JP5867708B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5867708B2
JP5867708B2 JP2012002130A JP2012002130A JP5867708B2 JP 5867708 B2 JP5867708 B2 JP 5867708B2 JP 2012002130 A JP2012002130 A JP 2012002130A JP 2012002130 A JP2012002130 A JP 2012002130A JP 5867708 B2 JP5867708 B2 JP 5867708B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
received waveform
waveform
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012002130A
Other languages
Japanese (ja)
Other versions
JP2013142574A (en
Inventor
耕平 伊津
耕平 伊津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2012002130A priority Critical patent/JP5867708B2/en
Publication of JP2013142574A publication Critical patent/JP2013142574A/en
Application granted granted Critical
Publication of JP5867708B2 publication Critical patent/JP5867708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体が流れる管体の外面に取り付けられ、それぞれが上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子を含む超音波流量計に関する。   The present invention relates to an ultrasonic flowmeter that includes a pair of ultrasonic transducers that are attached to the outer surface of a tubular body through which a fluid flows and that are disposed obliquely opposite to an upstream side and a downstream side.

流体が流れる管体の流量を測定するために、超音波流量計が普及している。超音波流量計には、上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子から交互に超音波を打ち込みその伝播時間差から流速を求める伝播時間差式と、流体中の気泡や固形物に超音波を反射させドップラ効果により生じる周波数差から流速を求めるドップラ式とが存在する。伝播時間差式とドップラ式とでは、通常、伝播時間差式の方がより高い精度を確保することができる。   In order to measure the flow rate of a tubular body through which a fluid flows, an ultrasonic flow meter is widely used. The ultrasonic flowmeter has a propagation time difference formula in which ultrasonic waves are alternately injected from a pair of ultrasonic transducers arranged obliquely facing the upstream side and the downstream side, and the flow velocity is determined from the propagation time difference, and bubbles in the fluid. In addition, there is a Doppler method in which an ultrasonic wave is reflected on a solid material and a flow velocity is obtained from a frequency difference caused by the Doppler effect. In the propagation time difference equation and the Doppler method, the propagation time difference equation can usually ensure higher accuracy.

伝播時間差式では、トリガ法または相関法により、上流側の超音波振動子の受信波形および下流側の超音波振動子の受信波形から超音波の伝播時間差を算出する。トリガ法では、受信波形に対し一定のトリガレベルを設定し、そのトリガレベルを一定回数超えた時刻を基準に伝播時間差を求める。一方、相関法では、ある時間幅に存在する波形全体の相関を取り伝播時間差を求める。トリガ法では気泡などの外乱で受信波形に乱れが生じるとトリガ位置がずれてしまうので、大きな誤差を生じてしまうおそれがある。これに対して、相関法では、波形全体の相関を取るため、一時的に受信波形に乱れがあっても大きな誤差を生じることがない。   In the propagation time difference formula, an ultrasonic propagation time difference is calculated from the reception waveform of the upstream ultrasonic transducer and the reception waveform of the downstream ultrasonic transducer by the trigger method or the correlation method. In the trigger method, a constant trigger level is set for a received waveform, and a propagation time difference is obtained based on the time when the trigger level is exceeded a certain number of times. On the other hand, in the correlation method, the propagation time difference is obtained by correlating the entire waveform existing in a certain time width. In the trigger method, if the reception waveform is disturbed by disturbance such as bubbles, the trigger position is shifted, which may cause a large error. On the other hand, in the correlation method, since the entire waveform is correlated, a large error does not occur even if the reception waveform is temporarily disturbed.

しかし、一対の超音波振動子を取り付ける位置の近くに継手やエルボ、分岐がある場合、またスケールの付着や堆積物が多い場合などには、受信波形に管体肉内で超音波が反射されることで生じる多重波成分が多く含まれ、相関度が低くなり、伝搬時間に誤差を生じる(信頼性が低下する)おそれがある。特許文献1には、複数のワンショット回路とOR回路を組み合わせて、一定周期を持つ波形(電圧)の後にこの波形とは逆位相の波形を連続させたもので超音波送受波器を駆動する技術が開示されている。特許文献1では、逆位相の波形を超音波送受波器に印加することで、振動を強制的に止め残響(多重波成分)を小さくすることができるとしている。   However, when there is a joint, elbow, or branch near the position where the pair of ultrasonic transducers is attached, or when there is a large amount of deposits or deposits on the scale, the received waveform reflects the ultrasonic waves inside the tube. As a result, a large amount of multiple wave components are included, the degree of correlation is lowered, and an error may occur in the propagation time (reliability is reduced). In Patent Document 1, a plurality of one-shot circuits and OR circuits are combined, and an ultrasonic transducer is driven with a waveform (voltage) having a constant period followed by a waveform having a phase opposite to that of this waveform. Technology is disclosed. According to Patent Document 1, by applying an anti-phase waveform to an ultrasonic transducer, it is possible to forcibly stop vibration and reduce reverberation (multiple wave component).

