JP2013088322A - Method for measuring flow velocity and flow volume - Google Patents

Method for measuring flow velocity and flow volume Download PDF

Info

Publication number
JP2013088322A
JP2013088322A JP2011229941A JP2011229941A JP2013088322A JP 2013088322 A JP2013088322 A JP 2013088322A JP 2011229941 A JP2011229941 A JP 2011229941A JP 2011229941 A JP2011229941 A JP 2011229941A JP 2013088322 A JP2013088322 A JP 2013088322A
Authority
JP
Japan
Prior art keywords
propagation time
ultrasonic signal
flow path
points
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229941A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasaki
宏 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2011229941A priority Critical patent/JP2013088322A/en
Publication of JP2013088322A publication Critical patent/JP2013088322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow velocity measuring method by a correlation method, which does not need a temperature sensor.SOLUTION: The flow velocity measuring method for calculating the flow velocity of liquid of a flow channel by using a correlation method includes a process for acquiring waveform data of a first ultrasonic signal propagating forward between two points of the flow channel, a process for acquiring waveform data of a second ultrasonic signal propagating backward between the two points of the flow channel, a process for calculating propagation time difference from a mutual correlation function of the waveform data of the first and second ultrasonic signals, a process for extracting a waveform feature point from the waveform data of the first ultrasonic signal to calculate a forward propagation time of the ultrasonic signal, a process for extracting a waveform feature point from the waveform data of the second ultrasonic signal to calculate a backward propagation time of the ultrasonic signal, a process for calculating a sound velocity of the ultrasonic signal on the basis of a distance between the two points of the flow channel as well as the forward propagation time and backward propagation time of the ultrasonic signal, and a process for calculating a flow velocity of the liquid on the basis of the distance between the two points of the flow channel, the propagation time difference, the sound velocity, or the like.

Description

本発明は、流体の流速や流量等の計測に適用可能な超音波を用いた計測方法の改良に関する。特に、相関法により所定の流路を順方向に伝播する超音波信号と当該流路を逆方向に伝播する超音波信号の伝播時間差を直接求める流速(あるいは流量)計測方法の改良に関する。   The present invention relates to an improvement of a measurement method using ultrasonic waves that can be applied to measurement of fluid flow velocity, flow rate, and the like. In particular, the present invention relates to an improvement in a flow velocity (or flow rate) measurement method that directly obtains a propagation time difference between an ultrasonic signal propagating in a forward direction through a predetermined flow path and an ultrasonic signal propagating in the reverse direction through the flow path.

配管等の流路を流れる流体の流量を測定するため、例えば、超音波流量計等が使用される。超音波流量計にはいくつかの種類があるが、超音波信号の伝播時間差に着目した方法を用いる超音波流量計では、流体中を上流側から下流側(順方向)に伝播する超音波信号と下流側から上流側(逆方向)に伝播する超音波信号との伝播時間差Δtと、超音波信号の伝播速度Cなどから流体の流速を算出する(伝播時間差法)。この流速と流路の断面積から流量を計算する。   In order to measure the flow rate of the fluid flowing through a flow path such as a pipe, for example, an ultrasonic flow meter or the like is used. There are several types of ultrasonic flowmeters, but with ultrasonic flowmeters that use a method that focuses on the difference in propagation time of ultrasonic signals, ultrasonic signals propagate in the fluid from upstream to downstream (forward direction). The flow velocity of the fluid is calculated from the propagation time difference Δt between the ultrasonic signal propagating from the downstream side to the upstream side (reverse direction), the propagation speed C of the ultrasonic signal, and the like (propagation time difference method). The flow rate is calculated from the flow velocity and the cross-sectional area of the flow path.

しかし、超音波信号の上流側への伝播時間及び下流側への伝播時間を所要の時間精度で検出することは容易ではない。
そこで、例えば、先行例の特開2005−181268号公報(特許文献1)の段落0003、0014及び図3には、相関法により伝播時間差Δtを直接求めることが記載されている。相関法は、順方向の超音波信号の受信信号波形全体と逆方向の超音波信号の受信信号波形全体との相互相関値を求め、その相関値のピークから時間差Δtを直接求めるものである。この時間差Δtと超音波信号の音速Cとから後に詳述する式(V=(C2/2Lcosθ)Δt)により流速Vを計算する。ここで、Lは流路上の2点間の距離、θは流体の流れ方向と超音波信号の伝播方向とのなす角度である。音速Cは、例えば、測定対象の流体が常圧の空気の場合、次式のように温度Tの関数として求められる。
C=331.5+0.61T [m/S]
However, it is not easy to detect the propagation time of the ultrasonic signal to the upstream side and the propagation time to the downstream side with a required time accuracy.
Thus, for example, paragraphs 0003 and 0014 and Japanese Patent Laid-Open No. 2005-181268 (Patent Document 1) of the prior example describe directly obtaining the propagation time difference Δt by the correlation method. In the correlation method, the cross-correlation value between the entire reception signal waveform of the forward ultrasonic signal and the entire reception signal waveform of the reverse ultrasonic signal is obtained, and the time difference Δt is directly obtained from the peak of the correlation value. From this time difference Δt and the sound velocity C of the ultrasonic signal, the flow velocity V is calculated by the equation (V = (C 2 / 2L cos θ) Δt) described in detail later. Here, L is a distance between two points on the flow path, and θ is an angle formed by the flow direction of the fluid and the propagation direction of the ultrasonic signal. The speed of sound C is obtained as a function of the temperature T as follows, for example, when the fluid to be measured is atmospheric pressure air.
C = 331.5 + 0.61T [m / S]

特開2005−181268号公報JP 2005-181268 A

しかしながら、上述の相関法を用いる伝播時間差法では、流体の流速を計算するために超音波信号の伝播時間差Δtのほかに流体中における音速Cを求めなければならない。音速Cを計算するため流体の温度Tを検出する温度センサが必要である。これにより流速計(あるいは流量計)のコストが増え、また、計器に温度センサを設置するスペースを確保するために流速計のサイズが大きくなる。更に、音速は流体温度のほかにも流体の成分や圧力などによっても変化する傾向があり、その場合には上記Cの計算式では誤差が生じる。   However, in the propagation time difference method using the above-described correlation method, in order to calculate the flow velocity of the fluid, the sound speed C in the fluid must be obtained in addition to the propagation time difference Δt of the ultrasonic signal. In order to calculate the speed of sound C, a temperature sensor that detects the temperature T of the fluid is required. This increases the cost of the velocimeter (or flow meter) and increases the size of the velocimeter in order to secure a space for installing the temperature sensor in the meter. Further, the speed of sound tends to change not only with the fluid temperature but also with the component and pressure of the fluid. In this case, an error occurs in the calculation formula C.

よって、本発明の課題は、伝播時間差法(相関法)による流速計測方法において温度センサ(あるいは温度計測)を必要としない流速計測方法を提供することである。   Accordingly, an object of the present invention is to provide a flow velocity measurement method that does not require a temperature sensor (or temperature measurement) in a flow velocity measurement method based on a propagation time difference method (correlation method).

また、本発明の課題は、伝播時間差法(相関法)による流量計測方法において温度センサを必要としない流量計測方法を提供することである。   Another object of the present invention is to provide a flow rate measurement method that does not require a temperature sensor in the flow rate measurement method based on the propagation time difference method (correlation method).

上記課題を解決する本発明の一態様は、流路の流体の流速を相関法を使用して求める流速の計測方法であって、上記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する過程と、上記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する過程と、上記第1及び第2の超音波信号の波形データ相互の相関関数(相互相関演算)から伝播時間差を求める過程と、上記第1の超音波信号の波形データから波形の特徴点を抽出し、上記流路の2点間における超音波信号の順方向伝播時間を求める過程と、上記第2の超音波信号の波形データから波形の特徴点を抽出し、上記流路の2点間における超音波信号の逆方向伝播時間を求める過程と、上記流路の2点間の距離、上記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて上記超音波信号の音速を計算する過程と、上記流路の2点間の距離、上記伝播時間差、上記音速に基づいて上記流体の流速を計算する過程と、を含む。   One aspect of the present invention that solves the above-described problem is a method for measuring a flow velocity of a fluid in a flow path by using a correlation method. The flow velocity is measured in a forward direction between two points in the flow path. The process of acquiring the waveform data of the ultrasonic signal, the process of acquiring the waveform data of the second ultrasonic signal propagating in the reverse direction between the two points of the flow path, and the first and second ultrasonic signals The process of obtaining the propagation time difference from the correlation function (cross-correlation calculation) of the waveform data of the waveform, the feature point of the waveform is extracted from the waveform data of the first ultrasonic signal, and the ultrasonic signal between the two points of the flow path The process of obtaining the forward propagation time of the second, extracting the feature point of the waveform from the waveform data of the second ultrasonic signal, and obtaining the backward propagation time of the ultrasonic signal between the two points of the flow path, A distance between two points of the flow path, a forward propagation time of the ultrasonic signal, and Comprising the steps of calculating the sound speed of the ultrasound signal based on the direction of propagation time, the distance between two points of the flow path, the propagation time difference, and a process of calculating the flow rate of the fluid based on the speed of sound.

かかる構成とすることによって、2つの超音波信号の信号データの相互相関演算(後述)によって伝播時間差が直接求められる。また、信号データから順方向及び逆方向の信号伝播時間を求め、音速を計算することができる。伝播時間差、音速などから流速が計算される。この結果、温度計を必要としない利点がある。   With such a configuration, the propagation time difference is directly obtained by the cross-correlation calculation (described later) of the signal data of the two ultrasonic signals. Moreover, the signal propagation time in the forward direction and the reverse direction can be obtained from the signal data, and the sound speed can be calculated. The flow velocity is calculated from the propagation time difference, sound velocity, etc. As a result, there is an advantage that a thermometer is not required.

超音波信号のセンサ間の伝播時間は極めて短時間であり超音波信号の伝播時点を直接検出できるような時間分解能で信号をA/D変換することは事実上できず、特別に構成されたアナログ検出回路が必要となるが、相関法では信号全体を比較するため信号波形の特徴を失わない程度に信号のサンプリング間隔を長く設定することができるので、市販のA/D変換器を使用することが出来る。そして、2つの超音波信号の信号データの相互相関演算によって伝播時間差が直接求められる。   The propagation time of the ultrasonic signal between the sensors is very short, and it is virtually impossible to A / D convert the signal with a time resolution that can directly detect the propagation point of the ultrasonic signal. Although a detection circuit is required, in the correlation method, since the entire signal is compared, the signal sampling interval can be set long enough not to lose the characteristics of the signal waveform, so a commercially available A / D converter should be used. I can do it. Then, the propagation time difference is directly obtained by the cross-correlation calculation of the signal data of the two ultrasonic signals.

