyone can easily and accurately adjust the ultrasonic propagation time.

つぎに本発明を図示の一実施例について説明す
る。第4図は本発明の回路構成を示すブロツク図
である。本発明は送信器1と受信器2より構成さ
れ、送信器1の送信信号が送波器に供給される。
つぎに受波器によつて受信された信号は受信器2
に供給され、この受信された波形を監視して、第
3図のような受信波が受けられるように波形を修
正する。
Next, the present invention will be described with reference to an illustrated embodiment. FIG. 4 is a block diagram showing the circuit configuration of the present invention. The present invention is composed of a transmitter 1 and a receiver 2, and a transmission signal from the transmitter 1 is supplied to the wave transmitter.
The signal received by the receiver is then transmitted to the receiver 2.
The received waveform is monitored, and the waveform is modified so that the received wave as shown in FIG. 3 can be received.

第5図は第4図の各構成の動作説明図であり、
これ等の図を用いて以下に本発明の構成ならびに
動作を説明する。送信器1よりの送信信号が送波
器に供給され超音波パルスが発射される。この場
合の送信信号は、第1図aもしくはbの如きパル
ス信号か、または次に説明するようにして得られ
る第5図の如きn個のパルス列よりなる信号が
用いられる。いま、送信器1における送信周波数
調整回路3は、その内部に含まれている発振器よ
り発振されている送波器の固有振動数とほぼ一致
した送信周波数で第5図のような出力信号を送
信波形成回路4に供給し、送信指令に基きこの送
信波形成回路によつて、第5図のようなN個の
パルス列よりなる信号に変換され(この信号波形
は正弦波でも、またそれに類似する波形より構成
されてもよい)、送信増幅器5により増幅されて
送波器に供給される。
FIG. 5 is an explanatory diagram of the operation of each configuration in FIG. 4,
The configuration and operation of the present invention will be explained below using these figures. A transmission signal from the transmitter 1 is supplied to the transmitter, and an ultrasonic pulse is emitted. In this case, the transmission signal used is a pulse signal as shown in FIG. 1a or b, or a signal consisting of n pulse trains as shown in FIG. 5 obtained as described below. Now, the transmission frequency adjustment circuit 3 in the transmitter 1 transmits an output signal as shown in FIG. 5 at a transmission frequency that almost matches the natural frequency of the transmitter oscillated by the oscillator included therein. The signal is supplied to the waveforming circuit 4, and based on the transmission command, is converted by the transmission waveforming circuit into a signal consisting of a train of N pulses as shown in Fig. 5. waveform), is amplified by the transmission amplifier 5 and supplied to the transmitter.

次に受波器によつて受信された信号は受信器2
の増幅器6−1、受信極性切替回路13および増
幅器6−2により増幅され第5図のような受信
信号を得る。この受信信号は3種類のレベルコ
ンパレータに同時に加えられる。基準レベルのい
ちばん高いピークレベルコンパレータ7の出力と
して第5図のようなピークパルスがAGC回路
8およびピーク位置記憶回路9を通つて立上り比
検出回路10へ送られる。このうち、AGC回路
8へ送られたピークパルスによつてAGC回路
8は受信器の利得を制御し、受信信号のピーク
が第1の基準レベルVpと一致するように動作し
定常時には受信信号のピークと第1の基準レベ
ルVpとはほぼ一致した状態となる。
The signal received by the receiver is then transmitted to the receiver 2
The signal is amplified by the amplifier 6-1, the reception polarity switching circuit 13, and the amplifier 6-2 to obtain a reception signal as shown in FIG. This received signal is simultaneously applied to three types of level comparators. As the output of the peak level comparator 7 having the highest reference level, a peak pulse as shown in FIG. 5 is sent to the rise ratio detection circuit 10 through the AGC circuit 8 and the peak position storage circuit 9. Among these, the AGC circuit 8 controls the gain of the receiver by the peak pulse sent to the AGC circuit 8, and operates so that the peak of the received signal matches the first reference level Vp. The peak and the first reference level Vp are almost in agreement.