特開平10−253413号公報JP-A-10-253413

しかしながら、特許文献1の技術では、受信波形に多重波成分が多く含まれているか否かにかかわらず、一定周期を持つ波形で超音波送受波器を駆動した後に、常に逆位相の波形を印加する。これは、多重波が発生していない(影響しない程度である)場合においても受信波形が短くなり、高い相関度を得にくくなる要因となる。すなわち、適用範囲が広い代わりに、常に測定精度が低下してしまうという課題がある。   However, in the technique of Patent Document 1, an anti-phase waveform is always applied after the ultrasonic transducer is driven with a waveform having a constant period, regardless of whether or not the received waveform contains many multiwave components. To do. This is a factor that makes it difficult to obtain a high degree of correlation because the received waveform is shortened even when multiple waves are not generated (is not affected). That is, there is a problem that the measurement accuracy is always lowered instead of the wide application range.

本発明は、上記課題に鑑みてなされたものであり、受信波形に含まれる多重波成分に対し適切な対策を講じることで測定精度を向上させる超音波流量計を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic flowmeter that improves measurement accuracy by taking appropriate measures against multiple wave components included in a received waveform.

上記課題を解決するために本発明にかかる超音波流量計の代表的な構成は、流体が流れる管体の外面に取り付けられ、それぞれが上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子と、超音波振動子の一方を駆動させる第1送信波を生成する送信回路と、超音波振動子の一方を第1送信波で駆動した場合に超音波振動子の他方が受信する受信波形に所定以上の多重波成分が含まれているか否かを判定する受信波形判定部と、受信波形判定部が受信波形に所定以上の多重波成分が含まれていると判定した場合に、2周期目以降の所定タイミングから後の位相を半周期遅らせた第2送信波を送信回路に生成させ、超音波振動子の一方を第2送信波で再び駆動させる制御部と、を備えることを特徴とする。   In order to solve the above-mentioned problems, a typical configuration of an ultrasonic flowmeter according to the present invention is a pair attached to the outer surface of a tubular body through which a fluid flows, and each of which is disposed diagonally opposite to an upstream side and a downstream side. An ultrasonic transducer, a transmission circuit for generating a first transmission wave that drives one of the ultrasonic transducers, and the other of the ultrasonic transducers when one of the ultrasonic transducers is driven by the first transmission wave A received waveform determination unit that determines whether or not a received waveform to be received includes a predetermined number or more of multiple wave components, and a received waveform determination unit that determines that the received waveform includes a predetermined number or more of multiple wave components And a control unit that causes the transmission circuit to generate a second transmission wave delayed by a half cycle from a predetermined timing after the second period, and to drive one of the ultrasonic transducers again with the second transmission wave. It is characterized by that.

上記構成によれば、受信波形に所定以上の多重波成分が含まれているか否かで場合分けして、適切な対策を講じることができる。すなわち、受信波形に所定以上の多重波成分が含まれていない場合には余計なことをせず、受信波形に所定以上の多重波成分が含まれている場合にのみ位相を半周期遅らせた第2送信波を出力させて、相関法の計算に用いる受信波形を取り直す。これにより、測定精度の向上を図ることができる。   According to the above configuration, appropriate measures can be taken depending on whether or not the received waveform includes a predetermined number or more of multiple wave components. That is, when the received waveform does not contain a predetermined number or more of multiple wave components, nothing is done, and only when the received waveform contains a predetermined number or more of multiple wave components, the phase is delayed by a half cycle. 2 Outputs the transmission wave and regains the reception waveform used for the calculation of the correlation method. Thereby, improvement of measurement accuracy can be aimed at.