更に、発明者が種々検討をした結果、相関法のために取得した信号データはA/D変換における時分解能が相対的に低いので、後述の参考例のような超音波信号の伝播時間を直接検出して「流速を計算」する検出方式の場合には使えないが、「音速を計算」するための「伝播時間」を求める場合には使用可能であることを見出した。それにより、相関法のために取得した信号データを活用して音速を計算により求め、温度センサ等を必要としない流速の計測が可能となる。   Furthermore, as a result of various studies by the inventor, the signal data acquired for the correlation method has a relatively low time resolution in the A / D conversion. It has been found that it is not usable in the case of a detection method that detects and “calculates the flow velocity”, but can be used when “propagation time” for “calculating the speed of sound” is obtained. As a result, the velocity of sound can be obtained by calculation using the signal data acquired for the correlation method, and the flow velocity can be measured without the need for a temperature sensor or the like.

望ましくは、上記音速を求める過程は、上記音速をC、上記2点間の距離をL、上記順方向伝播時間をt1、上記逆方向伝播時間t2、として、
C=(L/2){(1/t1)+(1/t2)}
を計算することによって音速Cを求める。
Desirably, the process of obtaining the sound speed is as follows: C is the sound speed, L is the distance between the two points, t 1 is the forward propagation time, and t 2 is the backward propagation time t 2 .
C = (L / 2) {(1 / t 1 ) + (1 / t 2 )}
To calculate the speed of sound C.

望ましくは、上記流体の流速を計算する過程は、上記流体の流速をV、上記音速をC、上記伝播時間差をΔt、上記流体の流れ方向と上記超音波信号の伝播方向とのなす角度を
θとして、V≒(C2/2Lcosθ)Δtを計算することによって流速Vを得る。
Desirably, the process of calculating the flow velocity of the fluid includes the flow velocity of the fluid as V, the sound velocity as C, the propagation time difference as Δt, and the angle formed between the flow direction of the fluid and the propagation direction of the ultrasonic signal as θ. The flow velocity V is obtained by calculating V≈ (C 2 / 2L cos θ) Δt.

望ましくは、上記順方向伝播時間及び逆方向伝播時間を求める過程は、検出された上記超音波信号の波形の特徴点の時間軸上の位置から予め定められた値を補正するものである。   Preferably, the process of obtaining the forward propagation time and the backward propagation time corrects a predetermined value from the position on the time axis of the feature point of the detected waveform of the ultrasonic signal.

また、本発明の流量の計測方法は、上記流速の計算方法によって求められた流速Vに上記流路の断面積Sを乗じて流量Qを求める。   In the flow rate measurement method of the present invention, the flow rate Q is obtained by multiplying the flow velocity V obtained by the flow velocity calculation method by the cross-sectional area S of the flow path.

本発明の一態様は、流路の流体の流速を相関法を使用して求める超音波流速計であって、上記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する手段と、上記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する手段と、上記第1及び第2の超音波信号の波形データ相互の相関関数から伝播時間差を求める手段と、上記第1の超音波信号の波形データから波形の特徴点を抽出し、上記流路の2点間における超音波信号の順方向伝播時間を求める手段と、上記第2の超音波信号の波形から特徴点を抽出し、上記流路の2点間における超音波信号の逆方向伝播時間を求める手段と、上記流路の2点間の距離、上記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて上記超音波信号の音速を求める手段と、上記流路の2点間の距離、上記伝播時間差、上記音速に基づいて上記流体の流速を計算する手段と、を備える。   One aspect of the present invention is an ultrasonic anemometer that obtains a flow velocity of a fluid in a flow path by using a correlation method, and a waveform of a first ultrasonic signal that propagates between two points of the flow path in a forward direction. Means for acquiring data, means for acquiring waveform data of the second ultrasonic signal propagating in the opposite direction between two points of the flow path, and mutual waveform data of the first and second ultrasonic signals. Means for obtaining a propagation time difference from the correlation function, means for extracting a characteristic point of the waveform from the waveform data of the first ultrasonic signal, and obtaining a forward propagation time of the ultrasonic signal between the two points of the flow path; Means for extracting a characteristic point from the waveform of the second ultrasonic signal and obtaining a backward propagation time of the ultrasonic signal between the two points of the flow path; a distance between the two points of the flow path; and the ultrasonic wave The sound speed of the ultrasonic signal is obtained based on the forward propagation time and backward propagation time of the signal. And means that the distance between two points of the flow path, the propagation time difference, and means for calculating the flow velocity of the fluid based on the speed of sound, a.

かかる構成とすることによって、温度センサを必要としない流速計を得ることが可能となる。発明者は、相関法で得られた信号データはA/D変換における時分解能が相対的に低いので、超音波信号の伝播時間を直接検出するような検出方式での流速検出(計算)には使用できないが、音速の算出には使用できることを見出した。信号データを再利用して音速を計算することにより、音速を計算するための温度センサ等を必要としない流速計の構成が可能となる。   With such a configuration, it is possible to obtain an anemometer that does not require a temperature sensor. The inventor found that the signal data obtained by the correlation method has a relatively low time resolution in the A / D conversion, so that the flow rate detection (calculation) in the detection method in which the propagation time of the ultrasonic signal is directly detected is used. Although it cannot be used, it has been found that it can be used to calculate the speed of sound. By reusing the signal data and calculating the sound speed, it is possible to configure an anemometer that does not require a temperature sensor or the like for calculating the sound speed.

本発明の一態様の流量計は流路の流体の流速を相関法を使用して求める超音波流量計であって、上記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する手段と、上記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する手段と、上記第1及び第2の超音波信号の波形データを記憶する記憶手段と、上記第1及び第2の超音波信号の波形データ相互の相関関数から伝播時間差を求める手段と、検出された上記第1の超音波信号の波形データから波形の特徴点を抽出し、上記流路の2点間における超音波信号の順方向伝播時間を求める手段と、上記第2の超音波信号の波形データから波形の特徴点を抽出し、上記流路の2点間における超音波信号の逆方向伝播時間を求める手段と、上記流路の2点間の距離、上記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて上記超音波信号の音速を求める手段と、上記流路の2点間の距離、上記伝播時間差、上記音速に基づいて上記流体の流速を求める手段と、求められた上記流速に上記流路の断面積を乗じて流量を求める手段と、を備える。   The flow meter according to one aspect of the present invention is an ultrasonic flow meter for obtaining a flow velocity of a fluid in a flow path by using a correlation method, and the first ultrasonic signal propagating forward between two points of the flow path. Means for obtaining the waveform data of the second ultrasonic signal, means for obtaining the waveform data of the second ultrasonic signal propagating in the opposite direction between the two points of the flow path, and waveform data of the first and second ultrasonic signals. , A means for determining a propagation time difference from the correlation function between the waveform data of the first and second ultrasonic signals, and a feature point of the waveform from the detected waveform data of the first ultrasonic signal. Means for obtaining the forward propagation time of the ultrasonic signal between the two points of the flow path, and extracting characteristic points of the waveform from the waveform data of the second ultrasonic signal. Between the two points of the channel and the means for obtaining the backward propagation time of the ultrasonic signal between Based on the distance, the means for obtaining the sound speed of the ultrasonic signal based on the forward propagation time and the reverse propagation time of the ultrasonic signal, the distance between the two points of the flow path, the propagation time difference, and the sound speed. Means for obtaining a flow rate of the fluid, and means for obtaining a flow rate by multiplying the obtained flow rate by the cross-sectional area of the flow path.

かかる構成とすることによって、温度センサを必要としない相関法の流量計を得ることが可能となる。   By adopting such a configuration, it becomes possible to obtain a correlation method flowmeter that does not require a temperature sensor.

望ましくは、上記流速計あるいは流量計における音速を求める手段は、上記音速をC、上記2点間(送信器と上記受信器間)の距離をL、上記順方向伝播時間をt1、上記逆方向伝播時間t2、として、C=(L/2){(1/t1)+(1/t2)}を計算することによって上記超音波信号の音速Cを得る。それにより、計測済みの波形のデータで音速を計算することができる。また、音速の計算に温度センサを必要としない。 Desirably, the means for obtaining the speed of sound in the flowmeter or flowmeter is such that the speed of sound is C, the distance between the two points (between the transmitter and the receiver) is L, the forward propagation time is t 1 , and the reverse By calculating C = (L / 2) {(1 / t 1 ) + (1 / t 2 )} as the direction propagation time t 2 , the sound velocity C of the ultrasonic signal is obtained. Thereby, the speed of sound can be calculated from the measured waveform data. In addition, a temperature sensor is not required for calculating the speed of sound.

望ましくは、上記流体の流速を得る手段は、上記流体の流速をV、上記音速をC、上記順方向伝播時間及び上記逆方向伝播時間の時間差をΔt、上記流体の流れ方向と上記超音波信号の伝播方向とのなす角度をθとして、V≒(C2/2Lcosθ)Δtを計算することによって流速Vを得る。 Desirably, the means for obtaining the flow velocity of the fluid includes the flow velocity of the fluid V, the sound velocity C, the time difference between the forward propagation time and the backward propagation time Δt, and the fluid flow direction and the ultrasonic signal. The flow velocity V is obtained by calculating V≈ (C 2 / 2L cos θ) Δt, where θ is the angle formed with the propagation direction of.

それにより、計測済みの信号波形のデータを用いて音速Cを上記式により計算するので、流速Vを計算するために温度センサを必要としない流速(流量)の計測が可能となる。   Thereby, since the sound velocity C is calculated by the above equation using the measured signal waveform data, the flow velocity (flow rate) that does not require the temperature sensor to calculate the flow velocity V can be measured.

望ましくは、上記順方向伝播時間及び逆方向伝播時間を取得する手段は、相関法において取得した上記超音波信号の信号波形データから波形の特徴点を判別し、この特徴点の時間軸上の位置から予め定められた値を補正するものである。超音波信号の伝播時間(受信時点)から特徴点までの時間差は略一定であることから、予め補正値を計測しておくことによって特徴点から伝播時間を求めることができる。   Preferably, the means for acquiring the forward propagation time and the backward propagation time discriminates a feature point of the waveform from the signal waveform data of the ultrasonic signal acquired in the correlation method, and the position of the feature point on the time axis From this, a predetermined value is corrected. Since the time difference from the propagation time (reception time) of the ultrasonic signal to the feature point is substantially constant, the propagation time can be obtained from the feature point by measuring the correction value in advance.

望ましくは、上記超音波信号の信号波形の特徴点が、波形の最大振幅値の所定割合を閾値として設定し、波形が該閾値を越えた後の最初のゼロクロス点である。それにより、波形パターンに対応して閾値を設定し、ノイズによる影響の少ないゼロクロス点を抽出することが可能となる。   Desirably, the characteristic point of the signal waveform of the ultrasonic signal is a first zero cross point after a predetermined ratio of the maximum amplitude value of the waveform is set as a threshold and the waveform exceeds the threshold. Thereby, it is possible to set a threshold value corresponding to the waveform pattern and extract a zero cross point that is less affected by noise.

望ましくは、上記流路の2点は2つの送受信器により設定される。それにより、送信器及び受信器の計測装置内における占有空間を減少することができる。   Desirably, two points of the flow path are set by two transceivers. Thereby, the occupied space in the measuring device of the transmitter and the receiver can be reduced.

