JPS6335705B2 - - Google Patents

Info

Publication number
JPS6335705B2
JPS6335705B2 JP5110181A JP5110181A JPS6335705B2 JP S6335705 B2 JPS6335705 B2 JP S6335705B2 JP 5110181 A JP5110181 A JP 5110181A JP 5110181 A JP5110181 A JP 5110181A JP S6335705 B2 JPS6335705 B2 JP S6335705B2
Authority
JP
Japan
Prior art keywords
alloy
cut
cutting
less
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5110181A
Other languages
Japanese (ja)
Other versions
JPS57169058A (en
Inventor
Kunihiro Takahashi
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5110181A priority Critical patent/JPS57169058A/en
Publication of JPS57169058A publication Critical patent/JPS57169058A/en
Publication of JPS6335705B2 publication Critical patent/JPS6335705B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は難削材加工用工具に用いる焼結硬質合
金に関する。 従来、難削材といわれている被削材にはTi合
金、Ni基超合金、Co基超合金などがある。Ti合
金は高温強度が高く、熱伝導率が低いため切削時
に刃先の温度が上昇し、寿命の低下を来たし、ま
たNi基超合金、Co基超合金についても、高温で
の強度が高く熱伝導率が低いため刃先の温度が上
昇し、しかも、炭化物や窒化物といつた硬い物質
を含むので刃先摩耗は大きくなる。このような理
由で、Ti合金、Ni基超合金。Co基超合金は低速
でしかも低送り、小切込みの加工が避けられず非
常に生産性が低い。 このような難削材の加工に際し、加工精度、被
削物の表面粗度を悪くせずにしかも生産性を高め
るためには、切削速度を大きくでき、しかもフラ
イス切削、エンドミル切削のような断続切削にも
使用できる工具の開発が必要となる。この目的の
ため、従来はWC基超硬合金、TiC基サーメツト、
Al2O3基セラミツク等が用いられているが、WC
基超硬合金では溶着し易く、また切削速度も大き
くできないという欠点があり、TiC基サーメツト
やAl2O3基セラミツクでは耐チツピング性、耐熱
衝撃性に劣るという欠点があつた。 本発明者らは上記のような欠点がなく難削材加
工に適した組成の合金の開発に努力した結果、
TiC、TiN−TaC、NbC−WC、Mo2C系の3元
系合金を主体とする焼結合金がこの目的にかなう
ものであることを発見して本発明に到達した。 まず本発明者らは、工具刃先の耐チツピング
性、耐熱衝撃性の観点から焼結合金中に結合金属
は不可欠と考え、その必要量を検討した結果、結
合金属は少なくとも容積で1%以上は必要との結
論を得た。1%未満では耐チツピング性、耐熱衝
撃性に十分なものが得られない。更に結合金属が
容積で5%を超えると、難削材加工時の耐摩耗性
が著しく劣化することが判明した。このことか
ら、結合金属は容積で1%以上、5%以下とする
必要があると結論された。 しかし上記組成とするのみでは難削材加工に際
し十分な耐摩耗性は得られず、次に硬質相の粒径
についての検討を行つた。その結果、硬質相の平
均粒径を1μm以下とすることによつて初めて満足
のいく耐摩耗性を発揮することが確認された。周
知の如く、焼結硬質合金において硬質相の粒径は
小さいほど硬さが増す。すなわち、硬質相の平均
粒径が1μm以下になつて、はじめて難削材加工に
適した硬さを達成できたものである。更に硬質相
平均粒径について0.15μmのものまで試作したが、
特に不都合は認められなかつた。 本発明者らは上記の知見に基いて、硬質相の組
成の検討を行いTiC、TiN−TaC、NbC−WC、
Mo2C系の硬質相が特に優れ、中でも第1図の
XYZ内の組成とすると難削材加工に際し卓越し
た性能を示すことを発見して本発明に到達したも
のである。 すなわち、本発明の目的は難削材の加工に適し
た焼結硬質合金を提供することにあり、その目的
はTiC(および/またはTiN)−TaC(および/ま
たはNbC)−WC(および/またはMo2C)の3元
状態図を示す第1図においてXYZ内の組成から
なり、平均粒径が1μm以下の硬質相が容積で95%
以上、99%以下であり、結合金属として鉄族金属
を容積で1%以上5%以下含む難削材加工用焼結
合金により達成することができる。 なお、第1図中X,Y,Zの組成は次の通りで
ある。
The present invention relates to a sintered hard alloy used in tools for machining difficult-to-cut materials. Work materials that have traditionally been considered difficult to cut include Ti alloys, Ni-based superalloys, and Co-based superalloys. Ti alloys have high high-temperature strength and low thermal conductivity, which causes the temperature of the cutting edge to rise during cutting, resulting in reduced tool life.Also, Ni-based superalloys and Co-based superalloys also have high strength and thermal conductivity at high temperatures. The temperature of the cutting edge increases due to its low ratio, and the wear of the cutting edge increases as it contains hard substances such as carbides and nitrides. For this reason, Ti alloys and Ni-based superalloys. Co-based superalloys require low speed, low feed, and small depth of cut machining, resulting in extremely low productivity. When machining such difficult-to-cut materials, in order to increase productivity without deteriorating machining accuracy or surface roughness of the workpiece, it is necessary to increase the cutting speed and avoid intermittent cutting such as milling and end mill cutting. It is necessary to develop tools that can also be used for cutting. For this purpose, conventionally WC-based cemented carbide, TiC-based cermet,
Al 2 O 3- base ceramics etc. are used, but WC
Cemented carbides have the disadvantage of being easily welded and cannot be cut at high cutting speeds, while TiC-based cermets and Al 2 O 3- based ceramics have poor chipping resistance and thermal shock resistance. As a result of the inventors' efforts to develop an alloy with a composition suitable for machining difficult-to-cut materials without the above-mentioned drawbacks,
The present invention was achieved by discovering that a sintered alloy mainly composed of ternary alloys of TiC, TiN-TaC, NbC-WC, and Mo2C systems satisfies this purpose. First, the present inventors believe that bond metal is essential in the sintered alloy from the viewpoint of chipping resistance and thermal shock resistance of the tool cutting edge, and as a result of examining the necessary amount, the bond metal accounts for at least 1% or more by volume. It was concluded that it was necessary. If it is less than 1%, sufficient chipping resistance and thermal shock resistance cannot be obtained. Furthermore, it has been found that when the amount of bonded metal exceeds 5% by volume, the wear resistance during machining of difficult-to-cut materials is significantly degraded. From this, it was concluded that the amount of bonding metal should be 1% or more and 5% or less by volume. However, with the above composition alone, sufficient wear resistance could not be obtained when machining difficult-to-cut materials.Next, we investigated the particle size of the hard phase. As a result, it was confirmed that satisfactory wear resistance could only be achieved by setting the average particle size of the hard phase to 1 μm or less. As is well known, in a sintered hard alloy, the smaller the particle size of the hard phase, the harder it becomes. In other words, hardness suitable for machining difficult-to-cut materials can only be achieved when the average grain size of the hard phase is 1 μm or less. Furthermore, we made a prototype with a hard phase average particle size of 0.15 μm,
No particular inconvenience was observed. Based on the above findings, the present inventors investigated the composition of the hard phase, including TiC, TiN-TaC, NbC-WC,
The Mo 2 C-based hard phase is particularly good, especially the one shown in Figure 1.
The present invention was achieved by discovering that a composition within XYZ shows excellent performance when machining difficult-to-cut materials. That is, the purpose of the present invention is to provide a sintered hard alloy suitable for machining difficult-to-cut materials, and the purpose is to provide a sintered hard alloy suitable for machining difficult-to-cut materials. In Figure 1, which shows the ternary phase diagram of Mo 2 C), the hard phase, which has a composition within XYZ and has an average particle size of 1 μm or less, accounts for 95% by volume.
The above is 99% or less, and can be achieved by a sintered alloy for machining difficult-to-cut materials that contains iron group metals as a bonding metal in an amount of 1% to 5% by volume. The compositions of X, Y, and Z in FIG. 1 are as follows.