受信波形判定部は、受信波形の振幅がピークとなる時点から所定時間後に、ピーク時の振幅に対し所定比率以上の振幅が検出された場合に、受信波形に所定以上の多重波成分が含まれていると判定するとよい。かかる構成によれば、上記場合分けを適切に実行できる。   The received waveform determination unit includes a multiple-wave component greater than or equal to a predetermined value in the received waveform when an amplitude greater than or equal to a predetermined ratio with respect to the amplitude at the peak is detected after a predetermined time from the peak of the amplitude of the received waveform. It is good to determine that According to this configuration, the above case classification can be appropriately executed.

制御部は、所定タイミングを第2送信波の中央より後に設定するとよい。かかる構成によれば、振動を強制的に抑えることとなる範囲が相対的に短くなるので、受信波形が必要以上に短くなる(抑えられる)のを防いで、より高い測定精度を実現することができる。   The control unit may set the predetermined timing after the center of the second transmission wave. According to such a configuration, since the range in which vibration is forcibly suppressed becomes relatively short, the received waveform can be prevented from being shortened (suppressed) more than necessary, and higher measurement accuracy can be realized. it can.

制御部が所定タイミングを順にずらして第2送信波を複数回印加させ、受信波形判定部がそれぞれの第2送信波に対応する受信波形の多重波成分を判定することにより、制御部が、多重波成分による影響が許容範囲内であって、所定タイミングが最も遅いものを検出するとよい。かかる構成によれば、相関法の計算に用いる受信波形として最適なものを検出することができ、相関法の計算にこれを用いることができる。したがって、より高い測定精度を実現することができる。   The control unit shifts the predetermined timing in order and applies the second transmission wave a plurality of times, and the reception waveform determination unit determines the multiplexed wave component of the reception waveform corresponding to each second transmission wave, so that the control unit It is preferable to detect the wave component that is within the allowable range and has the latest predetermined timing. According to such a configuration, it is possible to detect the optimum received waveform used for the calculation of the correlation method, and this can be used for the calculation of the correlation method. Therefore, higher measurement accuracy can be realized.

本発明によれば、受信波形に含まれる多重波成分に対し適切な対策を講じることで測定精度を向上させる超音波流量計を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ultrasonic flowmeter which improves a measurement precision can be provided by taking an appropriate measure with respect to the multiwave component contained in a received waveform.

本実施形態にかかる超音波流量計の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the ultrasonic flowmeter concerning this embodiment. 第1送信波および第2送信波を例示する図である。It is a figure which illustrates the 1st transmission wave and the 2nd transmission wave. 多重波成分が多く含まれていない受信波形を例示する図である。It is a figure which illustrates the received waveform which does not contain many multiwave components. 多重波成分が多く含まれている受信波形を例示する図である。It is a figure which illustrates the received waveform in which many multiwave components are contained. 図1に示す超音波流量計の動作について説明するフローチャートである。It is a flowchart explaining the operation | movement of the ultrasonic flowmeter shown in FIG.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、本実施形態にかかる超音波流量計100の概略構成を示すブロック図である。図1に示すように、超音波流量計100は、検出器102と変換器104とからなる。検出器102は、流体が流れる管体110の外面に取り付けられ、それぞれが上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子112、114を含んで構成される。ここでは、超音波振動子112が上流側に、超音波振動子114が下流側に配置されるものとする。   FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic flowmeter 100 according to the present embodiment. As shown in FIG. 1, the ultrasonic flow meter 100 includes a detector 102 and a converter 104. The detector 102 includes a pair of ultrasonic transducers 112 and 114 that are attached to the outer surface of the tube 110 through which a fluid flows, and are disposed diagonally opposite to the upstream side and the downstream side, respectively. Here, it is assumed that the ultrasonic transducer 112 is disposed on the upstream side and the ultrasonic transducer 114 is disposed on the downstream side.

変換器104は、制御部120、記憶部122、送信回路124、切替スイッチ126、増幅器128、A/D変換器130、演算部132、受信波形判定部134、表示部136、出力部138を含んで構成される。以下、まず超音波流量計100の各部の働きについて説明し、その後超音波流量計100の動作について説明する。   The converter 104 includes a control unit 120, a storage unit 122, a transmission circuit 124, a changeover switch 126, an amplifier 128, an A / D converter 130, a calculation unit 132, a received waveform determination unit 134, a display unit 136, and an output unit 138. Consists of. Hereinafter, the operation of each part of the ultrasonic flow meter 100 will be described first, and then the operation of the ultrasonic flow meter 100 will be described.

