JP2004264195A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2004264195A
JP2004264195A JP2003055577A JP2003055577A JP2004264195A JP 2004264195 A JP2004264195 A JP 2004264195A JP 2003055577 A JP2003055577 A JP 2003055577A JP 2003055577 A JP2003055577 A JP 2003055577A JP 2004264195 A JP2004264195 A JP 2004264195A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow rate
time
sampling
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055577A
Other languages
Japanese (ja)
Other versions
JP4266117B2 (en
Inventor
Shinji Kurita
真二 栗田
Hiroshi Onda
浩 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2003055577A priority Critical patent/JP4266117B2/en
Publication of JP2004264195A publication Critical patent/JP2004264195A/en
Application granted granted Critical
Publication of JP4266117B2 publication Critical patent/JP4266117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter in which the time required for detecting an arrival time difference is relatively shortened to save energy, with no increase in consumption amount of a battery. <P>SOLUTION: A first oscillator 21 is switched to a reception side while a second oscillator 31 is switched to a transmission side by a switching means 7 (S4), and an ultrasonic wave is transmitted from the second oscillator 31 toward the first oscillator 21 positioned on the upper stream side (S5). Here, the ultrasonic reception waveform which is received with the first oscillator 21 is sampled and A/D converted at a prescribed cycle in the direction of time axis, acquiring each sampling value (2)(S6). Based on each sampling value (2) acquired in S6 and a sampling value (1) that corresponds to the one stored in a sampling value storage area 42a at S3, a correlation coefficient between (1) and (2) is acquired (S7). The value of time axis where the correlation coefficient indicates a maximum value is directly read to acquire an arrival time difference ΔT, for calculating a flow rate Q (S8). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関する。
【0002】
【従来の技術】
従来、都市ガス、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。その際の測定原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上手側及び下手側に一対の超音波送受信部を設け、超音波信号の送受信を交互に切り替えて、流れ方向上手側の超音波送信部(送信側振動子)から流れ方向下手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、順方向到達時間という)と、流れ方向下手側の超音波送信部(送信側振動子)から流れ方向上手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、逆方向到達時間という)との時間差から流路を流れる流体の平均流速及び流量を求める方法である。
【0003】
この順方向到達時間と逆方向到達時間との時間差を求めるには、
▲1▼超音波受信波形において、所定の閾値を超える(又は下回る)に至る波形部分をトリガー波とし、このトリガー波の振幅がゼロとなるゼロクロス点を受信波形上で検出する「ゼロクロス法」により、順方向到達時間と逆方向到達時間とをそれぞれ計測し、その時間差を算出する方法(特許文献1参照);
▲2▼順方向の超音波受信波形と逆方向の超音波受信波形とはほぼ等しい(合同である)との前提のもとに、DSP(ディジタル・シグナル・プロセッサ)等の高速A/D変換素子によって両波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、両波形の対応するサンプリング値を減算して相関係数を求める「相関法」により、順方向到達時間と逆方向到達時間との時間差を直接求める方法(特許文献2参照);
等が知られている。
【0004】
【特許文献1】
特開2002−13958号公報
【特許文献2】
特開平11−241934号公報
【0005】
【発明が解決しようとする課題】
これらの方法はいずれも、超音波信号の送受信を交互に切り替えて得られる一対の超音波受信波形から到達時間差を毎回検出し、平均流速及び流量を毎回計測する。しかしながら、例えばガスメータにおいて、現実にはガス管を流れるガスの流量にさほど変化が見られない場合が意外に多い。つまり、工場設備においては一定流量を流す使用形態が通常であり、一般家庭ではガスを使用しない時間帯が相当長い。したがって、毎回必ず到達時間差を検出することは、到達時間差の検出に割かれる時間が相対的に長くなり、測定用電源としての電池の消耗量が増加する。また、電池の無駄な消耗はエネルギー消費の面からみても好ましくない。特に、相関法では、到達時間差の検出精度は高いが、データ処理量が多いため電池の消耗度が激しくなる。
【0006】
そこで本発明の課題は、到達時間差の検出に割く時間を相対的に短くし、電池の消耗量を増加させることなく、省エネルギーを図ることのできる超音波流量計を提供することにある。
【0007】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために本発明に係る超音波流量計は、
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた同方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
を備えることを特徴とする。
【0008】
この超音波流量計によれば、流量変化判定手段において流量が一定(流量変化なし)と判断されたときには到達時間差(ひいては流体流量)を計測せず、流量変化ありと判断されたときにのみ計測するようにできるので、到達時間差の検出に割かれる時間が相対的に短くなり、電池の消耗量の抑制と省エネルギー化を図れる。