【表】 添付の図面の3元状態図において、XYZ内の
組成とはTiCおよび/またはTiN50〜85モル%、
WCおよび/またはMo2C15〜50モル%、および
TaCおよび/またはNbC0〜35モル%であること
を意味する。本発明が特にこのように限定した理
由は次の通りである。TiCおよび/またはTiNが
50モル%未満であると耐摩耗性、耐溶着性に低下
を来たし、85モル%を超えると耐チツピング性、
刃立性が悪くなる。またWCおよび/または
Mo2Cが15モル%未満であると、チツピングし易
くなり、50モル%を超えると、耐摩耗性が低下し
てしまう。さらにTaCおよび/またはNbCが35
モル%を超えると、耐摩耗性が低下する。 上記硬質相は容積%で95%以上99%以下を占
め、結合金属であるFe族金属は容積%で1%以
上5%以下とするが、硬質相が95%未満であり、
結合金属が5%を超えると耐摩耗性が著るしく低
下し、硬質相が99%を越え、結合金属が1%未満
になると靭性の劣化が著しい。更に、硬質相の粒
度が1μm以上になると耐チツピング性、刃立性に
劣るとともに十分な耐摩耗性を発揮できないので
1μm以下にする必要がある。本発明の合金を調製
するには、常法にしたがつて対応の成分を混合、
粉砕、成形、焼結すればよいが、焼結時は窒素雰
囲気として窒素分圧を1〜500Torrに保持すると
脱窒がなく焼結が安定に行なわれるので好まし
い。 以下実施例により本発明をさらに詳細に説明す
る。 実施例 1 第1表に示した配合組成のものを、TiC−Ni
−Mo製のボールを用い18−8ステンレス製ポツ
トによりアセトンを加え、96時間湿式ボールミル
処理した。この混合粉末にカンフアーを加え、2
トン/cm2で型押した。この型押体を窒素分圧
(PN2)、5Torrで1400℃、1時間焼成して合金を
作成した。得られた合金の機械的特性値を第1表
に示してある。表の下にはTi合金、Ni基合金、
Co基合金を切削した場合の切削試験の結果を示
す。これより本合金は比較合金に比べ優れている
ことがわかる。
[Table] In the ternary phase diagram of the attached drawing, the composition in XYZ is TiC and/or TiN 50 to 85 mol%,
WC and/or Mo2C15-50 mol%, and
It means TaC and/or NbC 0 to 35 mol%. The reason why the present invention is particularly limited in this way is as follows. TiC and/or TiN
If it is less than 50 mol%, wear resistance and welding resistance will decrease, and if it exceeds 85 mol%, chipping resistance,
The sharpness of the blade deteriorates. Also WC and/or
If Mo 2 C is less than 15 mol %, chipping will occur easily, and if it exceeds 50 mol %, wear resistance will decrease. Additionally TaC and/or NbC is 35
When the amount exceeds mol%, wear resistance decreases. The above hard phase accounts for 95% or more and 99% or less by volume, and the Fe group metal which is the bonding metal accounts for 1% or more and 5% or less by volume, but the hard phase accounts for less than 95%,
When the binding metal content exceeds 5%, the wear resistance is significantly reduced, and when the hard phase exceeds 99%, and the binding metal content is less than 1%, the toughness deteriorates significantly. Furthermore, if the particle size of the hard phase exceeds 1 μm, chipping resistance and edge sharpness will be poor, and sufficient wear resistance will not be exhibited.
It must be 1 μm or less. To prepare the alloy of the invention, the corresponding components are mixed in accordance with conventional methods,
It may be pulverized, molded, and sintered, but it is preferable to maintain a nitrogen atmosphere at a nitrogen partial pressure of 1 to 500 Torr during sintering because denitrification will not occur and sintering will be performed stably. The present invention will be explained in more detail with reference to Examples below. Example 1 The composition shown in Table 1 was mixed with TiC-Ni
Acetone was added using a -Mo ball and an 18-8 stainless steel pot, and wet ball milling was carried out for 96 hours. Add camphor to this mixed powder,
Embossed with tons/ cm2 . This stamped body was fired at 1400° C. for 1 hour under a nitrogen partial pressure (PN 2 ) of 5 Torr to produce an alloy. The mechanical properties of the alloys obtained are shown in Table 1. Below the table are Ti alloys, Ni-based alloys,
The results of a cutting test when cutting a Co-based alloy are shown. This shows that this alloy is superior to comparative alloys.