制御部120は、中央処理装置いわゆるCPUを含んで構成され、超音波流量計100全体を制御する。記憶部122は、ROMやRAM、フラッシュメモリ等で構成され、制御部120が実行するプログラムや各種情報を記憶する。   The control unit 120 includes a central processing unit, a so-called CPU, and controls the ultrasonic flowmeter 100 as a whole. The storage unit 122 includes a ROM, a RAM, a flash memory, and the like, and stores programs executed by the control unit 120 and various types of information.

図2は第1送信波140および第2送信波142を例示する図であり、図2(a)で第1送信波140を、図2(b)で第2送信波142を例示している。なお、図2(b)では理解を容易にするために、第1送信波140を点線で示している。送信回路124は、図2(a)に例示する第1送信波140を生成する。第1送信波140は、超音波振動子112、114の一方を駆動する一定周期の波形(電圧)である。切替スイッチ126は、超音波振動子112、114の送信側と受信側とを切り替える。すなわち、送信回路124に接続する側と、増幅器128に接続する側とを切り替える。   FIG. 2 is a diagram illustrating the first transmission wave 140 and the second transmission wave 142. FIG. 2A illustrates the first transmission wave 140, and FIG. 2B illustrates the second transmission wave 142. . In FIG. 2B, the first transmission wave 140 is indicated by a dotted line for easy understanding. The transmission circuit 124 generates a first transmission wave 140 illustrated in FIG. The first transmission wave 140 is a waveform (voltage) with a constant period that drives one of the ultrasonic transducers 112 and 114. The changeover switch 126 switches between the transmission side and the reception side of the ultrasonic transducers 112 and 114. That is, the side connected to the transmission circuit 124 and the side connected to the amplifier 128 are switched.

超音波流量計100は、管体110の流量を測定する際、切替スイッチ126を切り替えて、送信回路124が生成する第1送信波140を超音波振動子112、114に交互に印加する。第1送信波140を超音波振動子112、114の一方に印加することで、一方から発生される超音波が流体中を横切って超音波振動子112、114の他方に受信される。したがって、上流側の超音波振動子112を第1送信波140で駆動した際に下流側の超音波振動子114で受信される受信波形、および下流側の超音波振動子114を第1送信波140で駆動した際に上流側の超音波振動子112で受信される受信波形をそれぞれ得ることができる。   When the flow rate of the tube 110 is measured, the ultrasonic flow meter 100 switches the changeover switch 126 and alternately applies the first transmission wave 140 generated by the transmission circuit 124 to the ultrasonic transducers 112 and 114. By applying the first transmission wave 140 to one of the ultrasonic transducers 112 and 114, the ultrasonic wave generated from one is crossed in the fluid and received by the other of the ultrasonic transducers 112 and 114. Therefore, when the upstream ultrasonic transducer 112 is driven by the first transmission wave 140, the received waveform received by the downstream ultrasonic transducer 114 and the downstream ultrasonic transducer 114 are transmitted by the first transmission wave. The received waveforms received by the ultrasonic transducer 112 on the upstream side when driven at 140 can be obtained.

図3は、多重波成分が多く含まれていない受信波形を例示する図である。図4は、多重波成分が多く含まれている受信波形を例示する図である。図3、図4に例示するように、管体110肉内で超音波が反射されることで生じる多重波成分の影響により、超音波振動子112、114の他方で受信される受信波形は大きく変化する。受信波形に多重波成分が多く含まれている場合には、その前部だけでなく前部より後側でも大きな振幅が出やすくなる。   FIG. 3 is a diagram illustrating a received waveform that does not contain many multiwave components. FIG. 4 is a diagram illustrating a received waveform containing a large number of multiple wave components. As illustrated in FIG. 3 and FIG. 4, the received waveform received by the other of the ultrasonic transducers 112 and 114 is large due to the influence of the multiwave component generated by the reflection of the ultrasonic wave in the tube body 110. Change. If the received waveform contains many multiwave components, a large amplitude is likely to appear not only at the front part but also at the rear side of the front part.