一方、第3の基準レベルVzsを持つゼロセレク
トコンパレータ11の出力は、第2の基準レベル
Vz(ほぼOV)を持つゼロクロスコンパレータ1
2の動作を制御しており、ゼロセレクトコンパレ
ータ11の出力が得られた時のみゼロクロスコン
パレータ12は動作し第5図の実線のようなゼ
ロクロス・パルスを出力する。そこで立上り比検
出回路10ではピーク位置記憶回路9を通過して
得られるパルスと前記ゼロクロスパルスとの到
達時間とを比較することにより受信信号のピー
ク波とその前後の振動波との振幅比を監視してい
る。第5図の実線のような受信信号である場
合、第3の基準レベルVzsを超える波はピーク波
以外にはないのでゼロクロスパルスは実線のと
おりピーク波後の位置に1個だけ出力される。そ
こでこの場合には必ず、ピークパルスの方が早
く立上り比検出回路10に到達する。このような
状態におけるゼロクロス・パルスの立上り時をも
つて受信波の到達時と判断することによつて、た
とえ超音波パルスの伝播経路中に気泡や異物など
が含まれているような場合であつても超音波伝播
時間を正確かつ安定に計測することができるので
ある。
On the other hand, the output of the zero select comparator 11 having the third reference level Vzs is at the second reference level.
Zero cross comparator 1 with Vz (approximately OV)
The zero cross comparator 12 operates only when the output of the zero select comparator 11 is obtained, and outputs a zero cross pulse as shown by the solid line in FIG. Therefore, the rise ratio detection circuit 10 monitors the amplitude ratio between the peak wave of the received signal and the vibration waves before and after it by comparing the arrival time of the pulse obtained by passing through the peak position storage circuit 9 and the zero-crossing pulse. are doing. When the received signal is as shown by the solid line in FIG. 5, there is no wave other than the peak wave that exceeds the third reference level Vzs, so only one zero-cross pulse is output at a position after the peak wave as shown by the solid line. Therefore, in this case, the peak pulse always reaches the rise ratio detection circuit 10 earlier. By determining the arrival of the received wave at the rise of the zero-crossing pulse in such a state, even if the propagation path of the ultrasonic pulse contains air bubbles or foreign matter, Therefore, the ultrasonic propagation time can be measured accurately and stably.

また、第4図における受信信号が第5図の
破線で示されるような場合には、第1の基準レベ
ルVpに致達する振動波はピーク波だけであつて
も第3の基準レベルVzsに到達する振動波がピー
ク波以外にその前にも存在する。そこでゼロクロ
スパルスは第5図の破線のように複数個出力
されることになりピークパルスより早く立上り
比検出回路10へ到達することになる。したがつ
てピークパルスとゼロクロスパルスの到達時
間を比較して、このような受信信号においてその
ピーク波と前後の振動波の等価的な立上り比が前
記第1および第3の基準レベル差(Vp−Vzs)
だけあるか否かを調べることができる。
Furthermore, in the case where the received signal in FIG. 4 is as shown by the broken line in FIG. In addition to the peak wave, there are also vibration waves before it. Therefore, a plurality of zero-crossing pulses are outputted as shown by the broken line in FIG. 5, and reach the rising ratio detection circuit 10 earlier than the peak pulse. Therefore, by comparing the arrival times of the peak pulse and the zero-crossing pulse, the equivalent rise ratio of the peak wave and the preceding and succeeding vibration waves in such a received signal is determined by the first and third reference level difference (Vp- Vzs)
You can check whether there are any.

また、第6図において実線で示される受信波が
伝播媒体中の気泡や異物によつて減衰を受けた場
合、その減衰分だけがAGC回路8で補なわれて
得られる受信信号は同図の破線で示されるような
波形となることもある。
Furthermore, if the received wave shown by the solid line in FIG. 6 is attenuated by bubbles or foreign matter in the propagation medium, only that attenuation is compensated by the AGC circuit 8, and the received signal obtained by the AGC circuit 8 is as shown in the figure. The waveform may be as shown by the broken line.