【0009】
したがって、上記課題を解決するために本発明に係る超音波流量計は、第一の具体的態様として、
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた他方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
さらにその後に得られた一方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
を備えることを特徴とする。
【0010】
また、上記課題を解決するために本発明に係る超音波流量計は、第二の具体的態様として、
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた同方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
その流量変化判定手段において、前記差分が前記閾値より大となって前記流量が変化したと判定されたときに、後から得られた一方向の超音波受信波形に係る各サンプリング値を前記記憶手段に書き換え入力するとともに、他方向に向け超音波の送信が行われ、その超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
を備えることを特徴とする。
【0011】
さらに、上記課題を解決するために本発明に係る超音波流量計は、第三の具体的態様として、
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた他方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
さらにその後に得られた一方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段とを備え、
前記流量変化判定手段において、前記差分が前記閾値より大となって前記流量が変化したと判定されたときに、後から得られた一方向の超音波受信波形に係る各サンプリング値を前記記憶手段に書き換え入力するとともに、再び他方向に向け超音波の送信が行われ、前記相関係数演算手段により、その超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求め、
前記流量算出手段により、前記相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出することを特徴とする。
【0012】
したがって、これらの超音波流量計によれば、相関係数演算又は流量変化判定で用いたサンプリング値を記憶手段に記憶しておいて、次回の流量変化判定又は相関係数演算で用いることができるので、サンプリングデータを無駄なく活用でき電池の消耗を少なくすることができる。特に、これらの超音波流量計のように相関法によって到達時間差を計測するために、データ処理量が多くなっても電池の消耗を抑制できる。
【0013】
相関係数演算手段において、超音波送信時を基準とし、超音波の伝搬距離に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始するようにすれば、到達時間差の計測のために実際に必要とされるサンプリングデータに絞って取得することができ、電池の消耗を抑制できる他、記憶手段の記憶容量も小さくてすむ。
【0014】
一方、流量変化判定手段において、超音波送信時を基準とし、超音波の伝搬距離に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始する場合にも、流量変化の判定のために実際に必要とされるサンプリングデータに絞って取得することができ、電池の消耗を抑制できる他、記憶手段の記憶容量も小さくてすむ。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の基本構成を示す。この超音波流量計100の流量測定用の流路1には、流量測定用ガス(流体)が流れ方向軸線Oに沿って図示の流れ方向に流通(平均流速v)している。また、流路1の壁10には、一対の超音波送受信部2,3が取り付けられている。図1では、流体の流れ方向上手側の超音波送受信部2(送受信振動子21(第一振動子))と流体の流れ方向下手側の超音波送受信部3(送受信振動子31(第二振動子))とが流路1を挟んで対向配置された透過型Z配列に構成されている。
【0016】
測定用の流路1は、少なくとも一対の超音波送受信部2,3間において流れ方向軸線Oが直線状であり、軸断面の形状及び断面積が流れ方向において同一に形成されている。測定対象がガスの場合、測定用流路1の軸断面形状は壁10により閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。なお、測定対象が水等の液体であれば、測定用流路1の軸断面形状として壁10の天頂部が大気中に開放されたオープン形状(例えば半円形状等)を採用できる場合がある。
【0017】
超音波送受信部2は、流路1の壁10に固定され、圧電素子、振動板、電極板等から構成される送受信振動子21(第一振動子)を備えている。一方、超音波送受信部3は、超音波送受信部2(第一振動子21)よりも流れ方向下手側の壁10に固定され、圧電素子、振動板、電極板等から構成される送受信振動子31(第二振動子)を備えている。さらに、これら一対の超音波送受信部2,3には、第一振動子21又は第二振動子31を発振させるための駆動電圧回路等から構成される送信手段22と、第一振動子21又は第二振動子31の発生電圧を検出するための電圧検出回路等から構成される受信手段32とを備えている。これによって、第一振動子21は、流体の流れ方向下手側(超音波送受信部3側)に向けて超音波を送信するとともに、第二振動子31で送信された超音波を受信する。一方、第二振動子31は、流体の流れ方向上手側(超音波送受信部2側)に向けて超音波を送信するとともに、第一振動子21で送信された超音波を受信する。
【0018】
図1において、ガスの平均流速をv、ガス中を伝搬する音速をc、超音波の進行方向(測線M)とガスの流れ方向(流れ方向軸線O)とのなす角をθ(以下、測線角という)、超音波の伝搬距離をLとすると、順方向到達時間Td及び逆方向到達時間Tuはそれぞれ次のように表わされる。
Td=L/(c+v・cosθ) (1)
Tu=L/(c−v・cosθ) (2)
(1)、(2)式より次式が得られる。
v=K(L/2cosθ)(Tu−Td)/(Tu・Td) (3)
Q=v・A (4)
ただし、Kは補正係数、Aは流路1の断面積、Qはガスの流量である。
したがって、順方向到達時間Tdと逆方向到達時間Tu(到達時間差ΔT)の測定から、ガスの平均流速vと流量Qが求められる。このように、ガスの温度・含有成分等に依存する音速cを(3)式から消去することで、測定値(到達時間Td,Tu;到達時間差ΔT)と一定値(伝搬距離L,測線角θ)とから流速vが得られる利点を有している。
【0019】
そこで、図1に示すように、超音波流量計100には、計測部として、計測制御部4と切換手段7とが備えられている。切換手段7は、受信手段32で処理すべき信号を切り換える受信信号切換手段71と、送信する振動子21,31を切り換える送信切換手段72とを有する。
【0020】
計測制御部4は、CPU41、RAM42、ROM43、入出力インターフェース44等を有し、これらがバス45により送受信可能に接続されたマイクロコンピュータにより構成されている。ROM43は、流量計測プログラム格納エリア43aを有している。このエリア43aには流量を計測するための制御プログラム等が格納されている。RAM42には後述するサンプリング値がワークエリアとしてのサンプリング値記憶エリア42aに記憶され、サンプリング値記憶手段(記憶手段)の機能を有している。なお、CPU31は、後述する相関係数演算手段、流量算出手段及び流量変化判定手段としての各機能を有している。
【0021】
次に、図2のタイミングチャートを参照しつつ、図3のフローチャートにより超音波流量計100の計測部の作動を説明する。