超音波振動子112、114の他方で受信される受信波形は、増幅器128で増幅され、A/D変換器130でA/D変換される。そして、演算部132が受信波形から相関法で波形を検知し、超音波の受信時刻を求め、送信時刻と受信時刻の差からそれぞれの伝播時間を求める。超音波の音速は、上流から下流に向かうときには流速によって速くなり、下流から上流に向かうときには流速によって遅くなる。したがって伝搬時間には差が生じるため、超音波の方向と流れの方向の成分を考慮して、伝搬時間差から流速および流量を求めることができる。   The received waveform received by the other of the ultrasonic transducers 112 and 114 is amplified by the amplifier 128 and A / D converted by the A / D converter 130. And the calculating part 132 detects a waveform with a correlation method from a received waveform, calculates | requires the reception time of an ultrasonic wave, and calculates | requires each propagation time from the difference of transmission time and reception time. The speed of sound of the ultrasonic wave increases with the flow velocity when moving from upstream to downstream, and decreases with the flow velocity when moving from downstream to upstream. Therefore, since a difference occurs in the propagation time, the flow velocity and the flow rate can be obtained from the propagation time difference in consideration of the components of the ultrasonic direction and the flow direction.

図3に例示するような多重波成分が多く含まれていない受信波形が得られる場合には、受信波形が長い(波の数が多い)方が相関法で伝播時間差を精度良く算出することができる。ここで特許文献1の技術のように、逆位相の波形を途中で印加して強制的に振動を抑えると、受信波形が短くなり、むしろ高い相関度を得にくくなる要因となる。一方、図4に例示するような多重波成分が多く含まれている受信波形が得られる場合には、受信波形が長いほど多重波成分の影響が大きくなり、相関法で伝播時間差を精度良く算出することができない。したがって、この場合には多重波成分を抑える必要がある。   When a received waveform that does not contain many multiwave components as illustrated in FIG. 3 is obtained, the propagation time difference can be accurately calculated by the correlation method when the received waveform is long (the number of waves is large). it can. Here, as in the technique of Patent Document 1, if a waveform having an antiphase is applied in the middle to forcibly suppress vibration, the received waveform is shortened, and it is rather difficult to obtain a high degree of correlation. On the other hand, when a received waveform containing a large amount of multiple wave components as illustrated in FIG. 4 is obtained, the longer the received waveform, the greater the influence of the multiple wave components, and the propagation time difference is accurately calculated by the correlation method. Can not do it. Therefore, in this case, it is necessary to suppress the multiwave component.

そのため、超音波流量計100の変換器104は受信波形判定部134を備え、超音波振動子112、114の他方で受信される受信波形に所定以上の多重波成分が含まれているか否かで場合分けして適切な対策を講じる。受信波形判定部134は、受信波形の振幅がピークとなる時点から所定時間t後に、ピーク時の振幅H1に対し所定比率以上の振幅H2が検出された場合に、受信波形に所定以上の多重波成分が含まれていると判定する。すなわち、所定時間tと所定比率が、「多重波成分による影響の許容範囲」を決定する。ここでは、所定時間tを10μ秒、所定比率を1/2とする。なお、かかる所定時間、所定比率の値は適宜定めることができ、予め記憶部122に記憶しておく。   Therefore, the transducer 104 of the ultrasonic flowmeter 100 includes a reception waveform determination unit 134, and whether or not the reception waveform received by the other of the ultrasonic transducers 112 and 114 includes a multiple wave component greater than or equal to a predetermined value. Take appropriate measures for each case. The reception waveform determination unit 134, when a predetermined time t from the time when the amplitude of the reception waveform reaches a peak, detects an amplitude H2 of a predetermined ratio or more with respect to the amplitude H1 at the peak time, It is determined that the component is contained. That is, the predetermined time t and the predetermined ratio determine the “permissible range of influence due to multiple wave components”. Here, the predetermined time t is 10 μs and the predetermined ratio is 1/2. Note that the predetermined time and the value of the predetermined ratio can be determined as appropriate and stored in the storage unit 122 in advance.