このような受信信号波形についても上述の立上
り比検出回路10でそのピーク波と前後の振動波
の振幅差を調べ、立上り比を等価的に検出し、前
記ピーク波とその前後の振動波の振幅差が前述の
第1および第3の基準レベルの差より小いような
場合には、立上り比検出回路10は受信信号が異
常であることを示す「異常信号」を出力する。こ
の信号は受信極性切替回路13に供給される。こ
の受信極性切替回路13は立上り比検出回路10
からの「異常信号」を受けると受信器の増幅極性
を切り替え、その時点で受信信号が反転され、増
幅器6−2を介して前記各コンパレータに供給さ
れる。これは見かけ上、第6図において第1の基
準レベルVpおよび第3の基準レベルVzsを同図
の破線のように負側に変えたことと等価になる。
このようになると同図の破線で示されているよう
に受信信号のピーク波とその前後の振動波との等
価的な立上り比は(Vp−Vzs)以上となり、そ
の結果、立上り比検出回路10は受信信号は正常
と判定し「異状信号」の出力を停止する。このよ
うにして超音波受信波の到来時を正しく安定して
判断し得るトリガ波を得ることが可能となる。ま
た、受信極性が反転したという信号を得て、トリ
ガ波が変化した分として第6図における時間tだ
け別途用意した処理回路14で補正を行うことが
できる。
Regarding such a received signal waveform, the above-described rise ratio detection circuit 10 checks the amplitude difference between the peak wave and the vibration waves before and after it, equivalently detects the rise ratio, and calculates the amplitude of the peak wave and the vibration waves before and after it. If the difference is smaller than the difference between the first and third reference levels described above, the rise ratio detection circuit 10 outputs an "abnormal signal" indicating that the received signal is abnormal. This signal is supplied to the reception polarity switching circuit 13. This reception polarity switching circuit 13 is connected to the rising ratio detection circuit 10.
When receiving an "abnormal signal" from the receiver, the amplification polarity of the receiver is switched, and at that point the received signal is inverted and supplied to each of the comparators via the amplifier 6-2. This is apparently equivalent to changing the first reference level Vp and the third reference level Vzs to the negative side as indicated by the broken lines in FIG. 6.
In this case, as shown by the broken line in the same figure, the equivalent rise ratio between the peak wave of the received signal and the oscillation waves before and after it becomes more than (Vp - Vzs), and as a result, the rise ratio detection circuit 10 determines that the received signal is normal and stops outputting the "abnormal signal". In this way, it is possible to obtain a trigger wave that allows accurate and stable determination of the arrival time of the ultrasonic reception wave. Further, by obtaining a signal indicating that the reception polarity has been reversed, correction can be performed by a separately prepared processing circuit 14 for the time t in FIG. 6, corresponding to the change in the trigger wave.

さらに受信波の変動がAGC回路8の追従より
早くなつた場合、第7図のように基準レベルVp
を超える振動波がピーク波以外にも発生すること
がある。この場合においても立上り比検出回路1
0で正しい判断ができるように、第4図における
ピーク位置記憶回路9を使用している。その回路
は第5図に示すピークパルスの到来時点を記憶
しておく回路であり、記憶させる手段は電圧に変
換してホールドしておくなど任意にえられる。こ
の回路はある時定数をもつてピークパルスに追従
するようになされているので瞬間的な変動には追
従せず第7図のような受信信号に対してAGC動
作の過渡状態であつても本来のピークを立上り比
検出回路10へ送ることができる。
Furthermore, if the fluctuation of the received wave becomes faster than the tracking of the AGC circuit 8, the reference level Vp
Vibration waves exceeding 1000 yen may occur in addition to the peak waves. Even in this case, the rise ratio detection circuit 1
The peak position storage circuit 9 shown in FIG. 4 is used so that a correct judgment can be made based on 0. This circuit is a circuit for storing the arrival time of the peak pulse shown in FIG. 5, and the means for storing it can be arbitrarily obtained, such as converting it into a voltage and holding it. This circuit is designed to follow the peak pulse with a certain time constant, so it does not follow instantaneous fluctuations, and even in the transient state of AGC operation for the received signal as shown in Figure 7, it does not follow the peak pulse. The peak of can be sent to the rise ratio detection circuit 10.