まず、切換手段7により第一振動子21を送信側、第二振動子31を受信側に切り換え(S1)、第一振動子21から流れ方向下手側の第二振動子31へ向けて超音波を送信する(S2)。このとき第二振動子31で受信された超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値▲1▼をRAM42のサンプリング値記憶エリア42aに記憶する(S3)。
【0022】
続いて、切換手段7により第一振動子21を受信側、第二振動子31を送信側に切り換え(S4)、第二振動子31から流れ方向上手側の第一振動子21へ向けて超音波を送信する(S5)。このとき第一振動子21で受信された超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値▲2▼を取得する(S6)。S6で得られた各サンプリング値▲2▼とS3でサンプリング値記憶エリア42aに記憶された対応するサンプリング値▲1▼とに基づいて、▲1▼と▲2▼との相関係数を求める(S7)。なお、S6のサンプリング値▲2▼取得の際には、図2に示すように、超音波送信時(S5)を基準とし、超音波の伝搬距離L(図1参照)に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始する。したがって、電池消耗を抑制しながら必要なサンプリング値のみデータ取得でき、このことは、サンプリング値記憶エリア42aの記憶容量抑制にもなる。
【0023】
図4(a)は、S3でサンプリング値記憶エリア42aに記憶されたサンプリング値▲1▼を示し、図4(b)は、S6で取得されたサンプリング値▲2▼を示している。図4(a)と図4(b)とを用いて、相関法(S7)により図4(c)の相関係数を演算する。そして、図4(c)において、相関係数が最大値を示す時間軸の値を直接読み取って到達時間差ΔTを求め、既述の式(3),(4)より流量Qを算出する(S8)。ここで、本実施例では相関係数を演算する際にサンプリング値を直接用いているが、例えば、得られたサンプリングデータを近似式化して相関係数を求めるなど、他の演算方法を用いることもできる。
【0024】
再び、切換手段7により第一振動子21を送信側、第二振動子31を受信側に切り換え(S9)、第一振動子21から流れ方向下手側の第二振動子31へ向けて超音波を送信する(S10)。このとき第二振動子31で受信された超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値▲3▼を取得する(S11)。そして、S11で得られた各サンプリング値▲3▼とS3でサンプリング値記憶エリア42aに記憶された対応するサンプリング値▲1▼との差分を求め、この差分が所定の閾値より小さいときに(S12でNO)流量Qが一定であると判定しS10に戻り、第一振動子21からの超音波送信(S10)と、サンプリング値▲3▼の取得(S11)を反復する。差分が閾値より大の場合に(S12でYES)流量Qが変化したと判定し、S11で得られた各サンプリング値▲3▼をサンプリング値記憶エリア42aに書き換え入力して(S13)、S4にリターンする。なお、S11のサンプリング値▲3▼取得の際には、図2に示すように、超音波送信時(S10)を基準とし、超音波の伝搬距離L(図1参照)に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始する。したがって、電池消耗を抑制しながら必要なサンプリング値のみデータ取得でき、このことは、サンプリング値記憶エリア42aの記憶容量抑制にもなる。
【0025】
図5(a)は、S11で取得されたサンプリング値▲3▼を示し、図5(b)は、そのサンプリング値▲3▼とS3で記憶エリア42aに記憶されたサンプリング値▲1▼との差分が閾値と比較(S12)される様子を示している。
【0026】
なお、S4に戻ると、再び切換手段7により第一振動子21を受信側、第二振動子31を送信側に切り換え(S4)、第二振動子31から流れ方向上手側の第一振動子21へ向けて超音波を送信する(S5)。このとき第一振動子21で受信された超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値▲2▼を取得する(S6)。S6で得られた各サンプリング値▲2▼とS3でサンプリング値記憶エリア42aに記憶された対応するサンプリング値▲3▼(S13で書き換えられている)とに基づいて、▲3▼と▲2▼との相関係数を求める(S7)。そして、上記と同様に相関係数が最大値を示す時間軸の値を直接読み取って到達時間差ΔTを求め、流量Qを算出する(S8)。
【0027】
実施例において、超音波送受信部2,3(送受信振動子21,31)を透過型Z配列に配置する場合についてのみ説明したが、本発明は反射型V字配列等のその他の配置方式にも適用できる。
【図面の簡単な説明】
【図1】本発明に係る超音波流量計の一実施例の基本構成を示す説明図。
【図2】計測部の作動を示すタイミングチャート。
【図3】図2のフローチャート。
【図4】相関係数演算の処理手法を示す説明図。
【図5】流量変化判定の処理手法を示す説明図。
【符号の説明】
1 流路
2,3 超音波送受信部
21 第一振動子(送受信振動子)
31 第二振動子(送受信振動子)
4 計測制御部
41 CPU(相関係数演算手段、流量算出手段、流量変化判定手段)
42 RAM(記憶手段)
100 超音波流量計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flow meter.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a flow rate measuring device that measures the flow rate of a fluid such as city gas or water, an ultrasonic flow meter that measures a flow velocity using an ultrasonic wave is known. As a measurement principle at that time, a “propagation time difference method” is generally used. In this method, a pair of ultrasonic transmission / reception units are provided on the upper side and the lower side in the fluid flow direction of the flow path, and transmission / reception of the ultrasonic signal is alternately switched, so that the ultrasonic transmission unit (transmission side transducer) on the upper side in the flow direction. The time required to reach the ultrasonic receiving unit (reception-side transducer) on the downstream side in the flow direction (hereinafter referred to as forward arrival time) and the flow from the ultrasonic transmission unit (transmission-side transducer) on the downstream side in the flow direction In this method, the average flow velocity and flow rate of the fluid flowing through the flow path are determined from the time difference from the time required to reach the ultrasonic receiver (reception-side vibrator) on the upper side in the direction (hereinafter referred to as the reverse arrival time).