表示部136は、超音波振動子112、114の他方で受信された受信波形やその信号強度、演算部132が算出した流速、流量などを画面上に表示して、ユーザに伝達する。出力部138は、超音波振動子112、114の他方で受信された受信波形やその信号強度、演算部132が算出した流速、流量などを外部に出力する。   The display unit 136 displays the received waveform received by the other of the ultrasonic transducers 112 and 114, the signal intensity thereof, the flow velocity and the flow rate calculated by the calculation unit 132 on the screen, and transmits them to the user. The output unit 138 outputs the received waveform received by the other of the ultrasonic transducers 112 and 114, the signal intensity thereof, the flow velocity and the flow rate calculated by the calculation unit 132, and the like.

図5は、超音波流量計100の動作について説明するフローチャートである。図5に示すように、超音波流量計100では、制御部120が送信回路124を制御して第1送信波140を超音波振動子112、114に交互に印加させる(ステップS200)。これにより、それぞれの超音波振動子112、114で受信される受信波形を得る(ステップS202)。   FIG. 5 is a flowchart for explaining the operation of the ultrasonic flowmeter 100. As shown in FIG. 5, in the ultrasonic flowmeter 100, the control unit 120 controls the transmission circuit 124 to alternately apply the first transmission wave 140 to the ultrasonic transducers 112 and 114 (step S200). Thereby, the reception waveform received by each ultrasonic transducer 112, 114 is obtained (step S202).

受信波形判定部134は、得られた受信波形に所定以上の多重波成分が含まれているか否かを判定する(ステップS204)。受信波形判定部134が所定以上の多重波成分が含まれていないと判定した場合には(ステップS204NO)、演算部132が相関法によりその受信波形から伝播時間差を算出して(ステップS206)、流速や流量を算出する(ステップS208)。   The reception waveform determination unit 134 determines whether or not the obtained reception waveform contains a predetermined number or more of multiple wave components (step S204). When the received waveform determining unit 134 determines that a predetermined number or more of multiple wave components are not included (step S204 NO), the calculating unit 132 calculates a propagation time difference from the received waveform by the correlation method (step S206). A flow velocity and a flow rate are calculated (step S208).

受信波形判定部134が所定以上の多重波成分が含まれていると判定した場合には(ステップS204YES)、制御部120は、図2(b)に例示する2周期目以降の所定タイミングから後の位相を半周期遅らせた第2送信波142を送信回路124に生成させる。かかる第2送信波142は、2周期目以降の所定タイミングから後の逆位相の波形で振動を強制的に抑えるものである。なお、所定タイミングは、半周期単位で設定する。図2(b)では3周期目を半周期遅らせているが、これに限らず2周期目などを遅らせてもよい。   When the reception waveform determination unit 134 determines that a multiple wave component greater than or equal to the predetermined value is included (YES in step S204), the control unit 120 follows the predetermined timing after the second cycle illustrated in FIG. The transmission circuit 124 generates a second transmission wave 142 that is delayed by a half period. The second transmission wave 142 forcibly suppresses vibration with a waveform having an opposite phase from a predetermined timing after the second period. The predetermined timing is set in units of half cycles. In FIG. 2B, the third cycle is delayed by a half cycle, but the present invention is not limited to this, and the second cycle or the like may be delayed.

制御部120は、所定タイミングを第2送信波142の中央より後に設定するとよい。これにより、振動を強制的に抑えることとなる範囲が相対的に短くなるので、受信波形が必要以上に短くなる(抑えられる)のを防いで、より高い測定精度を実現することができる。また、逆位相の波形による超音波が強くなってしまうことを防ぐことができる。   The control unit 120 may set the predetermined timing after the center of the second transmission wave 142. As a result, the range in which vibration is forcibly suppressed becomes relatively short, so that the received waveform can be prevented from being shortened (suppressed) more than necessary, and higher measurement accuracy can be realized. In addition, it is possible to prevent the ultrasonic wave due to the waveform having the opposite phase from becoming strong.