【表】 切削試験1 被削材 ;Ti合金(Ti−6Al−4V) 切削速度 ;60m/min 切り込み量;0.5mm 送り量 ;0.20mm/reV 切削時間 ;30秒 第1表中の本発明合金A、B、Cと比較合金H
を上記の条件で切削したところ、A、B、Cの
VB摩耗量は0.15mm、Hは0.30mmで溶着量も非常に
多かつた。 切削試験2 被削材 ;Co基合金(S 816) 切削速度 ;40m/min 切り込み量;0.5mm 送り量 ;0.20mm/reV 切削時間 ;30秒 第1表中の本発明合金F、Gと比較合金Kを上
記の条件で切削したところ、F、GのVB摩耗量
は0.10mmであつたのに対し、Kは0.25mmであつ
た。 切削試験3 被削材 ;Ni基合金(InConel−X) 切削速度 ;30m/min 切り込み量;0.5mm 送り量 ;0.20mm/reV 切削時間 ;30秒 第1表中の本発明合金D、Eと比較合金I、J
を上記の条件で切削したところ、D、EのVB
耗量は0.17mmであつたのに対し、Iは0.3mmであ
り、Jは10秒で切削不能になつた。 実施例 2 第2表に示した配合組成のものを、TiC−Ni
−Mo製のボールを用い、18−8ステンレス製ポ
ツトによつてアセトンを加え、96時間湿式ボール
ミル処理した。この混合粉末にカンフアーを加
え、2トン/cm2で型押した。この型押体を1400℃
1時間真空焼結(真空度10-3Torr)を行ない合
金を作成した。得られた合金の機械的特性値を第
2表に示してある。切削試験は実施例1と同様に
実施した。
[Table] Cutting test 1 Work material: Ti alloy (Ti-6Al-4V) Cutting speed: 60 m/min Depth of cut: 0.5 mm Feed amount: 0.20 mm/reV Cutting time: 30 seconds Invention alloy in Table 1 A, B, C and comparative alloy H
When cut under the above conditions, A, B, and C were cut.
The amount of VB wear was 0.15mm, the amount of H was 0.30mm, and the amount of welding was also extremely large. Cutting test 2 Work material: Co-based alloy (S 816) Cutting speed: 40 m/min Depth of cut: 0.5 mm Feed rate: 0.20 mm/reV Cutting time: 30 seconds Comparison with the invention alloys F and G in Table 1 When Alloy K was cut under the above conditions, the VB wear amount for F and G was 0.10 mm, while for K it was 0.25 mm. Cutting test 3 Work material: Ni-based alloy (InConel-X) Cutting speed: 30 m/min Depth of cut: 0.5 mm Feed amount: 0.20 mm/reV Cutting time: 30 seconds Invention alloys D and E in Table 1 Comparative alloys I, J
When cut under the above conditions, the VB wear amount for D and E was 0.17 mm, while for I it was 0.3 mm, and for J it became impossible to cut in 10 seconds. Example 2 The composition shown in Table 2 was mixed with TiC-Ni.
- Using a Mo ball, acetone was added through an 18-8 stainless steel pot, and wet ball milling was carried out for 96 hours. Camphor was added to this mixed powder and it was embossed at 2 tons/cm 2 . This embossed body is heated to 1400℃.
Vacuum sintering (vacuum degree 10 -3 Torr) was performed for 1 hour to create an alloy. The mechanical properties of the alloys obtained are shown in Table 2. The cutting test was conducted in the same manner as in Example 1.