[0003]
To find the time difference between the forward arrival time and the reverse arrival time,
{Circle around (1)} In the ultrasonic reception waveform, a waveform portion that exceeds (or falls below) a predetermined threshold value is used as a trigger wave, and a zero-cross point where the amplitude of the trigger wave becomes zero is detected on the received waveform by a “zero-cross method”. A method of measuring the forward arrival time and the backward arrival time, respectively, and calculating the time difference (see Patent Document 1);
(2) A high-speed A / D converter such as a DSP (Digital Signal Processor) under the assumption that the forward ultrasonic wave reception waveform and the reverse ultrasonic wave reception waveform are almost equal (combined). The two waveforms are sampled by the element in the time axis direction at predetermined cycles, A / D converted, and the corresponding sampling values of both waveforms are subtracted to obtain a correlation coefficient. A method for directly obtaining a time difference from the reverse arrival time (see Patent Document 2);
Etc. are known.
[0004]
[Patent Document 1]
JP 2002-13958 A [Patent Document 2]
JP-A-11-241934 [0005]
[Problems to be solved by the invention]
In each of these methods, an arrival time difference is detected each time from a pair of ultrasonic reception waveforms obtained by alternately switching transmission and reception of an ultrasonic signal, and an average flow velocity and a flow rate are measured each time. However, in a gas meter, for example, there are many cases where the flow rate of the gas flowing through the gas pipe does not actually change much. That is, in a factory facility, a usage form in which a constant flow rate is used is normal, and in a general household, a time period in which gas is not used is considerably long. Therefore, if the arrival time difference is always detected every time, the time spent for detecting the arrival time difference becomes relatively long, and the consumption of the battery as the power source for measurement increases. Further, useless consumption of the battery is not preferable from the viewpoint of energy consumption. In particular, in the correlation method, the detection accuracy of the arrival time difference is high, but the amount of data processing is large, so that the battery consumption becomes severe.
[0006]
Therefore, an object of the present invention is to provide an ultrasonic flowmeter capable of saving energy without increasing the amount of battery consumption by relatively shortening the time spent for detecting the arrival time difference.
[0007]
Means for Solving the Problems and Effects of the Invention
To solve the above problems, the ultrasonic flowmeter according to the present invention,
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Thereafter, similarly obtained ultrasonic reception waveforms in the same direction are each sampled in a predetermined cycle in the time axis direction and A / D converted, and each sampled value obtained by the sampling is stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the sampling value to be performed is smaller than a predetermined threshold,
It is characterized by having.
[0008]
According to this ultrasonic flow meter, when the flow rate change determination means determines that the flow rate is constant (no flow rate change), the arrival time difference (hence, the fluid flow rate) is not measured, but only when it is determined that the flow rate has changed. Therefore, the time spent for detecting the arrival time difference is relatively shortened, so that the amount of battery consumption can be suppressed and energy can be saved.
[0009]
Therefore, in order to solve the above problems, the ultrasonic flowmeter according to the present invention, as a first specific embodiment,
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Similarly, the obtained ultrasonic reception waveform in the other direction is similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampling value obtained by the sampling and the corresponding value stored in the storage means are obtained. Correlation coefficient calculation means for obtaining a correlation coefficient based on the sampling value to be calculated,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
Further, the one-way ultrasonic reception waveform obtained thereafter is similarly similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampled value obtained thereby and stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the corresponding sampling value is smaller than a predetermined threshold,
It is characterized by having.
[0010]
Further, in order to solve the above problems, the ultrasonic flowmeter according to the present invention, as a second specific embodiment,
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Thereafter, similarly obtained ultrasonic reception waveforms in the same direction are each sampled in a predetermined cycle in the time axis direction and A / D converted, and each sampled value obtained by the sampling is stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the sampling value to be performed is smaller than a predetermined threshold,
In the flow rate change determining means, when it is determined that the difference is greater than the threshold value and the flow rate has changed, each of the sampling values relating to the one-way ultrasonic reception waveform obtained later is stored in the storage means. The ultrasonic wave is transmitted in the other direction, and the ultrasonic wave reception waveform is similarly sampled and A / D-converted at predetermined cycles in the time axis direction. Correlation coefficient calculation means for obtaining a correlation coefficient based on a sampling value and a corresponding sampling value stored in the storage means,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
It is characterized by having.
[0011]
Further, in order to solve the above problems, the ultrasonic flowmeter according to the present invention, as a third specific embodiment,
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Similarly, the obtained ultrasonic reception waveform in the other direction is similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampling value obtained by the sampling and the corresponding value stored in the storage means are obtained. Correlation coefficient calculation means for obtaining a correlation coefficient based on the sampling value to be calculated,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
Further, the one-way ultrasonic reception waveform obtained thereafter is similarly similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampled value obtained thereby and stored in the storage means. A flow rate change determination unit that determines that the flow rate is constant when a difference from a corresponding sampling value is smaller than a predetermined threshold value,
In the flow rate change determination means, when it is determined that the difference is larger than the threshold value and the flow rate has changed, each storage value obtained afterward in one direction of the ultrasonic reception waveform in the storage means The ultrasonic wave is transmitted again in the other direction, and the ultrasonic wave reception waveform is similarly sampled at predetermined cycles in the time axis direction by the correlation coefficient calculating means, and A / D conversion is performed. Transform, to obtain a correlation coefficient based on each sampling value obtained thereby and the corresponding sampling value stored in the storage means,
The flow rate calculating means sets a time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value as a time difference between the arrival times, and calculates a flow rate of the fluid based on the time difference.