送信回路124は、生成した第2送信波142を超音波振動子112、114に交互に印加する(ステップS210)、そして、上流側の超音波振動子112を第2送信波142で再び駆動した際に下流側の超音波振動子114で受信される受信波形、および下流側の超音波振動子114を第2送信波142で再び駆動した際に上流側の超音波振動子112で受信される受信波形をそれぞれ得る(ステップS202)。これにより、相関法の計算に用いる受信波形として、多重波成分による影響が許容範囲内である受信波形を取り直すことができ、測定精度の向上を図ることができる。   The transmission circuit 124 alternately applies the generated second transmission wave 142 to the ultrasonic transducers 112 and 114 (step S210), and drives the upstream ultrasonic transducer 112 again with the second transmission wave 142. When the downstream ultrasonic transducer 114 is driven again by the second transmission wave 142, the received waveform is received by the upstream ultrasonic transducer 112. Received waveforms are obtained (step S202). As a result, as a received waveform used for the calculation of the correlation method, a received waveform in which the influence of the multiple wave component is within an allowable range can be read again, and the measurement accuracy can be improved.

なお、制御部120が所定タイミングを順にずらして第2送信波142を複数回印加させ、受信波形判定部134がそれぞれの第2送信波142に対応する受信波形の多重波成分を判定することにより、制御部120が、多重波成分による影響が許容範囲内であって、所定タイミングが最も遅いものを検出するようにしてもよい。これにより、相関法の計算に用いる受信波形として最適なものを検出することができ、相関法の計算にこれを用いることができる。したがって、より高い測定精度を実現することができる。なお、所定タイミングを順にずらしてとは、例えば2周期目、3周期目…とずらして行くことである。   The control unit 120 shifts the predetermined timing in order to apply the second transmission wave 142 a plurality of times, and the reception waveform determination unit 134 determines the multiple wave component of the reception waveform corresponding to each second transmission wave 142. The control unit 120 may detect the influence of the multiple wave component within the allowable range and the latest predetermined timing. As a result, it is possible to detect the optimum received waveform used for the calculation of the correlation method, and this can be used for the calculation of the correlation method. Therefore, higher measurement accuracy can be realized. Note that shifting the predetermined timing in sequence means shifting the predetermined timing, for example, in the second cycle, the third cycle, and so on.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、流体が流れる管体の外面に取り付けられ、それぞれが上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子を含む超音波流量計に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to an ultrasonic flowmeter that includes a pair of ultrasonic transducers that are attached to the outer surface of a tubular body through which a fluid flows and that are disposed obliquely facing the upstream side and the downstream side.

100…超音波流量計、102…検出器、104…変換器、110…管体、112、114…超音波振動子、120…制御部、122…記憶部、124…送信回路、126…切替スイッチ、128…増幅器、130…A/D変換器、132…演算部、134…受信波形判定部、136…表示部、138…出力部、140…第1送信波、142…第2送信波 DESCRIPTION OF SYMBOLS 100 ... Ultrasonic flowmeter, 102 ... Detector, 104 ... Converter, 110 ... Tube, 112, 114 ... Ultrasonic vibrator, 120 ... Control part, 122 ... Memory | storage part, 124 ... Transmission circuit, 126 ... Changeover switch , 128, amplifier, 130, A / D converter, 132, calculation unit, 134, reception waveform determination unit, 136, display unit, 138, output unit, 140, first transmission wave, 142, second transmission wave.

Claims (4)