かくすることにより、前述したように振動波数
が極めて少くかつ受信波の包絡線の立上りが急峻
となつた第3図に示すような受信波が得られ正
確、安定な計測を行うことができる。
By doing so, as described above, a received wave as shown in FIG. 3 is obtained in which the vibration wave number is extremely small and the envelope of the received wave has a steep rise, and accurate and stable measurement can be performed.

一方たとえば第8図の一点鎖線で示すように受
信信号の正側、負側いずれにおいても等価的な立
上り比が(Vp−Vzs)だけ得られない場合もあ
る。この時には先の受信極性切換回路13の受信
極性を切替ても安定なピーク波は望めない。この
ような場合においては、立上り比検出回路10よ
り送信器1の送信周波数調整回路3に前述した
「異常信号」を送り、この信号を受けた送信周波
数調整回路3では送信周波数を少しづつ変化させ
て行く。こうして立上り比検出回路10からの信
号により、送信周波数を変化させることによつて
第8図一点鎖線で示される受信信号を実線のよう
に復元させていくことができ、安定な計測を保た
せることができる。このように、受信極性切替手
段により受信信号波形の修正を行い、さらにこの
修正機能を効果的にするために、送信周波数調整
手段を附加して行えばより効果的な超音波パルス
の送受信方法が得られる。
On the other hand, for example, as shown by the dashed line in FIG. 8, an equivalent rise ratio of (Vp-Vzs) may not be obtained on either the positive side or the negative side of the received signal. At this time, even if the reception polarity of the reception polarity switching circuit 13 is switched, a stable peak wave cannot be expected. In such a case, the rise ratio detection circuit 10 sends the above-mentioned "abnormal signal" to the transmission frequency adjustment circuit 3 of the transmitter 1, and the transmission frequency adjustment circuit 3 that receives this signal changes the transmission frequency little by little. Go. In this way, by changing the transmission frequency using the signal from the rise ratio detection circuit 10, the received signal shown by the dashed line in FIG. 8 can be restored as shown by the solid line, and stable measurement can be maintained. Can be done. In this way, a more effective method of transmitting and receiving ultrasonic pulses can be obtained by modifying the received signal waveform using the receiving polarity switching means and adding a transmitting frequency adjustment means to make this modification function more effective. can get.

なお上述の実施例において立上り比検出に二つ
の基準レベルを用いたが、当然他の方法たとえ
ば、受信信号の包絡線を微分して調べることなど
でも可能となる。
In the above-described embodiment, two reference levels were used to detect the rise ratio, but other methods, such as differentiating the envelope of the received signal, are also possible.