【表】 切削試験1 第2表中の本発明合金L、Mと比較合金Rを切
削したところ、L、MのVB摩耗量は0.20mmであつ
たのに対し、Rは0.30mmであつた。 切削試験2 第2表中の本発明合金N、Oと比較合金Tを切
削したところ、N、OのVB摩耗量は0.15mmであつ
たのに対し、Tは0.35mmであつた。 切削試験3 第3表中の本発明合金P、Qと比較合金Sを切
削したところ、P、QのVB摩耗量は0.17mmであつ
たのに対し、Sは0.30mmであつた。
[Table] Cutting test 1 When the present invention alloys L and M and the comparative alloy R in Table 2 were cut, the V B wear amount of L and M was 0.20 mm, while that of R was 0.30 mm. Ta. Cutting Test 2 When alloys N and O of the present invention and comparative alloy T in Table 2 were cut, the V B wear amount of N and O was 0.15 mm, while that of T was 0.35 mm. Cutting Test 3 When alloys P and Q of the present invention and comparative alloy S in Table 3 were cut, the V B wear amount of P and Q was 0.17 mm, while that of S was 0.30 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTiC(および/又はTiN)−TaC(およ
び/又はNbC)−WC(および/又はMo2C)の3
元状態図である。
Figure 1 shows the three-dimensional structure of TiC (and/or TiN) - TaC (and/or NbC) - WC (and/or Mo 2 C).
It is an original state diagram.

Claims (1)

【特許請求の範囲】 1 TiC(および/またはTiN)−TaC(および/
またはNbC)−WC(および/またはMo2C)の3
元状態図を示す第1図において、XYZ内組成か
らなり、平均粒径1μm以下の硬質相を容積で95%
以上、99%以下と、結合金属として鉄族金属を容
積で1%以上、5%以下含むことを特徴とする難
削材加工用焼結硬質合金。 たゞし、上記第1図のXYZの組成は次の通り
である(モル%): 【表】
[Claims] 1 TiC (and/or TiN)-TaC (and/
or NbC) − WC (and/or Mo 2 C)
In Figure 1, which shows the original phase diagram, 95% by volume is composed of a hard phase with an XYZ composition and an average particle size of 1 μm or less.
A sintered hard alloy for machining difficult-to-cut materials, characterized by containing 1% or more and 5% or less by volume of an iron group metal as a bonding metal. However, the composition of XYZ in Figure 1 above is as follows (mol%): [Table]
JP5110181A 1981-04-07 1981-04-07 Sintered hard alloy for working of hard to machine material Granted JPS57169058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5110181A JPS57169058A (en) 1981-04-07 1981-04-07 Sintered hard alloy for working of hard to machine material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5110181A JPS57169058A (en) 1981-04-07 1981-04-07 Sintered hard alloy for working of hard to machine material

Publications (2)

Publication Number Publication Date
JPS57169058A JPS57169058A (en) 1982-10-18
JPS6335705B2 true JPS6335705B2 (en) 1988-07-15

Family

ID=12877411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5110181A Granted JPS57169058A (en) 1981-04-07 1981-04-07 Sintered hard alloy for working of hard to machine material

Country Status (1)

Country Link
JP (1) JPS57169058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252401A (en) * 1988-03-30 1989-10-09 Nippon Shokubai Kagaku Kogyo Co Ltd Garbage box
JPH03223001A (en) * 1990-01-24 1991-10-02 Takagi Ind Co Ltd Sink for kitchen with garbage disposal means
CN112853141A (en) * 2020-12-29 2021-05-28 中北大学 Processing technology of hard alloy material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617533B2 (en) * 1986-11-17 1994-03-09 日本特殊陶業株式会社 Cutting tip for cutting tools
JPH0635625B2 (en) * 1987-02-20 1994-05-11 吉田工業株式会社 Method for producing wear resistant titanium nitride cermet
CN109852864A (en) * 2019-01-18 2019-06-07 株洲金佰利硬质合金有限公司 A kind of heterogene structure's constructional alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252401A (en) * 1988-03-30 1989-10-09 Nippon Shokubai Kagaku Kogyo Co Ltd Garbage box
JPH03223001A (en) * 1990-01-24 1991-10-02 Takagi Ind Co Ltd Sink for kitchen with garbage disposal means
CN112853141A (en) * 2020-12-29 2021-05-28 中北大学 Processing technology of hard alloy material

Also Published As

Publication number Publication date
JPS57169058A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
US4343651A (en) Sintered compact for use in a tool
JP2622131B2 (en) Alloys for cutting tools
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
US6634837B1 (en) Ceramic cutting insert of polycrystalline tungsten carbide
JP2613799B2 (en) Cermet cutting tools
JPH01294842A (en) Method for producing sintered hard metal molding and hard metal molding
JPS6335705B2 (en)
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JPH0725619B2 (en) Surface coated cubic boron nitride based ultra high pressure sintering material for cutting tools
JP3123067B2 (en) WC-based cemented carbide and cemented carbide with hard layer excellent in toughness
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS6315981B2 (en)
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JPS6334216B2 (en)
JPS6141873B2 (en)
JPH08174310A (en) Cermet cutting tool
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPH0680180B2 (en) Cemented carbide and its manufacturing method
JPS60131867A (en) High abrasion resistance superhard material
JPS60228634A (en) Manufacture of tungsten-base sintered material
JPH01115873A (en) Sintered form containing boron nitride of cubic system