流体が流れる管体の外面に取り付けられ、それぞれが上流側と下流側とに斜め向かい合わせに配置される一対の超音波振動子と、
前記超音波振動子の一方を駆動させる第1送信波を生成する送信回路と、
前記超音波振動子の一方を前記第1送信波で駆動した場合に前記超音波振動子の他方が受信する受信波形に所定以上の多重波成分が含まれているか否かを判定する受信波形判定部と、
前記受信波形判定部が前記受信波形に所定以上の多重波成分が含まれていると判定した場合に、2周期目以降の所定タイミングから後の位相を半周期遅らせた第2送信波を前記送信回路に生成させ、前記超音波振動子の一方を該第2送信波で再び駆動させる制御部と、
を備えることを特徴とする超音波流量計。
A pair of ultrasonic transducers attached to the outer surface of the tube through which the fluid flows, each disposed diagonally opposite the upstream side and the downstream side;
A transmission circuit for generating a first transmission wave for driving one of the ultrasonic transducers;
Received waveform determination for determining whether a received waveform received by the other of the ultrasonic transducers includes one or more multiwave components when one of the ultrasonic transducers is driven by the first transmitted wave And
When the received waveform determination unit determines that the received waveform contains a multiple-wave component greater than or equal to a predetermined value, a second transmission wave is generated by delaying the phase after a predetermined period from the second period by a half period. A control unit that generates a circuit and drives one of the ultrasonic transducers again with the second transmission wave;
An ultrasonic flowmeter comprising:
前記受信波形判定部は、前記受信波形の振幅がピークとなる時点から所定時間後に、該ピーク時の振幅に対し所定比率以上の振幅が検出された場合に、前記受信波形に所定以上の多重波成分が含まれていると判定することを特徴とする請求項1に記載の超音波流量計。   The received waveform determination unit, when a predetermined ratio or more of amplitude relative to the amplitude at the peak is detected after a predetermined time from the peak of the amplitude of the received waveform, The ultrasonic flowmeter according to claim 1, wherein it is determined that a component is contained. 前記制御部は、前記所定タイミングを前記第2送信波の中央より後に設定することを特徴とする請求項1または2に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the control unit sets the predetermined timing after the center of the second transmission wave. 前記制御部が前記所定タイミングを順にずらして前記第2送信波を複数回印加させ、前記受信波形判定部がそれぞれの前記第2送信波に対応する受信波形の多重波成分を判定することにより、
前記制御部が、多重波成分による影響が許容範囲内であって、前記所定タイミングが最も遅いものを検出することを特徴とする請求項1から3のいずれか1項に記載の超音波流量計。
The control unit shifts the predetermined timing in order to apply the second transmission wave a plurality of times, and the reception waveform determination unit determines a multiple wave component of a reception waveform corresponding to each of the second transmission waves,
The ultrasonic flowmeter according to any one of claims 1 to 3, wherein the control unit detects an influence of a multiwave component within an allowable range and the predetermined timing is the slowest. .
JP2012002130A 2012-01-10 2012-01-10 Ultrasonic flow meter Active JP5867708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002130A JP5867708B2 (en) 2012-01-10 2012-01-10 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002130A JP5867708B2 (en) 2012-01-10 2012-01-10 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2013142574A JP2013142574A (en) 2013-07-22
JP5867708B2 true JP5867708B2 (en) 2016-02-24

Family

ID=49039213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002130A Active JP5867708B2 (en) 2012-01-10 2012-01-10 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5867708B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122372A (en) * 1981-01-22 1982-07-30 Tokyo Keiki Co Ltd Method and apparatus for receiving or transmitting ultrasonic wave
JPH1073462A (en) * 1996-08-29 1998-03-17 Osaka Gas Co Ltd Method for measuring flow velocity using ultrasonic wave
JPH10253413A (en) * 1997-03-06 1998-09-25 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
DE10224294A1 (en) * 2002-05-31 2004-01-15 systec Controls Meß- und Regeltechnik GmbH Method for ultrasonic transit time quantity measurement

Also Published As

Publication number Publication date
JP2013142574A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
AU2002344016B2 (en) Doppler ultrasonic flowmeter
WO2011083766A1 (en) Ultrasonic flowmeter
JP5753970B2 (en) Flow measuring device
JP5447561B2 (en) Ultrasonic measuring instrument
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
JP5796154B2 (en) Flow measuring device
JP2011117956A (en) Ultrasonic flowmeter
JP2013088322A (en) Method for measuring flow velocity and flow volume
JP2007187506A (en) Ultrasonic flowmeter
JP4835068B2 (en) Fluid flow measuring device
JP4973035B2 (en) Ultrasonic flow meter
JP5867708B2 (en) Ultrasonic flow meter
JP5372831B2 (en) Ultrasonic densitometer
WO2007083713A1 (en) Doppler type ultrasonic flow meter, flow metering method, and computer program
JP7151311B2 (en) ultrasonic flow meter
JP5231278B2 (en) Ultrasonic flow meter
JPH11351928A (en) Flowmetr and flow rate measuring method
JP2010216871A (en) Ultrasonic measuring instrument
JP7203352B2 (en) ultrasonic flow meter
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution
JP5286326B2 (en) Ultrasonic flow meter
JP2019086339A (en) Ultrasonic flowmeter
JP7320776B2 (en) ultrasonic flow meter
JP2007232659A (en) Ultrasonic flowmeter
JP2008175667A (en) Fluid flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5867708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150