本発明によれば、所定流路における流速Vの検出において、順方向及び逆方向の2つの超音波信号の伝播時間差Δtを相関法(相互相関演算)により2つの超音波信号の波形データから直接計算する。更に、この2つの超音波信号の波形テータから超音波信号の順方向及び逆方向の伝播時間t1,t2をそれぞれ求め、これ等の伝播時間から音速Cを計算する。得られた音速C、伝播時間差Δtに基づいて流速Vを計算するので、温度、流体成分、圧力などを計測する必要がない。回路コスト削減や装置サイズの小型化などの面でも都合が良い。 According to the present invention, in detecting the flow velocity V in the predetermined flow path, the propagation time difference Δt between the two ultrasonic signals in the forward direction and the reverse direction is directly calculated from the waveform data of the two ultrasonic signals by the correlation method (cross-correlation calculation). calculate. Further, the propagation times t 1 and t 2 in the forward direction and the reverse direction of the ultrasonic signals are obtained from the waveform data of the two ultrasonic signals, and the sound velocity C is calculated from these propagation times. Since the flow velocity V is calculated based on the obtained sound velocity C and propagation time difference Δt, there is no need to measure temperature, fluid component, pressure, and the like. This is also convenient in terms of circuit cost reduction and device size reduction.

流体の流速(あるいは流量)を測定する装置構成を説明する説明図である。It is explanatory drawing explaining the apparatus structure which measures the flow velocity (or flow volume) of the fluid. 流路に配置された一組の送受信器で順方向及び逆方向を信号伝播時間を測定する例を説明する説明図である。It is explanatory drawing explaining the example which measures signal propagation time in a forward direction and a reverse direction with a set of transmitter / receivers arrange | positioned at the flow path. 相関法により伝播時間差を求める例を説明する説明図である。It is explanatory drawing explaining the example which calculates | requires propagation time difference by the correlation method. 温度と音速の関係(媒体が水の場合)を説明するグラフである。It is a graph explaining the relationship between temperature and sound velocity (when a medium is water). 受信信号の特徴点から伝播時間を計算する第一の例を説明する説明図である。It is explanatory drawing explaining the 1st example which calculates propagation time from the feature point of a received signal. 受信信号の特徴点から伝播時間を計算する第二の例を説明する説明図である。It is explanatory drawing explaining the 2nd example which calculates propagation time from the feature point of a received signal. 受信信号の特徴点から伝播時間を計算する第三の例を説明する説明図である。It is explanatory drawing explaining the 3rd example which calculates propagation time from the feature point of a received signal. 流体の流速(あるいは流量)を測定する手順を説明するフローチャートである。It is a flowchart explaining the procedure which measures the flow velocity (or flow volume) of a fluid.

以下、本発明の実施の形態について図面を参照しつつ説明する。
本発明の実施の形態においては、流路に所定距離で配置された一組の超音波送受信器により同一流路を順方向及び逆方向に伝播する2つの超音波信号を電気信号とし、A/D変換器によってデータ化して信号波形全体の信号データをメモリに取り込む。そして、順方向の超音波信号の波形データと逆方向の超音波信号の波形データとの相互相関演算(相関法)を行い、相関関数から伝搬時間差Δtを直接求める。
Embodiments of the present invention will be described below with reference to the drawings.
In the embodiment of the present invention, two ultrasonic signals propagating in the forward and reverse directions in the same channel by a set of ultrasonic transmitters / receivers arranged at a predetermined distance in the channel are used as electrical signals, and A / Data is converted into data by the D converter and the signal data of the entire signal waveform is taken into the memory. Then, a cross-correlation operation (correlation method) between the waveform data of the ultrasonic signal in the forward direction and the waveform data of the ultrasonic signal in the reverse direction is performed, and the propagation time difference Δt is directly obtained from the correlation function.

更に、相互相関演算のために取り込んだ順方向及び逆方向の超音波信号の信号データからMPU(マイクロコンピュータ)が信号波形の特徴点を抽出して流路の順方向における伝播時間t1及び逆方向における伝播時間t2を求める。この伝播時間t1及びt2から音速Cを計算する。計算された音速C、伝播時間差Δtに基づいて流体の流速Vを計算する。更に、流速Vと流路の断面積Sに基づいて流量Qを計算する。この結果、相関法において温度パラメータを使用せずに音速を求めことができる。 Further, the MPU (microcomputer) extracts the characteristic points of the signal waveform from the signal data of the forward and reverse ultrasonic signals captured for the cross-correlation calculation, and the propagation time t 1 and reverse in the forward direction of the flow path. The propagation time t 2 in the direction is obtained. The speed of sound C is calculated from the propagation times t 1 and t 2 . Based on the calculated sound velocity C and propagation time difference Δt, the fluid flow velocity V is calculated. Further, the flow rate Q is calculated based on the flow velocity V and the cross-sectional area S of the flow path. As a result, the sound speed can be obtained without using the temperature parameter in the correlation method.

説明の便宜のため以下の項目の順序で説明する。
(実施例の構成)
(伝播時間差法と相関法の説明)
(温度計)
(音速計算)
(受信信号波形からの伝播時間算出法)
(ゼロクロス法)
(最大振幅法)
(閾値とゼロクロス法の組合せ)
(計測手順)
(実施例の効果の説明)
(比較例)
(流速を算出する場合の時間精度)
(音速を算出する場合の時間精度)
For convenience of explanation, explanation will be given in the following order.
(Configuration of Example)
(Explanation of propagation time difference method and correlation method)
(thermometer)
(Sound velocity calculation)
(Calculation of propagation time from received signal waveform)
(Zero cross method)
(Maximum amplitude method)
(Combination of threshold and zero cross method)
(Measurement procedure)
(Explanation of effect of embodiment)
(Comparative example)
(Time accuracy when calculating flow velocity)
(Time accuracy when calculating sound speed)

(実施例の構成)
図1は、本発明の流速計測方法が使用される超音波流速計(あるいは流量計)の例を説明する説明図である。
同図に示すように、超音波流速計は、大別してコントローラ10、送信系20、センサ系30、及び受信系40によって構成される。
(Configuration of Example)
FIG. 1 is an explanatory view for explaining an example of an ultrasonic current meter (or a flow meter) in which the flow velocity measuring method of the present invention is used.
As shown in the figure, the ultrasonic current meter is roughly constituted by a controller 10, a transmission system 20, a sensor system 30, and a reception system 40.

送信系20は、送信信号をパワー増幅する増幅器21及び送信信号の供給先を切り替える信号切替器22を含む。
センサ系30は水や空気などの流体が流れる配管(流路)31の管壁面に設けられた超音波送受信器32及び33を含んでいる。後述するように、送受信器32は流路の上流側に、送受信器33は流路の下流側に設けられる。送受信器32及び33相互間のセンサ間距離はL[m]に設定され、センサ間を結ぶ線分と配管の管軸とがなす角度はθに設定されている。
The transmission system 20 includes an amplifier 21 that amplifies the transmission signal and a signal switch 22 that switches a transmission signal supply destination.
The sensor system 30 includes ultrasonic transceivers 32 and 33 provided on the pipe wall surface of a pipe (flow path) 31 through which a fluid such as water or air flows. As will be described later, the transceiver 32 is provided on the upstream side of the flow path, and the transceiver 33 is provided on the downstream side of the flow path. The distance between the sensors between the transceivers 32 and 33 is set to L [m], and the angle formed between the line segment connecting the sensors and the pipe axis of the pipe is set to θ.

超音波送受信器32及び33は高周波電圧の印加により機械的振動を発生し、また、印加圧力に応じて電圧を発生する電気機械変換器(例えば、圧電素子)によって構成される。なお、超音波送受信器32(あるいは33)を、高周波信号を機械振動に変換する送信器と超音波振動を電気信号に変換する受信器とによって別体で構成しても良い。送受信器と送信器又は受信器は実質的に同じ意味を持つ。   The ultrasonic transmitters / receivers 32 and 33 are configured by electromechanical transducers (for example, piezoelectric elements) that generate mechanical vibrations when a high-frequency voltage is applied and generate a voltage according to an applied pressure. Note that the ultrasonic transmitter / receiver 32 (or 33) may be configured separately by a transmitter that converts high-frequency signals into mechanical vibrations and a receiver that converts ultrasonic vibrations into electrical signals. A transceiver and a transmitter or receiver have substantially the same meaning.

受信系40は、超音波送受信器32及び33の受信信号を選択する切替器41、受信信号をレベル増幅する増幅器42、受信信号を所定周期でサンプリングして受信データ(受信信号の波形データ)を得るA/D変換器43、受信データを記憶するメモリ44等を含んでいる。A/D変換器43及びメモリ44はコントローラ10から供給されるクロック信号に同期して動作する。   The reception system 40 includes a switch 41 for selecting reception signals of the ultrasonic transceivers 32 and 33, an amplifier 42 for level-amplifying the reception signals, and sampling the reception signals at a predetermined cycle to obtain reception data (waveform data of the reception signals). An A / D converter 43 to be obtained, a memory 44 for storing received data, and the like are included. The A / D converter 43 and the memory 44 operate in synchronization with the clock signal supplied from the controller 10.

なお、増幅器42は受信信号のレベルに応じて増幅率を変える(例えば、自動利得調整)こととしても良い。この場合、増幅率を変えることによって出力信号の位相が変化する場合があるので予め増幅率に対する位相の変化を把握しておき、補正するようにする。また、別途MPU(マイクロプロセッサ)による信号処理(適宜な補完法等)によってメモリ44に記憶された離散的な受信データのデータ間隔にデータを補い、より平滑な波形としても良い。   The amplifier 42 may change the amplification factor according to the level of the received signal (for example, automatic gain adjustment). In this case, since the phase of the output signal may change by changing the amplification factor, the phase change with respect to the amplification factor is grasped in advance and corrected. Alternatively, the data may be supplemented to the data interval of discrete received data stored in the memory 44 by signal processing (a suitable complementing method or the like) by a separate MPU (microprocessor) to obtain a smoother waveform.

コントローラ10は、高速動作のMPU、DSP(デジタル信号処理プロセッサ)、メモリ、タイマ、インタフェースなどの公知のコンピュータシステムによって構成されている。コントローラ10にはプロセスパラメータやプロセス状態などを表示する表示器11が接続されている。   The controller 10 includes a known computer system such as a high-speed MPU, a DSP (digital signal processor), a memory, a timer, and an interface. The controller 10 is connected to a display 11 that displays process parameters, process states, and the like.

コントローラ10は図示しない制御プログラムによって動作する。例えば、コントローラ10は、切替器22を制御して送信信号の送り先を選択すると共に、切替器41を制御して受信信号の供給元を選択する。それにより、送受信器32に送信信号を送信させ、送受信器33に当該信号を受信させて流路の順方向における超音波信号の伝播を検出する。また、送受信器33に送信信号を送信させ、送受信器32に当該信号を受信させて流路の逆方向における超音波信号の伝播を検出する。上述のように、検出された各受信信号はメモリ44に記憶される。
また、コントローラ10は、相関法のプログラム(相互相関演算)によって順方向における受信信号(超音波信号)の波形データと逆方向における受信信号(超音波信号)の波形データから相関値を計算し、相関値の変化(波形)から伝播時間差を求める。また、受信信号の波形データにおける特徴点を抽出する波形解析プログラム(信号処理プログラム)を実行する。また、数式演算処理プログラム等を実行して検出したパラメータに基づいて流速や流量を計算する。
The controller 10 operates according to a control program (not shown). For example, the controller 10 controls the switch 22 to select a transmission signal destination, and controls the switch 41 to select a reception source of the reception signal. Thereby, the transmitter / receiver 32 transmits a transmission signal, and the transmitter / receiver 33 receives the signal to detect propagation of the ultrasonic signal in the forward direction of the flow path. In addition, the transmitter / receiver 33 transmits a transmission signal, and the transmitter / receiver 32 receives the signal to detect the propagation of the ultrasonic signal in the reverse direction of the flow path. As described above, each detected reception signal is stored in the memory 44.
Further, the controller 10 calculates a correlation value from the waveform data of the reception signal (ultrasonic signal) in the forward direction and the waveform data of the reception signal (ultrasonic signal) in the reverse direction by a correlation method program (cross-correlation calculation), The propagation time difference is obtained from the change (waveform) of the correlation value. Further, a waveform analysis program (signal processing program) for extracting feature points in the waveform data of the received signal is executed. Further, the flow rate and the flow rate are calculated based on the parameters detected by executing the mathematical formula processing program or the like.

(伝播時間差法と相関法の説明)
次に、図2を参照しながら、伝播時間差法による超音波流速検出と相関法による伝播時間差の検出について説明する。
図2(A)は、上流側の送受信器32から下流側の送受信器33に向かって超音波信号を送信した例(順方向の計測)を示している。図2(B)は、下流側の送受信器33から上流側の送受信器32に向かって超音波信号を送信した例(逆方向の計測)を示している。両図において、求めるべき流体の流速をV[m/S]、超音波信号の速度をC[m/S]、送受信器32及び33間の距離をL[m]、流体の流れ方向と超音波信号の伝播方向とのなす角度をθ、流路の断面積をS[m2]、下流側への伝播時間t1[S]、上流側への伝播時間t2[S]とする。
(Explanation of propagation time difference method and correlation method)
Next, with reference to FIG. 2, detection of ultrasonic flow velocity by the propagation time difference method and detection of the propagation time difference by the correlation method will be described.
FIG. 2A shows an example (forward measurement) in which an ultrasonic signal is transmitted from the upstream transceiver 32 toward the downstream transceiver 33. FIG. 2B shows an example (measurement in the reverse direction) in which an ultrasonic signal is transmitted from the downstream transmitter / receiver 33 to the upstream transmitter / receiver 32. In both figures, the flow velocity of the fluid to be obtained is V [m / S], the velocity of the ultrasonic signal is C [m / S], the distance between the transceivers 32 and 33 is L [m], the flow direction of the fluid The angle formed by the propagation direction of the sound wave signal is θ, the cross-sectional area of the flow path is S [m 2 ], the propagation time t 1 [S] to the downstream side, and the propagation time t 2 [S] to the upstream side.

上流側の送受信器32から発せられて下流側の送受信器33で受けられた超音波信号の伝播時間t1は以下のように表される。
1=L/(C+Vcosθ) 式(1)
The propagation time t 1 of the ultrasonic signal emitted from the upstream transmitter / receiver 32 and received by the downstream transmitter / receiver 33 is expressed as follows.
t 1 = L / (C + V cos θ) Equation (1)

下流側の送受信器33から発せられて上流側の送受信器32で受信した超音波信号の伝播時間t2は以下のように表される。
2=L/(C−Vcosθ) 式(2)
The propagation time t 2 of the ultrasonic signal emitted from the downstream transmitter / receiver 33 and received by the upstream transmitter / receiver 32 is expressed as follows.
t 2 = L / (C−V cos θ) Equation (2)

式(1)及び(2)より、伝播時間差Δtを求めると、
Δt=t2−t1
=L{(C+Vcosθ)−(C−Vcosθ)}/(C−Vcosθ)(C+Vcosθ)
この式において、C>>Vの条件を当てはめると、伝播時間差Δtは
Δt≒2LVcosθ/C2
これより、流体の流速Vは次式で求められる(伝播時間差法)。
V≒(C2/2Lcosθ)Δt 式(3)
From the equations (1) and (2), the propagation time difference Δt is obtained.
Δt = t 2 −t 1
= L {(C + Vcosθ) − (C−Vcosθ)} / (C−Vcosθ) (C + Vcosθ)
In this equation, when the condition of C >> V is applied, the propagation time difference Δt is Δt≈2LV cos θ / C 2
From this, the flow velocity V of the fluid is obtained by the following equation (propagation time difference method).
V≈ (C 2 / 2L cos θ) Δt Equation (3)

更に、流量Qは、流路の断面積をS、流量補正係数をkとすると、次式で表される。
Q=kSV 式(4)
流量補正係数kは、超音波伝播経路での平均流速に対する管断面の平均流速の比であり、流路形状、超音波伝播経路、レイノルズ数によって異なる。流路形状、超音波伝播経路が固定の場合はレイノルズ数の関数となる。
Further, the flow rate Q is expressed by the following equation, where S is the cross-sectional area of the flow path and k is the flow rate correction coefficient.
Q = kSV Formula (4)
The flow rate correction coefficient k is a ratio of the average flow velocity of the pipe cross section to the average flow velocity in the ultrasonic propagation path, and varies depending on the flow path shape, the ultrasonic propagation path, and the Reynolds number. When the flow path shape and the ultrasonic wave propagation path are fixed, it is a function of the Reynolds number.

ところで、受信信号のサンプリングにより信号の伝播時間t1,t2を所要の数値で検出することは現在のA/D変換器の時間分解能では難しい。このため、伝播時間t1,t2を検出するために、例えば、高速動作するアナログ検出回路などを独自に組み立てるか、又は、相関法により(伝播時間t1,t2を求めることなく)伝播時間差Δtを直接求めることになる。前者の例としては、例えば、特開平10−332452号公報、特開2001−141537号公報に記載の超音波流量計がある(後述の比較例で説明する)。本発明は後者の相関法を採用する。
本発明の実施例では、上記式(3)として示される伝播時間差法の計算式において、2つの受信信号の信号波形のデータから相関法により上記伝播時間差Δtを求める。また、相関法のために取得した受信信号の信号波形のデータを活用して音速Cを計算により求め(後述の式(5))、これを式(3)に当てはめて流速Vを計算する。これ等の計算はコントローラ10で行われる。
By the way, it is difficult to detect the signal propagation times t 1 and t 2 with required numerical values by sampling the received signal with the current time resolution of the A / D converter. For this reason, in order to detect the propagation times t 1 and t 2 , for example, an analog detection circuit that operates at high speed is uniquely assembled, or the propagation method is used (without obtaining the propagation times t 1 and t 2 ). The time difference Δt is obtained directly. Examples of the former include ultrasonic flowmeters described in Japanese Patent Application Laid-Open Nos. 10-332452 and 2001-141537 (described in a comparative example described later). The present invention employs the latter correlation method.
In the embodiment of the present invention, in the calculation formula of the propagation time difference method expressed as the above equation (3), the propagation time difference Δt is obtained by the correlation method from the signal waveform data of two received signals. Further, the sound velocity C is obtained by calculation using the signal waveform data of the received signal acquired for the correlation method (equation (5) described later), and this is applied to equation (3) to calculate the flow velocity V. These calculations are performed by the controller 10.

実施例では、上記式(3)における伝播時間差Δtを相関法(相互相関演算)によって求める。例えば、相互相関関数Rxy(t)は2つの信号x(t),y(t)のうち一方のy(t)波形をτだけ遅延させたときのずらし量τの関数で、次式のように定義される。
In the embodiment, the propagation time difference Δt in the above equation (3) is obtained by a correlation method (cross-correlation calculation). For example, the cross-correlation function R xy (t) is a function of the shift amount τ when the y (t) waveform of one of the two signals x (t) and y (t) is delayed by τ. Is defined as

これを超音波信号の伝播波形に当てはめると、図3に示すように、同図(A)に示す、順方向に伝播する信号のある時間範囲の波形全体(数1のx(t)に相当)と、同図(B)に示す、逆方向に伝播する信号のある時間範囲の波形全体(数1のy(t)に相当)との相互相関(数1のRxy(t)に相当)を計算するものである。同図(C)は、同図(A)中に点線部で示された順方向に伝播する超音波信号の立ち上がり部分を拡大して示したものである。同図(D)は、同図(B)中に点線部で示された逆方向に伝播する超音波信号の立ち上がり部分を拡大して示したものである。 When this is applied to the propagation waveform of the ultrasonic signal, as shown in FIG. 3, the entire waveform in a certain time range of the signal propagating in the forward direction shown in FIG. 3A (corresponding to x (t) in Equation 1). ) And the entire waveform (corresponding to y (t) in Equation 1) of the signal propagating in the reverse direction shown in FIG. 5B (corresponding to R xy (t) in Equation 1) ) Is calculated. FIG. 6C is an enlarged view of the rising portion of the ultrasonic signal propagating in the forward direction indicated by the dotted line portion in FIG. FIG. 4D is an enlarged view of the rising portion of the ultrasonic signal propagating in the reverse direction indicated by the dotted line in FIG.

図(E)は両信号波形の相互相関関数の相関値の変化(相関値のグラフ)を示しており、両信号の立ち上がり相当部分の相互相関関数を拡大して示している。図(E)において、時間差0.0の部分から相関関数(余弦波形)のピーク部分(時間差0.5[μS])までが伝播時間差Δtに相当している。このように、相関法を用いることによって2つの伝播信号の伝播時間差Δtを相関関数から直接的に求めることができる。   FIG. (E) shows the change of the correlation value of the cross-correlation function of both signal waveforms (correlation value graph), and shows the cross-correlation function corresponding to the rise of both signals in an enlarged manner. In FIG. (E), the portion from the time difference 0.0 to the peak portion (time difference 0.5 [μS]) of the correlation function (cosine waveform) corresponds to the propagation time difference Δt. Thus, by using the correlation method, the propagation time difference Δt between the two propagation signals can be obtained directly from the correlation function.

相関法では、ある時間幅に存在する波形全体の相関をとるため、一般的に波形の乱れがあっても波形全体に与える影響が小さく、気泡などによる誤差が少ない。これは、相関法に用いる信号波形のデータが比較的に時間分解能の低いサンプリングによるデータでも良いことを意味する。実施例では市販のA/D変換器を使用している。   Since the correlation method correlates the entire waveform existing in a certain time width, generally, even if the waveform is disturbed, the influence on the entire waveform is small, and errors due to bubbles and the like are small. This means that the signal waveform data used for the correlation method may be sampling data with a relatively low time resolution. In the embodiment, a commercially available A / D converter is used.

(温度計)
図4に水中における音速と温度の関係の一例を示す。上述した式(3)から明らかなように、流速Vを求めるためには流体中の音速Cを予め知っていることが必要である。音速Cは、流体の種類や成分、温度、圧力などにより変化する。測定用途によっては音速Cを一定とみなせる場合もあるが、音速Cを変化するものとしなければならない場合もある。
例えば、温水や冷水を使って冷暖房を行う空調機用の流量計を考える。流体は水とし、圧力による音速Cの変化は必要とする精度の範囲外であるとする。このような条件では、音速Cは温度の関数となる。
(thermometer)
FIG. 4 shows an example of the relationship between sound speed and temperature in water. As is clear from the above equation (3), in order to obtain the flow velocity V, it is necessary to know the sound velocity C in the fluid in advance. The speed of sound C varies depending on the type and composition of fluid, temperature, pressure, and the like. Depending on the measurement application, the sound speed C may be considered constant, but the sound speed C may have to be changed.
For example, consider a flow meter for an air conditioner that performs heating and cooling using hot water or cold water. It is assumed that the fluid is water and the change in sound velocity C due to pressure is outside the required accuracy range. Under such conditions, the speed of sound C is a function of temperature.

そこで、予めコントローラ10に図4に示す温度と音速の関係を記憶しておけば、流体の温度から音速を求めることができる。例えば、流路内に図示しない温度センサを流量計に近接して配置して計測した流体温度から音速を求めることができる。   Therefore, if the relationship between the temperature and the sound speed shown in FIG. 4 is stored in the controller 10 in advance, the sound speed can be obtained from the temperature of the fluid. For example, the speed of sound can be obtained from the fluid temperature measured by placing a temperature sensor (not shown) in the flow path close to the flow meter.

しかしながら、流体を用いるシステム(暖房やプラントなど)の自由度や部品の交換などの事情から流量計と温度センサとは場所を離さなければならないこともある。さらに、水はさびなどで汚れてきたり不凍液が混入されたりすることもあり、温度と音速の関係は図3に示す曲線から外れてくることも考えられる。この場合、汚れや不凍液の混入量を測定し音速を算出することが必要になるが、汚れや不凍液の種類が必ずしも同じではないのでこのような計算は一般に困難である。
そこで、実施例では、流体中における音速Cを温度計測(温度計)によらずに先の相関法に用いた信号波形のデータから計算によって求める。
However, the flow meter and the temperature sensor may have to be separated from each other due to the degree of freedom of the system (heating, plant, etc.) using the fluid and the replacement of parts. Further, the water may become dirty with rust or the like, or antifreeze may be mixed in, and the relationship between temperature and sound velocity may deviate from the curve shown in FIG. In this case, it is necessary to calculate the speed of sound by measuring the amount of dirt and antifreeze mixed, but such calculation is generally difficult because the types of dirt and antifreeze are not necessarily the same.
Therefore, in the embodiment, the speed of sound C in the fluid is obtained by calculation from the signal waveform data used in the previous correlation method without using temperature measurement (thermometer).

(音速計算)
上述した伝播時間差法において、順方向における伝播時間の式(1)と逆方向における伝播時間の式(2)とをVcosθを相殺するように組み合わせると、音速Cは次式により表される。
C=(L/2){(1/t1)+(1/t2)} 式(5)
実施例では、式(5)によって音速Cを求め、この音速Cを流速の式(3)に当てはめる。
(Sound velocity calculation)
In the propagation time difference method described above, when the expression (1) of the propagation time in the forward direction and the expression (2) of the propagation time in the reverse direction are combined so as to cancel Vcosθ, the sound speed C is expressed by the following expression.
C = (L / 2) {(1 / t 1 ) + (1 / t 2 )} Equation (5)
In the embodiment, the speed of sound C is obtained by equation (5), and this sound velocity C is applied to equation (3) of the flow velocity.

(受信信号波形からの伝播時間算出法)
本発明の実施例では、上記式(5)により音速Cを求めて、式(3)により流体の流速を求める。既述した相関法では、式(5)に使用する伝播時間t1,t2は求められていない。そこで、相関法用にメモリに記憶された超音波信号のデータ群(信号波形)から伝播時間t1,t2を求めることを考える。信号データは、必要によりMPUによって線形補完、曲線補完などを行い、信号データを増やして波形を滑らかにすることができる。
(Calculation of propagation time from received signal waveform)
In the embodiment of the present invention, the sound velocity C is obtained by the above equation (5), and the fluid flow velocity is obtained by the equation (3). In the correlation method described above, the propagation times t 1 and t 2 used in the equation (5) are not obtained. Therefore, it is considered to determine the propagation times t 1 and t 2 from the ultrasonic signal data group (signal waveform) stored in the memory for the correlation method. The signal data can be linearly compensated or curve-compensated by the MPU if necessary, and the signal data can be increased to smooth the waveform.

(ゼロクロス法)
図5は、ゼロクロス法を説明する説明図である。同図(A)は流路の順方向における超音波信号の受信波形を示している。同図(B)は、逆方向における超音波信号の受信波形を示している。各図において、横軸は時間軸、縦軸は信号(電圧)レベルを示している。
図5(A)に示すように、例えば、超音波信号波形の+側の極大点の数を数えて4つ目の直後のゼロクロス点(特徴点)に着目すると、波形からゼロクロス点の時刻t1’が求まる。伝播時間t1とゼロクロス時刻t1’との間には超音波の駆動周波数から決まる固定値d1だけの差が生じている。同様に、同図(B)に示される逆方向の超音波信号の信号伝播についても波形からゼロクロス時刻t2’が求まる。伝播時間t2とゼロクロス時刻t2’との間には超音波の駆動周波数から決まる固定値d2だけの差が生じている。
(Zero cross method)
FIG. 5 is an explanatory diagram for explaining the zero cross method. FIG. 2A shows the received waveform of the ultrasonic signal in the forward direction of the flow path. FIG. 5B shows the reception waveform of the ultrasonic signal in the reverse direction. In each figure, the horizontal axis represents the time axis, and the vertical axis represents the signal (voltage) level.
As shown in FIG. 5A, for example, when counting the number of local maximum points on the + side of the ultrasonic signal waveform and paying attention to the fourth zero cross point (characteristic point) immediately after, the time t from the waveform to the zero cross point is shown. 1 'is found. There is a difference between the propagation time t 1 and the zero crossing time t 1 ′ by a fixed value d 1 determined by the ultrasonic driving frequency. Similarly, the zero crossing time t 2 ′ is obtained from the waveform for the signal propagation of the ultrasonic signal in the reverse direction shown in FIG. There is a difference between the propagation time t 2 and the zero crossing time t 2 ′ by a fixed value d 2 determined from the ultrasonic driving frequency.

予め工場出荷時などにおいてd1、d2をコントローラ(あるいは流量計装置)に記憶させておく。測定時にはMPUによって受信波形から特徴点を検出し、時間t1’からd1を引くことで順方向伝播時間t1を求めることができる。また、t2’からd2を引くことで逆方向伝播時間t2を求めることができる。 D 1 and d 2 are stored in the controller (or flow meter device) in advance at the time of factory shipment. At the time of measurement, the characteristic point is detected from the received waveform by the MPU, and the forward propagation time t 1 can be obtained by subtracting d 1 from the time t 1 ′. Further, the backward propagation time t 2 can be obtained by subtracting d 2 from t 2 ′.

(最大振幅法)
図6は、超音波信号波形の最大振幅に着目した例について説明する。なお、同図は順方向伝播における超音波信号の波形のみを示している。逆方向伝播における超音波信号の波形も同様であるので図示を省略している。
一般に、超音波信号の最大振幅までの波形の形は温度や流速などによって変化しないので、順方向における信号波形が最大値を取る時間t1’は超音波の伝播時間t1に固定値d1を足した時間となる。同様に、逆方向における信号波形が最大値を取る時間t2’は超音波の伝播時間t2に固定値d2を足した時間となる。
(Maximum amplitude method)
FIG. 6 illustrates an example focusing on the maximum amplitude of the ultrasonic signal waveform. The figure shows only the waveform of the ultrasonic signal in forward propagation. Since the waveform of the ultrasonic signal in the backward propagation is the same, the illustration is omitted.
In general, since the shape of the waveform to the maximum amplitude of the ultrasonic signal it does not vary with temperature and flow rate, the time t 1 a signal waveform in the forward direction takes the maximum value 'is a fixed value d 1 to the propagation time t 1 of the ultrasonic It is time to add. Similarly, the time t 2 ′ in which the signal waveform in the reverse direction takes the maximum value is a time obtained by adding the fixed value d 2 to the ultrasonic wave propagation time t 2 .

予め工場出荷時などにおいてd1、d2をコントローラに記憶させておく。測定時にはMPUによって受信波形から特徴点(最大値)を検出し、時間t1’からd1を引くことで順方向伝播時間t1を求めることができる。また、時間t2’からd2を引くことで逆方向伝播時間t2を求めることができる。 The controller stores d 1 and d 2 in advance at the time of factory shipment. At the time of measurement, the characteristic point (maximum value) is detected from the received waveform by the MPU, and the forward propagation time t 1 can be obtained by subtracting d 1 from the time t 1 ′. Further, the backward propagation time t 2 can be obtained by subtracting d 2 from the time t 2 ′.

(閾値とゼロクロス法の組合せ)
図7は、超音波信号の波形が所定の閾値を越えた後の最初のゼロクロス点に着目した例(順方向伝播の波形)を示している。上述した図5の例では、信号波形が「特定の波数経過後のゼロクロス点を通過する時間」に着目している。この例では、「波形の最大値Maxに固定値(例えば、0.8)を乗じた値0.8Maxを閾値とし、波形の振幅がこの閾値を越えた直後のゼロクロス点を通る時間」に着目している。実施例では、受信信号の波形全体がメモリに記憶されているので、上記閾値を複数のピークを持つ振動波形全体での最大振幅値に基づいて設定することができる。閾値を最大振幅値の何パーセントに設定するかは、超音波信号波形を観察して適宜に決定すれば良く、上記「0.8」に限定されるものではない。波形全体の最大値に基づいて閾値を設定することによってノイズとの区別がより容易になる。また、流体中の気泡や異物、乱れなどによって超音波信号の波形パターンが部分的に変化(減衰)する場合にもよりエラーの少ない判別基準とすることが可能となる。
(Combination of threshold and zero cross method)
FIG. 7 shows an example (forward propagation waveform) focusing on the first zero-cross point after the waveform of the ultrasonic signal exceeds a predetermined threshold. In the example of FIG. 5 described above, attention is paid to “a time during which a signal waveform passes through a zero cross point after a specific wave number has elapsed”. In this example, attention is paid to “a time passing through the zero cross point immediately after the amplitude of the waveform exceeds the threshold value, which is a value 0.8 Max obtained by multiplying the maximum value Max of the waveform by a fixed value (for example, 0.8)”. doing. In the embodiment, since the entire waveform of the received signal is stored in the memory, the threshold value can be set based on the maximum amplitude value in the entire vibration waveform having a plurality of peaks. The percentage of the maximum amplitude value to be set may be determined as appropriate by observing the ultrasonic signal waveform, and is not limited to “0.8”. Setting the threshold based on the maximum value of the entire waveform makes it easier to distinguish from noise. In addition, even when the waveform pattern of the ultrasonic signal partially changes (attenuates) due to bubbles, foreign matter, disturbances, or the like in the fluid, it is possible to use a determination criterion with fewer errors.

この実施例においても予め工場出荷時などにおいて、時間差d1、d2をコントローラに記憶させておく。測定時にはMPUによって受信波形から特徴点(ゼロクロス点)を検出し、時間t1’からd1を引くことで順方向伝播時間t1を求めることができる。また、同様に、時間t2’からd2を引くことで逆方向伝播時間t2を求めることができる(図示せず)。 Also in this embodiment, the time differences d 1 and d 2 are previously stored in the controller at the time of factory shipment. At the time of measurement, a characteristic point (zero cross point) is detected from the received waveform by the MPU, and the forward propagation time t 1 can be obtained by subtracting d 1 from time t 1 ′. Similarly, the backward propagation time t 2 can be obtained by subtracting d 2 from the time t 2 ′ (not shown).

(計測手順)
次に、図8を参照して図1に示した超音波流速計(流量計)におけるコントローラ(MPU)の制御動作について説明する。
まず、図示しないスイッチなどの操作やタイマの周期的な出力等によって計測開始指令のイベントが発生すると、コントローラ10に内蔵されたMPUは予め記憶装置に記憶された本制御ルーチン(サブルーチン)の制御プログラムを実行する(ステップS10)。
(Measurement procedure)
Next, the control operation of the controller (MPU) in the ultrasonic current meter (flow meter) shown in FIG. 1 will be described with reference to FIG.
First, when an event of a measurement start command occurs due to an operation of a switch (not shown) or a periodic output of a timer, the MPU built in the controller 10 stores a control program for this control routine (subroutine) stored in the storage device in advance. Is executed (step S10).

MPUは順方向の超音波信号を受信するために、切替信号を切替器22及び41に供給する。切替器22に送受信器32を選択させて送受信器32を超音波信号の送信器として機能させる。また、切替器41に送受信器33を選択させて送受信器33を受信器として機能させる。MPUはコントローラ10のインタフェースから送信信号を出力し、増幅器21によりパワー増幅して送受信器32を駆動する。それにより、送受信器32から送受信器33に向かって超音波信号が送信される。MPUは送信信号の送出と同時にA/D変換器43、メモリ44にクロック信号を供給してこれ等の部分を動作させる。送受信器32が受信した受信信号(超音波信号)は増幅器42で増幅され、A/D変換器43でサンプリングされて、例えば、図5(A)に示すような受信信号の波形全体がメモリ44にデータとして記憶される(ステップS12)。   The MPU supplies a switching signal to the switching devices 22 and 41 in order to receive a forward ultrasonic signal. The switch 22 is caused to select the transmitter / receiver 32 so that the transmitter / receiver 32 functions as an ultrasonic signal transmitter. Further, the transmitter / receiver 33 is selected by the switch 41 so that the transmitter / receiver 33 functions as a receiver. The MPU outputs a transmission signal from the interface of the controller 10 and amplifies the power by the amplifier 21 to drive the transceiver 32. Thereby, an ultrasonic signal is transmitted from the transmitter / receiver 32 toward the transmitter / receiver 33. The MPU supplies a clock signal to the A / D converter 43 and the memory 44 simultaneously with the transmission of the transmission signal to operate these parts. The received signal (ultrasonic signal) received by the transceiver 32 is amplified by the amplifier 42 and sampled by the A / D converter 43. For example, the entire waveform of the received signal as shown in FIG. Is stored as data (step S12).

同様に、MPUは逆方向の超音波信号を受信するために、切替信号を切替器22及び41に供給する。切替器22に送受信器33を選択させて送受信器33を超音波信号の送信器として機能させる。また、切替器41に送受信器32を選択させて送受信器32を受信器として機能させる。MPUはコントローラ10のインタフェースから送信信号を出力し、増幅器21によりパワー増幅して送受信器33を駆動する。それにより、送受信器33から送受信器32に向かって超音波信号が送信される。MPUは送信信号の送出と同時にA/D変換器43、メモリ44にクロック信号を送って動作させる。送受信器32が受信した受信信号(超音波信号)は増幅器42で増幅され、A/D変換器43でサンプリングされて、例えば図5(B)に示すような超音波信号の波形全体がメモリ44に記憶される(ステップS14)。   Similarly, the MPU supplies a switching signal to the switching devices 22 and 41 in order to receive an ultrasonic signal in the reverse direction. The transmitter / receiver 33 is selected by the switch 22 so that the transmitter / receiver 33 functions as an ultrasonic signal transmitter. In addition, the transmitter / receiver 32 is selected by the switch 41 so that the transmitter / receiver 32 functions as a receiver. The MPU outputs a transmission signal from the interface of the controller 10 and amplifies the power by the amplifier 21 to drive the transceiver 33. Thereby, an ultrasonic signal is transmitted from the transceiver 33 toward the transceiver 32. The MPU operates by sending a clock signal to the A / D converter 43 and the memory 44 simultaneously with sending the transmission signal. The received signal (ultrasonic signal) received by the transmitter / receiver 32 is amplified by the amplifier 42 and sampled by the A / D converter 43. For example, the entire waveform of the ultrasonic signal as shown in FIG. (Step S14).

MPUは、相関法により、メモリ44に記憶された順方向の超音波信号の波形データ全体と逆方向の超音波信号の波形データ全体との相互相関関数を計算して伝播時間差Δtを求める(ステップS16)。   The MPU calculates a cross-correlation function between the entire waveform data of the forward ultrasonic signal and the entire waveform data of the reverse ultrasonic signal stored in the memory 44 by the correlation method to obtain the propagation time difference Δt (step). S16).

MPUは、メモリ44に記憶された順方向の超音波信号の波形データから既述のようにゼロクロスポイント等の特徴点の時間t1’を抽出し,これよりd1を減じて伝播時間t1を計算する。また、計測された逆方向の超音波信号の波形データから既述のようにゼロクロスポイント等の特徴点の時間t2’を抽出し,これよりd1を減じて伝播時間t2を計算する。特徴点の抽出に際しては、既述したいずれの方法も使用可能である。ノイズ対応などの点では「ピーク値に関連した閾値+ゼロクロス法」(図7)が望ましい(ステップS18)。 The MPU extracts the time t 1 ′ of the feature point such as the zero cross point from the waveform data of the ultrasonic signal in the forward direction stored in the memory 44, and subtracts d 1 from this to reduce the propagation time t 1. Calculate Further, as described above, the time t 2 ′ of the feature point such as the zero cross point is extracted from the waveform data of the measured ultrasonic signal in the opposite direction, and the propagation time t 2 is calculated by subtracting d 1 therefrom. Any of the above-described methods can be used for extracting feature points. In terms of noise handling and the like, “threshold value related to peak value + zero cross method” (FIG. 7) is desirable (step S18).

MPUは、既知のセンサ間距離L、伝播時間t1、伝播時間t2から上述した式(5)により音速Cを計算する(ステップS20)。 The MPU calculates the speed of sound C from the known distance L between sensors, the propagation time t 1 , and the propagation time t 2 according to the above equation (5) (step S20).

MPUは、求めた音速C、既知の距離L、伝播時間差Δtから上述した式(3)により、流体の流速Vを計算する(ステップS22)。   The MPU calculates the flow velocity V of the fluid from the calculated sound speed C, the known distance L, and the propagation time difference Δt according to the above equation (3) (step S22).

MPUは、求めた流速V、係数k、配管の断面積Sから既述式(4)により、流量Qを計算する(ステップS24)。   The MPU calculates the flow rate Q from the obtained flow velocity V, coefficient k, and cross-sectional area S of the pipe according to the above-described equation (4) (step S24).

MPUは計算した、流速V、流量Qを表示器11に表示する。あるいは計測した流速V、流量Qのデータを図示しないネットワークを介してプロセスコントローラ(コンピュータ)等に送出する(ステップS26)。
このようにしてMPUはイベントの発生の度に流速、流量の計算を行って出力する。
The MPU displays the calculated flow velocity V and flow rate Q on the display 11. Alternatively, the measured flow velocity V and flow rate Q are sent to a process controller (computer) or the like via a network (not shown) (step S26).
In this way, the MPU calculates and outputs the flow velocity and flow rate every time an event occurs.

(実施例の効果の説明)
上述した実施例によれば、メモリに記憶した超音波信号波形から伝播時間t1,t2を求めて音速Cを計算し、伝播時間差法の式(3)に当てはめて流速Vを計算する。このため、音速Cを求めるための温度計や、変換マップ(図4)、流体の材質に応じた修正等を必要としない利点がある。
(Explanation of effect of embodiment)
According to the above-described embodiment, the propagation speeds t 1 and t 2 are obtained from the ultrasonic signal waveforms stored in the memory, the sound velocity C is calculated, and the flow velocity V is calculated by applying the equation (3) of the propagation time difference method. For this reason, there is an advantage that a thermometer for obtaining the sound velocity C, a conversion map (FIG. 4), correction according to the material of the fluid, and the like are not required.

(比較例)
既述した特開平10−332452号公報、特開2001−141537号公報に記載の超音波流量計(比較例)では、本願とは異なる「伝播時間逆数差方式」により流束を求めている。伝播時間逆数差方式は下式により流速を計算する。同式における記号の意味は式(3)の場合と同様である。
V=(L/2cosθ){(1/t1)−(1/t2)} 式(6)
伝播時間逆数差方式により計算する場合には、本実施例のように音速Cを計算しないで済む。伝播時間t1,t2を求めてこれ等の逆数の差から流速Vを求める。
しかしながら、この際に必要となる時間精度は一般にサブナノ秒のオーダーであり(例えば、0.3n秒程度であってA/D変換器を使用できない)、特別な構成のアナログ検出回路を用いて特徴点における時間t1’,t2’を直接検出し、これを補正して伝播時間t1,t2を求めている。別言すれば、比較例は信号検出の主要部分をアナログ回路やゲート回路等で構成するもので、受信信号データをデジタル信号処理する構成ではない。
(Comparative example)
In the ultrasonic flowmeters (comparative examples) described in Japanese Patent Laid-Open Nos. 10-332452 and 2001-141537, the flux is obtained by the “reciprocal difference in propagation time” different from the present application. The inverse propagation time difference method calculates the flow velocity by the following formula. The meaning of the symbols in the formula is the same as in the formula (3).
V = (L / 2 cos θ) {(1 / t 1 ) − (1 / t 2 )} Equation (6)
When calculating by the propagation time reciprocal difference method, it is not necessary to calculate the sound velocity C as in this embodiment. The propagation times t 1 and t 2 are obtained, and the flow velocity V is obtained from the difference between these reciprocals.
However, the time accuracy required at this time is generally on the order of sub-nanoseconds (for example, about 0.3 nsec and an A / D converter cannot be used), and is characterized by using a specially configured analog detection circuit. Propagation times t 1 and t 2 are obtained by directly detecting the times t 1 ′ and t 2 ′ at the points and correcting them. In other words, in the comparative example, the main part of signal detection is configured by an analog circuit, a gate circuit, or the like, and is not configured to process received signal data digitally.

これに対して、本実施例の相関法では2つの信号の信号波形全体で相関性を評価するので、受信信号のサンプリングインターバルは数10nS(例えば、20nS)であり、A/D変換器によって信号データを得てデジタル処理することが可能である。これは、相関法では「伝搬時間逆数差方式」に要求される時間分解能に比べてサンプリングにおける必要な時分解能が2桁も大きい(サンプリング間隔が長い)ことに起因する。   On the other hand, in the correlation method of this embodiment, the correlation is evaluated for the entire signal waveforms of the two signals, so the sampling interval of the received signal is several tens of nS (for example, 20 nS), and the signal is output by the A / D converter. Data can be obtained and digitally processed. This is because the time resolution required for sampling is two orders of magnitude larger (sampling interval is longer) than the time resolution required for the “reciprocal propagation time difference method” in the correlation method.

本発明では、上記比較例と比べて相関演算で伝搬時間差Δtを求めるためにサンプリングした超音波信号の波形データを活用して流速V及び音速Cを十分な精度で算出できる利点がある。   The present invention has an advantage that the flow velocity V and the sound velocity C can be calculated with sufficient accuracy by utilizing the waveform data of the ultrasonic signal sampled in order to obtain the propagation time difference Δt by the correlation calculation as compared with the comparative example.

次に、本発明による検出方法で相関法のために取得した信号データを活用して音速を計算するが、当該取得信号データでも音速を十分な精度で検出できることについて説明する。
(流速を算出する場合の時間精度)
まず、次のような仕様の流速計を仮定する。
「超音波周波数:1[MHz]、最大流速時の伝播時間差:1[μS](超音波信号の1周期分)、最小流速:最大流速の1/100、許容誤差:±3%RD」
伝播時間差は流速に比例するので(式(3)参照)、最小流速での伝播時間差は最大流速での伝播時間差(1[μS])の1/100の10nSとなる。したがって、最小流速での±3%RDの誤差は伝播時間差では±0.3nSとなる。この例のように伝播時間差には一般にサブnSの精度が必要となる。なお、伝播時間逆数差方式を使う場合でも伝播時間の測定はサブnS程度の精度が必要となる。
Next, the sound speed is calculated by using the signal data acquired for the correlation method by the detection method according to the present invention. It will be described that the sound speed can be detected with sufficient accuracy even with the acquired signal data.
(Time accuracy when calculating flow velocity)
First, an anemometer with the following specifications is assumed.
“Ultrasonic frequency: 1 [MHz], propagation time difference at maximum flow velocity: 1 [μS] (one cycle of ultrasonic signal), minimum flow velocity: 1/100 of maximum flow velocity, tolerance: ± 3% RD”
Since the propagation time difference is proportional to the flow velocity (see Equation (3)), the propagation time difference at the minimum flow velocity is 10 nS, which is 1/100 of the propagation time difference at the maximum flow velocity (1 [μS]). Therefore, the error of ± 3% RD at the minimum flow rate is ± 0.3 nS in the propagation time difference. As in this example, the sub-nS accuracy is generally required for the propagation time difference. Even when using the propagation time reciprocal difference method, the measurement of propagation time requires an accuracy of about sub-nS.

(音速を算出する場合の時間精度)
式(3)を音速Cで微分すると、
(dV/dC)=(C/Lcosθ)ΔT 式(7)
となる。なお、ΔTは、相関法によりにより別途測定されていると考える。
音速の変化δCに対する流速の変化δVは
δV=(C/Lcosθ)ΔTδC
と表される。この式を式(3)で割ると、
(δV/V)=2(δC/C) 式(8)
となる。
(Time accuracy when calculating sound speed)
Differentiating equation (3) with the speed of sound C,
(DV / dC) = (C / Lcos θ) ΔT Equation (7)
It becomes. Note that ΔT is separately measured by the correlation method.
The change in flow velocity δV relative to the change in sound velocity δC is δV = (C / Lcosθ) ΔTδC
It is expressed. Dividing this equation by equation (3) gives
(ΔV / V) = 2 (δC / C) Equation (8)
It becomes.

温度を算出する式(5)は2つの伝播時間t1,t2の関数となっているが、t2を固定しておきt1と音速の関係に着目する。
式(5)をt1について微分すると、(dC/dt1)=−(L/2)(1/t1 2)となるので、伝播時間の変化δt1に対する音速の変化δCは、
δC=−(L/2)(1/t1 2)δt1
である。流速Vに対して音速Cが十分に早い場合にはt1とt2はほぼ等しく、式(5)はC≒(L/t1)となるので、上式をこれで割ると
(δC/C)=−(1/2)(δt1/t1) 式(9)
Equation (5) for calculating the temperature is a function of the two propagation times t 1 and t 2 , and attention is paid to the relationship between t 1 and the speed of sound with t 2 fixed.
When the equation (5) is differentiated with respect to t 1 , (dC / dt 1 ) = − (L / 2) (1 / t 1 2 ), so the change in sound velocity δC with respect to the change in propagation time δt 1 is
δC = − (L / 2) (1 / t 1 2 ) δt 1
It is. When the sonic velocity C is sufficiently faster than the flow velocity V, t 1 and t 2 are almost equal, and the equation (5) becomes C≈ (L / t 1 ). Therefore, the above equation is divided by this (δC / C) = − (1/2) (δt 1 / t 1 ) Equation (9)

式(8)、式(9)より
δV/V=−(δt1/t1) もしくは|δV/V|=|δt1/t1| 式(10)
となる。
From Equation (8) and Equation (9), δV / V = − (δt 1 / t 1 ) or | δV / V | = | δt 1 / t 1 | Equation (10)
It becomes.

すなわち、「音速を算出する場合」に関しては流速の変化率と伝播時間の変化率の大きさ(絶対値)は等しい。t1を固定しておきt2を変化させた場合も符号が異なるだけで同様な結果が得られる。 That is, with respect to “when calculating the speed of sound”, the rate of change in flow velocity and the rate of change in propagation time (absolute value) are equal. When t 1 is fixed and t 2 is changed, the same result can be obtained only by changing the sign.

「流速を算出する場合」と同じ仮定で、流速の精度が±3%RD(許容誤差)であるとすると、
|δV/V|=|δt1/t1|=3/100 となる。
Assuming that the accuracy of the flow velocity is ± 3% RD (allowable error) under the same assumption as “when calculating the flow velocity”,
| δV / V | = | δt 1 / t 1 | = 3/100.

例えば、超音波の伝播経路Lが10[cm]で音速Cが1500[m/S]であるとすると、伝播時間は67[μS]になる。この時、流速精度3%RDに相当する伝播時間の変化は、 |δt1|=(3/100)×67[μS]=2[μS] となる。 For example, if the ultrasonic wave propagation path L is 10 [cm] and the sound velocity C is 1500 [m / S], the propagation time is 67 [μS]. At this time, the change in propagation time corresponding to the flow rate accuracy of 3% RD is | δt 1 | = (3/100) × 67 [μS] = 2 [μS].

すなわち、流速の精度±3%RDを得るためには、音速に関しては伝播時間のばらつきが2[μS]以内であれば良いことになる。これは流速を算出する場合に必要となる許容ばらつきの6000倍以上である。また、時間分解能としても20[nS](=0.02[μS])のサンプリングで十分であるといえる。   That is, in order to obtain a flow velocity accuracy of ± 3% RD, it is sufficient that the variation in propagation time is within 2 [μS] with respect to the sound velocity. This is more than 6000 times the allowable variation required when calculating the flow velocity. Further, it can be said that sampling of 20 [nS] (= 0.02 [μS]) is sufficient for the time resolution.

以上説明したように、本発明の実施例によれば、流路に送受信器を配置した伝播時間差法(相関法)による流速(あるいは流量)の計測方法において、流路の順方向及び逆方向における受信信号の波形全体の信号データをメモリに記憶し、2つの受信信号の信号データの相互相関演算から伝播時間差Δtを求め、また、メモリに記憶した受信信号の信号データの波形から特徴点を抽出して伝播時間t1,t2を求め、伝播時間t1,t2から音速Cを求め、伝搬時間差Δtと音速Cから伝播時間差法による式(3)によって流速V(流量Q)の算出を行う構成としているので、温度計を使用せずに流速、流量を計算することが可能となる。 As described above, according to the embodiment of the present invention, in the flow velocity (or flow rate) measurement method by the propagation time difference method (correlation method) in which the transmitter / receiver is arranged in the flow channel, in the forward direction and the reverse direction of the flow channel. The signal data of the entire received signal waveform is stored in the memory, the propagation time difference Δt is obtained from the cross-correlation calculation of the signal data of the two received signals, and the feature points are extracted from the waveform of the received signal signal data stored in the memory. Then, the propagation times t 1 and t 2 are obtained, the sound velocity C is obtained from the propagation times t 1 and t 2 , and the flow velocity V (flow rate Q) is calculated from the propagation time difference Δt and the sound velocity C by the propagation time difference method (3). Since it is configured to perform, it is possible to calculate the flow velocity and flow rate without using a thermometer.

なお、上記発明の実施の形態を通じて説明された実施例は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の記載に限定されるものではない。そのような組み合わせ又は変更若しくは改良を加えた形態も本発明の技術的範囲に含まれ得る。   It should be noted that the examples described through the above-described embodiments of the present invention can be used in appropriate combination depending on the application, or can be used with modifications or improvements, and the present invention is limited to the description of the above-described embodiments. It is not a thing. The form which added such a combination or a change or improvement can also be contained in the technical scope of this invention.

本発明は、流体の流速の計測、流体の流量の計測、超音波流速計、超音波流量計等に用いて好都合である。また、流速計や流量計を用いる装置あるいは制御システムに適用することが可能である。   The present invention is advantageously used for measurement of fluid flow velocity, measurement of fluid flow rate, ultrasonic flowmeter, ultrasonic flowmeter and the like. Further, the present invention can be applied to a device or a control system using a velocimeter or a flow meter.

10 コントローラ
11 表示器
20 送信系
21 増幅器
22 信号切替器
31 配管(流路)
32 送受信器
33 送受信器
41 信号切替器
42 増幅器
43 A/D変換器
44 メモリ
10 Controller 11 Display 20 Transmission System 21 Amplifier 22 Signal Switcher 31 Piping (Flow Path)
32 Transmitter / Receiver 33 Transmitter / Receiver 41 Signal Switcher 42 Amplifier 43 A / D Converter 44 Memory

Claims (7)

流路の流体の流速を相関法を使用して求める流速の計測方法であって、
前記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する過程と、
前記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する過程と、
前記第1及び第2の超音波信号の波形データ相互の相関関数から伝播時間差を求める過程と、
前記第1の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の順方向伝播時間を求める過程と、
前記第2の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の逆方向伝播時間を求める過程と、
前記流路の2点間の距離、前記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて前記超音波信号の音速を計算する過程と、
前記流路の2点間の距離、前記伝播時間差、前記音速に基づいて前記流体の流速を計算する過程と、
を含む流速の計測方法。
A flow velocity measurement method for obtaining a flow velocity of a fluid in a flow path using a correlation method,
Acquiring waveform data of a first ultrasonic signal propagating forward between two points of the flow path;
Acquiring waveform data of a second ultrasonic signal propagating in a reverse direction between two points of the flow path;
Obtaining a propagation time difference from a correlation function between the waveform data of the first and second ultrasonic signals;
Extracting a feature point of the waveform from the waveform data of the first ultrasonic signal, and obtaining a forward propagation time of the ultrasonic signal between the two points of the flow path;
Extracting a feature point of the waveform from the waveform data of the second ultrasonic signal, and obtaining a backward propagation time of the ultrasonic signal between the two points of the flow path;
Calculating the speed of sound of the ultrasonic signal based on the distance between two points of the flow path, the forward propagation time and the reverse propagation time of the ultrasonic signal;
Calculating the flow velocity of the fluid based on the distance between the two points of the flow path, the propagation time difference, and the speed of sound;
Flow velocity measurement method including
前記音速を計算する過程は、
前記音速をC、前記2点間の距離をL、前記順方向伝播時間をt1、前記逆方向伝播時間t2、として、
C=(L/2)((1/t1)+(1/t2))
を計算することによって音速Cを求める、
ことを特徴とする請求項1に記載の流速の計測方法。
The process of calculating the sound speed is as follows:
Assuming that the speed of sound is C, the distance between the two points is L, the forward propagation time is t 1 , and the backward propagation time t 2 ,
C = (L / 2) ((1 / t 1 ) + (1 / t 2 ))
Calculate the speed of sound C by calculating
The method of measuring a flow velocity according to claim 1.
前記流体の流速を計算する過程は、
前記流体の流速をV、前記音速をC、前記伝播時間差をΔt、前記流体の流れ方向と前記超音波信号の伝播方向とのなす角度をθとして、
V≒(C2/2Lcosθ)Δt
を計算することによって流速Vを得る、
ことを特徴とする請求項1又は2に記載の流速の計測方法。
The process of calculating the fluid flow velocity is as follows:
V is the flow velocity of the fluid, C is the speed of sound, Δt is the propagation time difference, and θ is the angle between the flow direction of the fluid and the propagation direction of the ultrasonic signal,
V≈ (C 2 / 2L cos θ) Δt
To obtain the flow velocity V by calculating
The method for measuring a flow velocity according to claim 1 or 2, wherein:
前記順方向伝播時間及び逆方向伝播時間を求める過程は、
取得した前記超音波信号の波形データから波形の特徴点を判別し、この特徴点の時間軸上の位置から予め定められた値を補正するものである、ことを特徴とする請求項1乃至3のいずれかに記載の流速の計測方法。
The process of obtaining the forward propagation time and the backward propagation time,
4. A feature point of a waveform is discriminated from the acquired waveform data of the ultrasonic signal, and a predetermined value is corrected from a position on the time axis of the feature point. The flow velocity measuring method according to any one of the above.
請求項1乃至4のいずれかに記載の流速の計算方法によって求められた流速に前記流路の断面積を乗じて流量を求める、流量の計測方法。   A flow rate measurement method for obtaining a flow rate by multiplying a flow velocity obtained by the flow velocity calculation method according to claim 1 by a cross-sectional area of the flow path. 流路の流体の流速を相関法を使用して求める超音波流速計であって、
前記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する手段と、
前記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する手段と、
前記第1及び第2の超音波信号の波形データを記憶する記憶手段と、
前記第1及び第2の超音波信号の波形データ相互の相関関数から伝播時間差を求める手段と、
前記第1の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の順方向伝播時間を求める手段と、
前記第2の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の逆方向伝播時間を求める手段と、
前記流路の2点間の距離、前記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて前記超音波信号の音速を計算する手段と、
前記流路の2点間の距離、前記伝播時間差、前記音速に基づいて前記流体の流速を計算する手段と、
を備える流速計。
An ultrasonic anemometer that determines a flow velocity of a fluid in a flow path using a correlation method,
Means for acquiring waveform data of a first ultrasonic signal propagating in a forward direction between two points of the flow path;
Means for acquiring waveform data of a second ultrasonic signal propagating in a reverse direction between two points of the flow path;
Storage means for storing waveform data of the first and second ultrasonic signals;
Means for obtaining a propagation time difference from a correlation function between waveform data of the first and second ultrasonic signals;
Means for extracting a characteristic point of the waveform from the waveform data of the first ultrasonic signal, and obtaining a forward propagation time of the ultrasonic signal between the two points of the flow path;
Means for extracting a characteristic point of the waveform from the waveform data of the second ultrasonic signal, and obtaining a backward propagation time of the ultrasonic signal between the two points of the flow path;
Means for calculating the speed of sound of the ultrasonic signal based on a distance between two points of the flow path, a forward propagation time and a backward propagation time of the ultrasonic signal;
Means for calculating the flow velocity of the fluid based on the distance between the two points of the flow path, the propagation time difference, and the speed of sound;
An anemometer.
流路の流体の流速を相関法を使用して求める超音波流量計であって、
前記流路の2点間を順方向に伝播する第1の超音波信号の波形データを取得する手段と、
前記流路の2点間を逆方向に伝播する第2の超音波信号の波形データを取得する手段と、
前記第1及び第2の超音波信号の波形データを記憶する記憶手段と、
前記第1及び第2の超音波信号の波形データ相互の相関関数から伝播時間差を求める手段と、
前記第1の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の順方向伝播時間を求める手段と、
前記第2の超音波信号の波形データから波形の特徴点を抽出し、前記流路の2点間における超音波信号の逆方向伝播時間を求める手段と、
前記流路の2点間の距離、前記超音波信号の順方向伝播時間及び逆方向伝播時間に基づいて前記超音波信号の音速を計算する手段と、
前記流路の2点間の距離、前記伝播時間差、前記音速に基づいて前記流体の流速を計算する手段と、
得られた流速に前記流路の断面積を乗じて流量を求める手段と、
を備える流量計。
An ultrasonic flowmeter that uses a correlation method to determine the flow velocity of a fluid in a flow path,
Means for acquiring waveform data of a first ultrasonic signal propagating in a forward direction between two points of the flow path;
Means for acquiring waveform data of a second ultrasonic signal propagating in a reverse direction between two points of the flow path;
Storage means for storing waveform data of the first and second ultrasonic signals;
Means for obtaining a propagation time difference from a correlation function between waveform data of the first and second ultrasonic signals;
Means for extracting a characteristic point of the waveform from the waveform data of the first ultrasonic signal, and obtaining a forward propagation time of the ultrasonic signal between the two points of the flow path;
Means for extracting a characteristic point of the waveform from the waveform data of the second ultrasonic signal, and obtaining a backward propagation time of the ultrasonic signal between the two points of the flow path;
Means for calculating the speed of sound of the ultrasonic signal based on a distance between two points of the flow path, a forward propagation time and a backward propagation time of the ultrasonic signal;
Means for calculating the flow velocity of the fluid based on the distance between the two points of the flow path, the propagation time difference, and the speed of sound;
Means for obtaining the flow rate by multiplying the obtained flow velocity by the cross-sectional area of the flow path;
A flow meter comprising.
JP2011229941A 2011-10-19 2011-10-19 Method for measuring flow velocity and flow volume Pending JP2013088322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229941A JP2013088322A (en) 2011-10-19 2011-10-19 Method for measuring flow velocity and flow volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229941A JP2013088322A (en) 2011-10-19 2011-10-19 Method for measuring flow velocity and flow volume

Publications (1)

Publication Number Publication Date
JP2013088322A true JP2013088322A (en) 2013-05-13

Family

ID=48532368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229941A Pending JP2013088322A (en) 2011-10-19 2011-10-19 Method for measuring flow velocity and flow volume

Country Status (1)

Country Link
JP (1) JP2013088322A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132488A (en) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter
JP2015222186A (en) * 2014-05-22 2015-12-10 横河電機株式会社 Ultrasonic flowmeter
CN105953948A (en) * 2016-05-13 2016-09-21 珠海格力电器股份有限公司 Method and system for detecting refrigerating capacity
KR20160128220A (en) 2015-04-28 2016-11-07 아즈빌주식회사 Ultrasonic integrated thermometer
CN109580262A (en) * 2017-09-28 2019-04-05 奥克斯空调股份有限公司 A kind of air conditioner test device
CN111597718A (en) * 2020-05-19 2020-08-28 成都千嘉科技有限公司 Method for designing flow channel of ultrasonic flowmeter or gas meter
CN113124948A (en) * 2021-05-20 2021-07-16 中国计量大学 High-precision time difference measuring method based on FPGA and cross-correlation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926341A (en) * 1995-07-12 1997-01-28 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
WO2000016044A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. System for distinguishing appliance
JP2004264195A (en) * 2003-03-03 2004-09-24 Ricoh Elemex Corp Ultrasonic flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926341A (en) * 1995-07-12 1997-01-28 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
WO2000016044A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. System for distinguishing appliance
JP2004264195A (en) * 2003-03-03 2004-09-24 Ricoh Elemex Corp Ultrasonic flowmeter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132488A (en) * 2014-01-10 2015-07-23 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter
JP2015222186A (en) * 2014-05-22 2015-12-10 横河電機株式会社 Ultrasonic flowmeter
KR20160128220A (en) 2015-04-28 2016-11-07 아즈빌주식회사 Ultrasonic integrated thermometer
CN105953948A (en) * 2016-05-13 2016-09-21 珠海格力电器股份有限公司 Method and system for detecting refrigerating capacity
CN109580262A (en) * 2017-09-28 2019-04-05 奥克斯空调股份有限公司 A kind of air conditioner test device
CN111597718A (en) * 2020-05-19 2020-08-28 成都千嘉科技有限公司 Method for designing flow channel of ultrasonic flowmeter or gas meter
CN113124948A (en) * 2021-05-20 2021-07-16 中国计量大学 High-precision time difference measuring method based on FPGA and cross-correlation method

Similar Documents

Publication Publication Date Title
JP2013088322A (en) Method for measuring flow velocity and flow volume
Chen et al. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique
JP5447561B2 (en) Ultrasonic measuring instrument
US8234933B2 (en) Ultrasonic meter for determining physical quantity of a fluid based on a determined plurality of correlation coefficients
JP2005241546A (en) Doppler ultrasonic flowmeter, processing device thereof and program
JP5321106B2 (en) Ultrasonic measuring instrument
CN107478282B (en) Ultrasonic flow detection signal processing method and device and time difference method ultrasonic detection system
JP2007187506A (en) Ultrasonic flowmeter
JP2011145289A (en) Flow rate measuring device
JP5408411B2 (en) Ultrasonic measuring instrument
EP3164680B1 (en) Method of measuring time of flight of an ultrasound pulse
JP5948566B2 (en) Flow measuring device
KR101764870B1 (en) Signal processing system for ultrasonic floemeter
JP2006343292A (en) Ultrasonic flowmeter
JP4180396B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP4797515B2 (en) Ultrasonic flow measuring device
WO2007083713A1 (en) Doppler type ultrasonic flow meter, flow metering method, and computer program
JP5231278B2 (en) Ultrasonic flow meter
JP2018136276A (en) Ultrasonic flowmeter
JP2013185891A (en) Device and method for ultrasonic flow metering
JP4278171B1 (en) Ultrasonic flow meter and flow measurement method
CN107532933B (en) Method for determining the transit time of an ultrasonic pulse train, in particular in an ultrasonic flow meter, flow meter
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution
JP2012107874A (en) Ultrasonic flowmeter
JP5867708B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151016