[0012]
Therefore, according to these ultrasonic flowmeters, the sampling value used in the correlation coefficient calculation or the flow rate change determination can be stored in the storage unit and used in the next flow rate change determination or the correlation coefficient calculation. Therefore, sampling data can be utilized without waste, and battery consumption can be reduced. In particular, since the arrival time difference is measured by the correlation method as in these ultrasonic flowmeters, battery consumption can be suppressed even when the amount of data processing increases.
[0013]
If the correlation coefficient calculating means starts sampling the ultrasound reception waveform after a delay time determined in accordance with the propagation distance of the ultrasound with reference to the time of ultrasound transmission, the arrival time difference can be measured. Therefore, it is possible to narrow down and acquire only the sampling data actually required, thereby reducing the consumption of the battery and reducing the storage capacity of the storage means.
[0014]
On the other hand, in the case where the flow rate change determination means starts sampling the ultrasonic reception waveform after the elapse of a delay time determined according to the propagation distance of the ultrasonic wave with respect to the time of transmission of the ultrasonic wave, the determination of the flow rate change is also performed. Therefore, it is possible to narrow down and acquire only the sampling data actually required, thereby reducing the consumption of the battery and reducing the storage capacity of the storage means.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a basic configuration of an embodiment of an ultrasonic flowmeter used as a general residential gas meter or the like. In the flow path 1 for flow measurement of the ultrasonic flow meter 100, a flow measurement gas (fluid) flows along the flow direction axis O in the illustrated flow direction (average flow velocity v). A pair of ultrasonic transmitting and receiving units 2 and 3 are attached to the wall 10 of the flow channel 1. In FIG. 1, the ultrasonic transmission / reception unit 2 (transmission / reception vibrator 21 (first vibrator) on the upper side in the flow direction of the fluid and the ultrasonic transmission / reception unit 3 on the lower side in the flow direction of the fluid (the transmission / reception vibrator 31 (second vibration ) Are arranged in a transmission type Z arrangement facing each other with the flow path 1 interposed therebetween.
[0016]
In the measurement flow path 1, the flow direction axis O is linear between at least the pair of ultrasonic transmission / reception units 2 and 3, and the shape and the cross-sectional area of the axial cross section are the same in the flow direction. When the measurement object is a gas, the axial cross-sectional shape of the measurement flow path 1 may be any as long as it forms a space closed by the wall 10. For example, any one of a circular shape, an elliptical shape, a square shape, a rectangular shape, and the like can be used. May be adopted. If the measurement target is a liquid such as water, an open shape (for example, a semicircular shape) in which the zenith of the wall 10 is open to the atmosphere may be adopted as the axial cross-sectional shape of the measurement flow path 1. .
[0017]
The ultrasonic transmission / reception unit 2 includes a transmission / reception vibrator 21 (first vibrator) that is fixed to the wall 10 of the flow channel 1 and includes a piezoelectric element, a vibration plate, an electrode plate, and the like. On the other hand, the ultrasonic transmission / reception unit 3 is fixed to the wall 10 on the lower side in the flow direction from the ultrasonic transmission / reception unit 2 (first vibrator 21), and is a transmission / reception vibrator composed of a piezoelectric element, a vibration plate, an electrode plate and the like 31 (second vibrator). Further, the pair of ultrasonic transmission / reception units 2 and 3 include a transmission unit 22 including a drive voltage circuit for oscillating the first vibrator 21 or the second vibrator 31, and the first vibrator 21 or A receiving unit 32 including a voltage detection circuit for detecting a voltage generated by the second vibrator 31; Thereby, the first vibrator 21 transmits the ultrasonic wave toward the lower side (the ultrasonic transmitting / receiving unit 3 side) in the flow direction of the fluid, and receives the ultrasonic wave transmitted by the second vibrator 31. On the other hand, the second vibrator 31 transmits the ultrasonic wave toward the upstream side (the ultrasonic transmitting / receiving unit 2 side) in the flow direction of the fluid, and receives the ultrasonic wave transmitted by the first vibrator 21.
[0018]
In FIG. 1, the average velocity of the gas is v, the velocity of sound propagating in the gas is c, and the angle between the traveling direction of the ultrasonic wave (measurement line M) and the flow direction of the gas (flow direction axis O) is θ (hereinafter, measurement line). When the propagation distance of the ultrasonic wave is L, the forward arrival time Td and the backward arrival time Tu are respectively expressed as follows.
Td = L / (c + v · cos θ) (1)
Tu = L / (cv · cos θ) (2)
The following equations are obtained from the equations (1) and (2).
v = K (L / 2 cos θ) (Tu−Td) / (Tu · Td) (3)
Q = v · A (4)
Here, K is a correction coefficient, A is a cross-sectional area of the flow path 1, and Q is a gas flow rate.
Therefore, from the measurement of the forward arrival time Td and the backward arrival time Tu (arrival time difference ΔT), the average flow velocity v and the flow rate Q of the gas are obtained. As described above, by eliminating the sound speed c depending on the temperature and the contained components of the gas from the equation (3), the measured value (the arrival time Td, Tu; the arrival time difference ΔT) and the constant value (the propagation distance L, the line angle) θ) has the advantage of obtaining the flow velocity v.
[0019]
Therefore, as shown in FIG. 1, the ultrasonic flow meter 100 includes a measurement control unit 4 and a switching unit 7 as a measurement unit. The switching means 7 has a reception signal switching means 71 for switching a signal to be processed by the receiving means 32 and a transmission switching means 72 for switching the transducers 21 and 31 to be transmitted.