また送信波としてN個のパルス列と1個の逆位
相のパルスからなる送信信号′を使用すること
によつて、受信波の包絡線の立上りが更に急峻と
なりより効果が得られる。
Furthermore, by using a transmission signal ' consisting of N pulse trains and one pulse of opposite phase as the transmission wave, the rise of the envelope of the reception wave becomes even steeper, and more effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送信パルスの波形図、第2図は超音波
パルスによる受信信号の波形図、第3図は本発明
により得られる受信信号の波形図、第4図は本発
明の回路構成を示すブロツク図、第5図〜は
第4図の動作を説明するための波形図、第6図は
伝播媒体中の気泡、異物によつて減衰を受けた受
信波形の図、第7図は受信波の変動がAGC回路
の追従より早くなつた場合を示す図、第8図は受
信波の包絡線の立上り比が小なる場合を示す図で
ある。 3……送信周波数調整回路、4……送信波形成
回路、7……ピークレベルコンパレータ、10…
…立上り比検出回路、11……ゼロクロスセレク
トコンパレータ、12……ゼロクロスコンパレー
タ、13……受信極性切替回路。
Figure 1 is a waveform diagram of a transmitted pulse, Figure 2 is a waveform diagram of a received signal due to an ultrasonic pulse, Figure 3 is a waveform diagram of a received signal obtained by the present invention, and Figure 4 shows the circuit configuration of the present invention. Block diagram, Figures 5 to 4 are waveform diagrams to explain the operation of Figure 4, Figure 6 is a diagram of the received waveform attenuated by bubbles and foreign objects in the propagation medium, and Figure 7 is the received waveform. FIG. 8 is a diagram showing a case where the fluctuation becomes faster than the tracking of the AGC circuit, and FIG. 8 is a diagram showing a case where the rise ratio of the envelope of the received wave is small. 3... Transmission frequency adjustment circuit, 4... Transmission wave forming circuit, 7... Peak level comparator, 10...
... Rise ratio detection circuit, 11 ... Zero cross select comparator, 12 ... Zero cross comparator, 13 ... Reception polarity switching circuit.

Claims (1)

【特許請求の範囲】 1 超音波送信器より超音波パルスを発射し伝播
媒体を介して受信された超音波受信信号の振動波
のうちのピーク波のピークと第1の基準レベルと
一致するように受信増幅度を制御し、該ピーク波
が第3の基準レベルをクロスする時点を超音波受
信波の到来時として当該超音波パルスの送信時か
らの伝播時間を検出する超音波計測方法におい
て、前記ピーク波とその前後の振動波との振幅差
が前記第1の基準レベルと前記第1および第3の
基準レベルの間の第2の基準レベルとのレベル差
以下のとき異状信号を発し、該信号で受信増幅極
性を切換えて前記超音波受信信号の位相を反転さ
せ前記振幅差が前記レベル差以上となる超音波受
信信号を得るようにしたことを特徴とする超音波
送受信方法。 2 超音波パルスがn個のパルス列よりなる特許
請求の範囲の第1項記載の超音波送受信方法。 3 超音波送信器よりn個のパルス列よりなる超
音波パルスを発射し伝播媒体を介して受信された
超音波受信信号の振動波のうちのピーク波のピー
クと第1の基準レベルと一致するように受信増幅
度を制御し、該ピーク波が第3の基準レベルをク
ロスする時点を超音波受信波の到来時として当該
超音波パルスの送信時からの伝播時間を検出する
超音波計測方法において、前記ピーク波とその前
後の振動波との振幅差が前記第1の基準レベルと
前記第1および第3の基準レベルの間の第2の基
準レベルとのレベル差以下のとき異状信号を発し
該信号で受信増幅極性を切換え、かつ前記異状信
号により前記超音波パルスのパルス列の周期を変
化せしめ、前記ピーク波とその前後の振動波との
振幅差が前記レベル差以上となる超音波受信信号
を得るようにしたことを特徴とする超音波送受信
方法。 4 超音波送信器よりn個のパルス列よりなる超
音波パルスを発射し伝播媒体を介して受信された
超音波受信信号の振動波のうちのピーク波のピー
クと第1の基準レベルと一致するように受信増幅
度を制御し、該ピーク波が第3の基準レベルをク
ロスする時点を超音波受信波の到来時として当該
超音波パルスの送信時からの伝播時間を検出する
超音波計測方法において、前記ピーク波とその前
後の振動波との振幅差が前記第1の基準レベルと
前記第1および第3の基準レベルの間の第2の基
準レベルとのレベル差以下のとき異状信号を発し
該異状信号により前記超音波パルスのパルス列の
周期を変化せしめ、前記ピーク波とその前後の振
動波との振幅差が前記レベル差以上となる超音波
受信信号を得るようにしたことを特徴とする超音
波送受信方法。 5 n個のパルス列よりなる超音波パルスを発射
し伝播媒体を介して受信された超音波受信信号の
振動波のうちのピーク波のピークと第1の基準レ
ベルと一致するように受信増幅度を制御し該ピー
ク波が他の基準レベルとクロスする時点を超音波
受信波の到来時として当該超音波パルスの送信時
からの伝播時間を検出する超音波計測装置におい
て、前記受信信号と前記第1の基準レベルと比較
されてピークパルスを出力するピークレベルコン
パレータと、ゼロレベルをクロスしたときにゼロ
クロスパルスを出力するゼロクロスコンパレータ
と、第1の基準レベルより低い基準レベルと比較
して前記ゼロクロスコンパレータの動作を制御す
るゼロクロスセレクトコンパレータと、前記ピー
クパルスと前記ゼロクロスパルスとの到達時間を
比較して前記ピークパルスの到達後に一つのゼロ
クロスパルスが到達したときは正常としそれ以外
のときには異状信号を出力する立上り比検出回路
と、該異状信号により受信増幅器の極性を切換え
る受信極性切換回路とを具備する受信器ならびに
前記異状信号を受けて発振周波数を変化せしめ前
記n個のパルス列の周期を変化させて超音波パル
スを出力する送信器とよりなる超音波送受信装
置。
[Claims] 1. Ultrasonic pulses are emitted from an ultrasonic transmitter and the peak wave of the vibration waves of the ultrasonic reception signal received via the propagation medium is set so that the peak of the wave coincides with the first reference level. In an ultrasonic measurement method, the reception amplification degree is controlled as follows, and the time point at which the peak wave crosses a third reference level is determined as the arrival time of the ultrasonic reception wave, and the propagation time from the time of transmission of the ultrasonic pulse is detected, When the amplitude difference between the peak wave and the vibration waves before and after the peak wave is equal to or less than the level difference between the first reference level and a second reference level between the first and third reference levels, an abnormality signal is generated; An ultrasonic transmitting/receiving method characterized in that the reception amplification polarity is switched using the signal to invert the phase of the ultrasonic reception signal to obtain an ultrasonic reception signal in which the amplitude difference is equal to or greater than the level difference. 2. The ultrasonic transmission/reception method according to claim 1, wherein the ultrasonic pulse consists of n pulse trains. 3 An ultrasonic pulse consisting of n pulse trains is emitted from an ultrasonic transmitter, and the peak of the vibration wave of the ultrasonic reception signal received via the propagation medium is set so that the peak of the wave coincides with the first reference level. In an ultrasonic measurement method, the reception amplification degree is controlled as follows, and the time point at which the peak wave crosses a third reference level is determined as the arrival time of the ultrasonic reception wave, and the propagation time from the time of transmission of the ultrasonic pulse is detected, When the amplitude difference between the peak wave and the vibration waves before and after the peak wave is less than or equal to the level difference between the first reference level and a second reference level between the first and third reference levels, an abnormality signal is generated. The reception amplification polarity is switched by the signal, and the period of the pulse train of the ultrasonic pulse is changed by the abnormal signal, and the ultrasonic reception signal is obtained such that the amplitude difference between the peak wave and the vibration waves before and after the peak wave is equal to or greater than the level difference. An ultrasonic transmitting and receiving method characterized by: 4 An ultrasonic pulse consisting of n pulse trains is emitted from an ultrasonic transmitter, and the peak of the vibration wave of the ultrasonic reception signal received via the propagation medium is set so that the peak of the wave coincides with the first reference level. In an ultrasonic measurement method, the reception amplification degree is controlled as follows, and the time point at which the peak wave crosses a third reference level is determined as the arrival time of the ultrasonic reception wave, and the propagation time from the time of transmission of the ultrasonic pulse is detected, When the amplitude difference between the peak wave and the vibration waves before and after the peak wave is less than or equal to the level difference between the first reference level and a second reference level between the first and third reference levels, an abnormality signal is generated. The ultrasonic wave receiving signal is characterized in that the period of the pulse train of the ultrasonic pulse is changed by the abnormal signal, and an ultrasonic reception signal in which the amplitude difference between the peak wave and the vibration waves before and after the peak wave is equal to or greater than the level difference is obtained. Method of transmitting and receiving sound waves. 5. Emit an ultrasonic pulse consisting of n pulse trains, and adjust the reception amplification so that the peak of the peak wave of the vibration waves of the ultrasonic reception signal received via the propagation medium matches the first reference level. In an ultrasonic measurement device that detects the propagation time from the time of transmission of the ultrasonic pulse by controlling the time point at which the peak wave crosses another reference level as the arrival time of the received ultrasonic wave, the received signal and the first a peak level comparator that outputs a peak pulse when compared with a reference level of the first reference level; a zero cross comparator that outputs a zero cross pulse when the first reference level is crossed; A zero cross select comparator that controls the operation compares the arrival times of the peak pulse and the zero cross pulse, and when one zero cross pulse arrives after the peak pulse arrives, it is considered normal and otherwise outputs an abnormal signal. A receiver comprising a rise ratio detection circuit and a receiving polarity switching circuit for switching the polarity of a receiving amplifier according to the abnormal signal, and a receiver that changes the oscillation frequency in response to the abnormal signal and changes the period of the n pulse trains to exceed An ultrasonic transceiver device consisting of a transmitter that outputs sonic pulses.
JP56008385A 1981-01-22 1981-01-22 Method and apparatus for receiving or transmitting ultrasonic wave Granted JPS57122372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008385A JPS57122372A (en) 1981-01-22 1981-01-22 Method and apparatus for receiving or transmitting ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008385A JPS57122372A (en) 1981-01-22 1981-01-22 Method and apparatus for receiving or transmitting ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS57122372A JPS57122372A (en) 1982-07-30
JPS6336474B2 true JPS6336474B2 (en) 1988-07-20

Family

ID=11691742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008385A Granted JPS57122372A (en) 1981-01-22 1981-01-22 Method and apparatus for receiving or transmitting ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS57122372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867708B2 (en) * 2012-01-10 2016-02-24 横河電機株式会社 Ultrasonic flow meter
EP3244171A4 (en) * 2016-02-05 2018-03-14 Fuji Electric Co., Ltd. Measuring device, measuring method, and program

Also Published As

Publication number Publication date
JPS57122372A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
US4515021A (en) Intervalometer time measurement apparatus and method
US5793704A (en) Method and device for ultrasonic ranging
US4022058A (en) Apparatus for determining the arrival time of alternating signals
US6634240B1 (en) Zero crossing detector and method of determining a zero crossing point
US20030035342A1 (en) Range measuring system
JPS6336474B2 (en)
JPS6070383A (en) Ultrasonic obstacle detecting apparatus
JPH07128438A (en) Method for correcting distance in radar range finder
JPS6058571A (en) Device for measuring variation of signal delay
US4613231A (en) Laser range finder with non-linearity compensation
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JPS6310793B2 (en)
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JPS6048691B2 (en) A circuit device that detects the flow velocity of a flowing medium using an ultrasonic method
JPS5997069A (en) Ultrasonic car height measuring apparatus
KR0152725B1 (en) Distance measurement method and apparatus using ultrasonic wave
JPS6161354B2 (en)
CA1056491A (en) Apparatus for determining the arrival time of alternating signals
JPH0117090B2 (en)
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
JPH0342795B2 (en)
JPH0315152B2 (en)
JPS6270727A (en) Apparatus for measuring reflected light damping amount
JPS6334994B2 (en)
JPH09287914A (en) Laser distance-measuring apparatus