[0020]
The measurement control unit 4 has a CPU 41, a RAM 42, a ROM 43, an input / output interface 44, and the like, and is configured by a microcomputer connected to a bus 45 so as to be able to transmit and receive. The ROM 43 has a flow rate measurement program storage area 43a. In this area 43a, a control program for measuring the flow rate and the like are stored. The RAM 42 stores a sampling value described later in a sampling value storage area 42a as a work area, and has a function of a sampling value storage unit (storage unit). The CPU 31 has functions as a correlation coefficient calculation unit, a flow rate calculation unit, and a flow rate change determination unit, which will be described later.
[0021]
Next, the operation of the measuring unit of the ultrasonic flowmeter 100 will be described with reference to the timing chart of FIG. 2 and the flowchart of FIG.
First, the first vibrator 21 is switched to the transmitting side and the second vibrator 31 is switched to the receiving side by the switching means 7 (S1), and the ultrasonic wave is directed from the first vibrator 21 to the second vibrator 31 on the downstream side in the flow direction. Is transmitted (S2). At this time, the ultrasonic reception waveform received by the second transducer 31 is sampled at predetermined cycles in the time axis direction and A / D converted, and the respective sampling values (1) are stored in the sampling value storage area 42a of the RAM 42. It is stored (S3).
[0022]
Subsequently, the first vibrator 21 is switched to the receiving side and the second vibrator 31 is switched to the transmitting side by the switching means 7 (S4). A sound wave is transmitted (S5). At this time, the ultrasonic receiving waveform received by the first transducer 21 is sampled at predetermined cycles in the time axis direction and A / D converted, and the respective sampling values (2) are obtained (S6). A correlation coefficient between (1) and (2) is obtained based on each sampling value (2) obtained in S6 and the corresponding sampling value (1) stored in the sampling value storage area 42a in S3 ( S7). Note that, when acquiring the sampling value (2) in S6, as shown in FIG. 2, the ultrasonic wave transmission time (S5) is set as a reference and is determined corresponding to the ultrasonic wave propagation distance L (see FIG. 1). After the elapse of the delay time, sampling of the ultrasonic reception waveform is started. Therefore, it is possible to acquire only necessary sampling values while suppressing battery consumption, and this also reduces the storage capacity of the sampling value storage area 42a.
[0023]
FIG. 4A shows the sampling value {1} stored in the sampling value storage area 42a in S3, and FIG. 4B shows the sampling value {2} obtained in S6. Using FIG. 4A and FIG. 4B, the correlation coefficient of FIG. 4C is calculated by the correlation method (S7). Then, in FIG. 4C, the value of the time axis at which the correlation coefficient shows the maximum value is directly read to obtain the arrival time difference ΔT, and the flow rate Q is calculated from the above-described equations (3) and (4) (S8). ). Here, in this embodiment, the sampling value is directly used when calculating the correlation coefficient. However, other calculation methods such as, for example, obtaining the correlation coefficient by approximating the obtained sampling data by approximation may be used. You can also.
[0024]
Again, the switching means 7 switches the first vibrator 21 to the transmitting side and the second vibrator 31 to the receiving side (S9). The ultrasonic wave is directed from the first vibrator 21 to the second vibrator 31 on the downstream side in the flow direction. Is transmitted (S10). At this time, the ultrasonic receiving waveform received by the second transducer 31 is sampled at predetermined cycles in the time axis direction, A / D converted, and the respective sampled values (3) are obtained (S11). Then, the difference between each sampled value (3) obtained in S11 and the corresponding sampled value (1) stored in the sampled value storage area 42a in S3 is obtained, and when this difference is smaller than a predetermined threshold value (S12). NO), it is determined that the flow rate Q is constant, and the process returns to S10, and the transmission of the ultrasonic wave from the first transducer 21 (S10) and the acquisition of the sampling value (3) (S11) are repeated. When the difference is larger than the threshold value (YES in S12), it is determined that the flow rate Q has changed, and each sampling value (3) obtained in S11 is rewritten and input to the sampling value storage area 42a (S13), and the flow goes to S4. To return. At the time of acquiring the sampling value {circle around (3)} in S11, as shown in FIG. 2, the ultrasonic wave transmission time (S10) is set as a reference and is determined corresponding to the ultrasonic wave propagation distance L (see FIG. 1). After the elapse of the delay time, sampling of the ultrasonic reception waveform is started. Therefore, it is possible to acquire only necessary sampling values while suppressing battery consumption, and this also reduces the storage capacity of the sampling value storage area 42a.
[0025]
FIG. 5A shows the sampling value {circle around (3)} acquired in S11, and FIG. 5 (b) shows the sampling value {3} between the sampling value {3} and the sampling value {1} stored in the storage area 42a in S3. The state where the difference is compared with a threshold value (S12) is shown.
[0026]
When returning to S4, the first vibrator 21 is switched to the receiving side and the second vibrator 31 is switched to the transmitting side again by the switching means 7 (S4). An ultrasonic wave is transmitted toward 21 (S5). At this time, the ultrasonic receiving waveform received by the first transducer 21 is sampled at predetermined cycles in the time axis direction and A / D converted, and the respective sampling values (2) are obtained (S6). Based on each sampling value (2) obtained in S6 and the corresponding sampling value (3) stored in the sampling value storage area 42a in S3 (rewritten in S13), (3) and (2). Is obtained (S7). Then, similarly to the above, the value of the time axis at which the correlation coefficient shows the maximum value is directly read to obtain the arrival time difference ΔT, and the flow rate Q is calculated (S8).
[0027]
In the embodiment, only the case where the ultrasonic transmission / reception units 2 and 3 (transmission / reception transducers 21 and 31) are arranged in the transmission type Z arrangement has been described. However, the present invention is also applicable to other arrangement systems such as the reflection type V arrangement. Applicable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic configuration of one embodiment of an ultrasonic flowmeter according to the present invention.
FIG. 2 is a timing chart showing the operation of a measuring unit.
FIG. 3 is a flowchart of FIG. 2;
FIG. 4 is an explanatory diagram showing a processing method for calculating a correlation coefficient.
FIG. 5 is an explanatory diagram showing a processing method of flow rate change determination.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow paths 2 and 3 Ultrasonic transceiver 21 First transducer (transmitter / receiver)
31 Second transducer (transmitter / receiver transducer)
4 Measurement control unit 41 CPU (correlation coefficient calculation means, flow rate calculation means, flow rate change determination means)
42 RAM (storage means)
100 ultrasonic flow meter

Claims (6)

流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた同方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
を備えることを特徴とする超音波流量計。
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Thereafter, similarly obtained ultrasonic reception waveforms in the same direction are each sampled in a predetermined cycle in the time axis direction and A / D converted, and each sampled value obtained by the sampling is stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the sampling value to be performed is smaller than a predetermined threshold,
An ultrasonic flowmeter comprising:
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた他方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
さらにその後に得られた一方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
を備えることを特徴とする超音波流量計。
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Similarly, the obtained ultrasonic reception waveform in the other direction is similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampling value obtained by the sampling and the corresponding value stored in the storage means are obtained. Correlation coefficient calculation means for obtaining a correlation coefficient based on the sampling value to be calculated,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
Further, the one-way ultrasonic reception waveform obtained thereafter is similarly similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampled value obtained thereby and stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the corresponding sampling value is smaller than a predetermined threshold,
An ultrasonic flowmeter comprising:
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた同方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段と、
その流量変化判定手段において、前記差分が前記閾値より大となって前記流量が変化したと判定されたときに、後から得られた一方向の超音波受信波形に係る各サンプリング値を前記記憶手段に書き換え入力するとともに、他方向に向け超音波の送信が行われ、その超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
を備えることを特徴とする超音波流量計。
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Thereafter, similarly obtained ultrasonic reception waveforms in the same direction are each sampled in a predetermined cycle in the time axis direction and A / D converted, and each sampled value obtained by the sampling is stored in the storage means. Flow rate change determination means for determining that the flow rate is constant when the difference from the sampling value to be performed is smaller than a predetermined threshold,
In the flow rate change determining means, when it is determined that the difference is greater than the threshold value and the flow rate has changed, each of the sampling values relating to the one-way ultrasonic reception waveform obtained later is stored in the storage means. The ultrasonic wave is transmitted in the other direction, and the ultrasonic wave reception waveform is similarly sampled and A / D-converted at predetermined cycles in the time axis direction. Correlation coefficient calculation means for obtaining a correlation coefficient based on a sampling value and a corresponding sampling value stored in the storage means,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
An ultrasonic flowmeter comprising:
流体を通過させるための流路に一対の超音波送受信部を設置し、これら一対の超音波送受信部間において流体の流れ方向下手側及び上手側の双方向に向けて超音波を送信させ、到達時間の時間差に基づいて流体の流量を計測する超音波流量計において、
いずれか一方向の超音波受信波形を時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、その各サンプリング値を記憶する記憶手段と、
その後に得られた他方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求める相関係数演算手段と、
その相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出する流量算出手段と、
さらにその後に得られた一方向の超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値との差分が所定の閾値より小さいときに前記流量が一定であると判定する流量変化判定手段とを備え、
前記流量変化判定手段において、前記差分が前記閾値より大となって前記流量が変化したと判定されたときに、後から得られた一方向の超音波受信波形に係る各サンプリング値を前記記憶手段に書き換え入力するとともに、再び他方向に向け超音波の送信が行われ、前記相関係数演算手段により、その超音波受信波形を同様に時間軸方向に所定のサイクルで各々サンプリングしてA/D変換し、それにより得られた各サンプリング値と前記記憶手段に記憶された対応するサンプリング値とに基づいて相関係数を求め、
前記流量算出手段により、前記相関係数演算手段で得られた相関係数が最大値となる時間を前記到達時間の時間差とし、その時間差に基づいて流体の流量を算出することを特徴とする超音波流量計。
A pair of ultrasonic transmission / reception units is installed in the flow path for passing the fluid, and ultrasonic waves are transmitted between the pair of ultrasonic transmission / reception units in both the lower and upper directions of the flow direction of the fluid, and reach. In an ultrasonic flow meter that measures the flow rate of a fluid based on the time difference of time,
Storage means for sampling and A / D converting an ultrasonic reception waveform in any one direction in a predetermined cycle in a time axis direction and storing each sampled value;
Similarly, the obtained ultrasonic reception waveform in the other direction is similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampling value obtained by the sampling and the corresponding value stored in the storage means are obtained. Correlation coefficient calculation means for obtaining a correlation coefficient based on the sampling value to be calculated,
Flow rate calculating means for calculating the flow rate of the fluid based on the time difference between the arrival time and the time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value,
Further, the one-way ultrasonic reception waveform obtained thereafter is similarly similarly sampled at predetermined cycles in the time axis direction and A / D converted, and each sampled value obtained thereby and stored in the storage means. A flow rate change determination unit that determines that the flow rate is constant when a difference from a corresponding sampling value is smaller than a predetermined threshold value,
In the flow rate change determination means, when it is determined that the difference is larger than the threshold value and the flow rate has changed, each storage value obtained afterward in one direction of the ultrasonic reception waveform in the storage means The ultrasonic wave is transmitted again in the other direction, and the ultrasonic wave reception waveform is similarly sampled at predetermined cycles in the time axis direction by the correlation coefficient calculating means, and A / D conversion is performed. Transform, to obtain a correlation coefficient based on each sampling value obtained thereby and the corresponding sampling value stored in the storage means,
The flow rate calculating means sets a time at which the correlation coefficient obtained by the correlation coefficient calculating means has a maximum value as a time difference between the arrival times, and calculates a fluid flow rate based on the time difference. Sound flow meter.
前記相関係数演算手段において、超音波送信時を基準とし、超音波の伝搬距離に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始する請求項2ないし4のいずれか1項に記載の超音波流量計。5. The correlation coefficient calculating means according to claim 2, wherein sampling of an ultrasonic reception waveform is started after a lapse of a delay time determined in accordance with an ultrasonic wave propagation distance with reference to a time of ultrasonic transmission. Item 2. The ultrasonic flowmeter according to item 1. 前記流量変化判定手段において、超音波送信時を基準とし、超音波の伝搬距離に対応して定められた遅延時間の経過後に超音波受信波形に対するサンプリングを開始する請求項1ないし5のいずれか1項に記載の超音波流量計。6. The method according to claim 1, wherein the flow rate change determination unit starts sampling the ultrasonic reception waveform after a lapse of a delay time defined in accordance with the propagation distance of the ultrasonic wave with reference to the transmission time of the ultrasonic wave. The ultrasonic flowmeter according to the item.
JP2003055577A 2003-03-03 2003-03-03 Ultrasonic flow meter Expired - Fee Related JP4266117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055577A JP4266117B2 (en) 2003-03-03 2003-03-03 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055577A JP4266117B2 (en) 2003-03-03 2003-03-03 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2004264195A true JP2004264195A (en) 2004-09-24
JP4266117B2 JP4266117B2 (en) 2009-05-20

Family

ID=33119551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055577A Expired - Fee Related JP4266117B2 (en) 2003-03-03 2003-03-03 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4266117B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231012A (en) * 2005-01-28 2006-09-07 Nippon Koden Corp Method and apparatus for measuring circulation time of oxygen delivery
JP2009109316A (en) * 2007-10-30 2009-05-21 Tokyo Keiso Co Ltd Signal processing device of ultrasonic flowmeter
JP2013088322A (en) * 2011-10-19 2013-05-13 Azbil Corp Method for measuring flow velocity and flow volume
US8524701B2 (en) 2002-07-25 2013-09-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Use of a specific cyclic amine derivative or the pharmaceutically acceptable salts thereof for the treatment or prevention of heart failure
US9289390B2 (en) 2011-08-12 2016-03-22 Boehringer Ingelheim Vetmedica Gmbh Taste masked pharmaceutical composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524701B2 (en) 2002-07-25 2013-09-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Use of a specific cyclic amine derivative or the pharmaceutically acceptable salts thereof for the treatment or prevention of heart failure
JP2006231012A (en) * 2005-01-28 2006-09-07 Nippon Koden Corp Method and apparatus for measuring circulation time of oxygen delivery
JP2009109316A (en) * 2007-10-30 2009-05-21 Tokyo Keiso Co Ltd Signal processing device of ultrasonic flowmeter
US9289390B2 (en) 2011-08-12 2016-03-22 Boehringer Ingelheim Vetmedica Gmbh Taste masked pharmaceutical composition
JP2013088322A (en) * 2011-10-19 2013-05-13 Azbil Corp Method for measuring flow velocity and flow volume

Also Published As

Publication number Publication date
JP4266117B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP5524972B2 (en) Flow measuring device
JP5753970B2 (en) Flow measuring device
JP5402620B2 (en) Flow measuring device
JPH08261809A (en) Temperature pressure compensation method for clamp-on type ultrasonic wave flowmeter
JPWO2005083372A1 (en) Ultrasonic flowmeter compatible with both pulse Doppler method and propagation time difference method, method and program for automatically selecting measurement method in the flowmeter, and electronic device for the flowmeter
JP4556253B2 (en) Flowmeter
CN214583449U (en) High-precision wide-range ultrasonic flow measuring device
JP2007187506A (en) Ultrasonic flowmeter
JP2004264195A (en) Ultrasonic flowmeter
JP3350501B2 (en) Flow measurement device
JPH1144563A (en) Apparatus for measuring flow rate
JP2004144744A (en) Ultrasonic flowmeter
JP2010019858A (en) Ultrasonic flowmeter
JP3654273B2 (en) Flow rate measuring device and flow rate measuring method
JP3438371B2 (en) Flow measurement device
JP5467332B2 (en) Fluid flow measuring device
JP4759835B2 (en) Flow measuring device
JP2000035353A (en) Method and apparatus for measurement of propagation time as well as ultrasonic flowmeter
JP4255757B2 (en) Ultrasonic flow meter
JP2004239868A (en) Ultrasonic flowmeter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2004085420A5 (en)
JP5548951B2 (en) Flow measuring device
JP2005283434A (en) Ultrasonic flowmeter
JP2007322442A (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees