JPS6335582B2 - - Google Patents

Info

Publication number
JPS6335582B2
JPS6335582B2 JP59261565A JP26156584A JPS6335582B2 JP S6335582 B2 JPS6335582 B2 JP S6335582B2 JP 59261565 A JP59261565 A JP 59261565A JP 26156584 A JP26156584 A JP 26156584A JP S6335582 B2 JPS6335582 B2 JP S6335582B2
Authority
JP
Japan
Prior art keywords
unsaturated polyester
optical glass
glass fiber
resin composition
saturated aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59261565A
Other languages
Japanese (ja)
Other versions
JPS60173514A (en
Inventor
Takao Kimura
Nobuo Inagaki
Mitsuo Yoshihara
Fumihiko Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59261565A priority Critical patent/JPS60173514A/en
Publication of JPS60173514A publication Critical patent/JPS60173514A/en
Publication of JPS6335582B2 publication Critical patent/JPS6335582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は光伝送用被覆光学ガラス繊維に関す
る。 従来の技術 光伝送に用いられる光学ガラス繊維は脆く、傷
が付きやすいうえに可撓性に乏しいので、このよ
うな傷が原因となつて僅かな外力によつても容易
に破壊する。従つて、従来より、光伝送用光学ガ
ラス繊維は、ガラス棒から製造した直後にその表
面に樹脂被覆が施されている。 このような樹脂被覆材料としては、従来、エポ
キシ樹脂、ウレタン樹脂等が用いられているが、
硬化に長時間を要するので生産性に劣るほか、ガ
ラス繊維との密着性が十分でなく、長期信頼性が
満足すべきではない。更に、このような樹脂被覆
は柔軟性に欠けるので、側圧により伝送特性が損
なわれる欠点がある。 発明が解決しようとする問題点 本発明は上記の問題を解決するためになされた
ものであつて、特に、低粘度で、光学ガラス繊維
との密着性にすぐれると共に、硬化速度が大き
く、更に得られる樹脂被覆が柔軟である不飽和ポ
リエステル樹脂組成物にて光学ガラス繊維を被覆
してなる光伝送特性にすぐれた光伝送用被覆光学
ガラス繊維を提供することを目的とする。 問題点を解決するための手段 本発明による光伝送用被覆光学ガラス繊維は、 (a) 炭素数4以上の長鎖飽和脂肪族二価アルコー
ルをグリコール成分として含有すると共に、 (b) 炭素数6〜11の長鎖飽和脂肪族二塩基酸を飽
和多塩基酸成分として含有する不飽和ポリエス
テルと、 (c) アクリル酸エステル又はメタアクリル酸エス
テルとからなる不飽和ポリエステル樹脂組成物
を光学ガラス繊維に塗布し、硬化させてなるこ
とを特徴とする。 即ち、本発明による光伝送用被覆光学ガラス繊
維は、光学ガラス繊維の紡糸工程に続いて、グリ
コール、不飽和多塩基酸及び飽和多塩基酸とから
なる不飽和ポリエステルにおいて、飽和多塩基酸
成分として炭素数6〜11の長鎖飽和脂肪族二塩基
酸を含有すると共に、グリコール成分として炭素
数4以上の長鎖飽和脂肪族二価アルコールを含有
する不飽和ポリエステルと、(メタ)アクリル酸
エステルとを含有してなる液状不飽和ポリエステ
ル樹脂組成物を光伝送用光学ガラス繊維に塗布
し、硬化させるとき、この樹脂組成物が低粘度で
あつて、且つ、硬化速度が大きいほか、硬化樹脂
被覆が柔軟であり、また、光学ガラス繊維への密
着性にすぐれるため、生産性よく且つ信頼性高く
光伝送用被覆光学ガラス繊維を得ることができる
のみならず、かくして得られる光伝送用被覆光学
ガラス繊維が従来知られている被覆光学ガラス繊
維に比較して、より低温度に至るまで伝送損失が
生じないことを見出してなされたものである。 本発明による光伝送用被覆光学ガラス繊維を得
るための不飽和ポリエステル樹脂組成物におい
て、不飽和ポリエステルは、グリコール成分とし
て、炭素数4以上の長鎖飽和脂肪族二価アルコー
ルを含有する。かかる長鎖飽和脂肪族二価アルコ
ールとしては、例えば、1,4−ブタンジオー
ル、1,5−ペンタンジオール、1,6−ヘキサ
ンジオール等が用いられる。 不飽和ポリエステルにおいて、グリコール成分
としての上記炭素数4以上の長鎖飽和脂肪族二価
アルコールは、グリコール成分中の10〜100モル
%、特に20〜100モル%を占めるのが望ましい。
上記長鎖飽和脂肪族二価アルコールの量が少なす
ぎると、得られる被覆用樹脂組成物の粘度が高
く、また、硬化被覆が柔軟性に欠けることとな
る。 上記以外のグリコール成分は特に制限されない
が、例えば、エチレングリコール、プロピレング
リコール、グリセリン等を用いることができる。 本発明においては、不飽和ポリエステルを得る
ために、上記グリコール成分と反応させる多塩基
酸は、不飽和二塩基酸と炭素数6〜11の長鎖脂肪
族飽和二塩基酸とを含有する。かかる長鎖脂肪族
飽和二塩基酸としては、例えば、アジピン酸、セ
バシン酸等が用いられる。不飽和二塩基酸として
は、マレイン酸、フマル酸、イタコン酸、シトラ
コン酸等が用いられる。上記長鎖脂肪族飽和二塩
基酸の使用量は、多塩基酸全量の10〜90モル%、
好ましくは20〜80モル%である。長鎖脂肪族飽和
二塩基酸の使用量が少なすぎると、樹脂被覆が柔
軟性に欠けるようになり、一方、多すぎるとき
は、樹脂組成物の硬化速度が小さくなるので好ま
しくない。 尚、本発明においては、上記炭素数6〜11の長
鎖脂肪族飽和二塩基酸の50モル%までを炭素数5
以下の脂肪族飽和二塩基酸に代えて使用すること
ができる。更には、この炭素数5以下の脂肪族飽
和二塩基酸の一部又は全部を無水フタル酸、イソ
フタル酸、テレフタル酸、無水トリメリツト酸、
無水ピロメリツト酸等の芳香族多塩基酸やへキサ
ヒドロ無水フタル酸等で置換えて使用してもよ
い。 上記のようなグリコール成分及び多塩基酸成分
とを常法に従つて反応させることにより、不飽和
ポリエステルを得ることができるが、好ましくは
水酸基及びカルボキシル基が等モル又はほぼ等モ
ルになるようにグリコール成分と多塩基酸成分と
を反応させればよい。不飽和ポリエステルの分子
量は500〜10000程度が適当である。 本発明による光伝送用被覆光学ガラス繊維は、
光学ガラス繊維の紡糸工程に続いて、上記のよう
な不飽和ポリエステルと(メタ)アクリル酸エス
テルとを含有する液状不飽和ポリエステル樹脂組
成物を光学ガラス繊維に塗布し、硬化させて得る
ことができる。ここに、不飽和ポリエステルの架
橋剤である(メタ)アクリル酸エステルは特に制
限されないが、例えば、2−エチルヘキシル(メ
タ)アクリレート、1,6−ヘキサンジオールジ
(メタ)アクリレート、トリメチロールプロパン
トリ(メタ)アクリレート、ペンタエリスリトー
ルテトラ(メタ)アクリレート、ジエチレングリ
コールジ(メタ)アクリレート、ポリエチレング
リコールジ(メタ)アクリレート等が用いられ
る。 不飽和ポリエステルに対するこれら(メタ)ア
クリレートの配合割合は、得られる不飽和ポリエ
ステル樹脂組成物の粘度や硬化速度、硬化後の樹
脂被覆の柔軟性が最適となるように選ばれるが、
本発明においては、樹脂組成物は、普通、不飽和
ポリエステル30〜90重量部と(メタ)アクリル酸
エステル70〜10重量部とからなり、好ましくは不
飽和ポリエステル50〜80重量部と(メタ)アクリ
ル酸エステル50〜20重量部とからなる。 上記不飽和ポリエステル樹脂組成物は、ラジカ
ル重合開始剤又は光重合開始剤によつて硬化され
る。重合開始剤としては、従来より知られている
ものが適宜に用いられ、例えば、ラジカル重合開
始剤としてベンゾイルパーオキサイド、t−ブチ
ルパーベンゾエート等が、また、光重合開始剤と
してアセトフエノン、ベンゾフエノン、ベンゾイ
ンイプロピルエーテル等が用いられる。これら開
始剤は、通常、樹脂組成物の0.1〜10重量%が用
いられる。 本発明において、上記不飽和ポリエステル樹脂
組成物は、必要に応じて変性用樹脂や各種添加剤
を含有していてもよく、また、所望ならば溶剤に
より希釈して用いてもよい。変性用樹脂は、用い
る不飽和ポリエステルと同量以下、好ましくは1/
4量以下の範囲で使用される。変性用樹脂として
はエポキシ樹脂、ポリアミド、ポリウレタン、ポ
リエーテル、ポリアミドイミド、シリコーン樹
脂、フエノール樹脂等を挙げることができる。ま
た、上記添加剤としては、ナフテン酸コバルト、
ナフテン酸亜鉛、ジメチルアニリンの如き硬化促
進剤、有機ケイ素化合物、界面活性剤を挙げるこ
とができる。 発明の効果 本発明による光伝送用被覆光学ガラス繊維は、
以上のように、グリコール成分として炭素数4以
上の長鎖飽和脂肪族二価アルコールを含有すると
共に、飽和多塩基酸成分として炭素数6〜11の長
鎖飽和脂肪族二塩基酸を含有する不飽和ポリエス
テルと、(メタ)アクリル酸エステルとを含有し
てなる液状不飽和ポリエステル樹脂組成物を光伝
送用光学ガラス繊維に塗布し、硬化させてなり、
先ず、この樹脂組成物が従来の被覆用樹脂組成
物、例えばエポキシ樹脂からなる組成物に比べて
著しく粘度が低く、且つ、硬化速度が大きいほ
か、硬化樹脂被覆が柔軟であり、また、光学ガラ
ス繊維への密着性にすぐれるため、生産性よく光
伝送用被覆光学ガラス繊維を製造することがで
き、更に、得られる光伝送用被覆光学ガラス繊維
は、強度と信頼性にすぐれ、低温度に至るまで光
伝送損失が生じないすぐれた光伝送特性を有す
る。 実施例 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例によつて何ら制限されるもの
ではない。尚、部は重量部を示す。 実施例 1 撹拌機、温度計及び還流冷却管を備えた1四
つクラスコに無水マレイン酸49g(0.5モル)、セ
バシン酸101g(0.5モル)及び1,6−ヘキサン
ジオール118g(1.0モル)を仕込み、150〜200゜C
の温度で7時間反応させて、酸価20の不飽和ポリ
エステルを得た。この不飽和ポリエステル60部に
平均分子量400のポリエチレングリコールジアク
リレート40部とt−ブチルパーベンゾエート1部
とを溶解させて、不飽和ポリエステル樹脂組成物
を調製した。その特性を第1表に示す。 30m/分の速度で紡糸した直径125μmの光学
ガラス繊維の表面に、紡糸工程に引続く工程にお
いて、上記不飽和ポリエステル樹脂組成物を塗布
した後、450℃の電気炉(長さ1m)を用いて硬
化させた。被覆後の光学ガラス繊維の外径は約
230μmであり、表面は均一であつた。また、得
られた光学ガラス繊維の破断強度(試料長10m、
試料数20本の平均値、以下、同じ。)は6.1Kgであ
り、−40℃まで伝送損失の増加は認められなかつ
た。 比較例 1 エポキシ樹脂Epon−828(シエル石油社製)100
部に2−エチル−4−メチルイミダゾール5部を
溶解して、被覆用組成物を調製した。その特性を
第1表に示す。 上記樹脂組成物を用い、実施例1と同様にし
て、650℃に加熱した電気炉により硬化させて、
被覆光学ガラス繊維を得た。この繊維の外径は
150〜310μmの範囲にばらついていた。また、得
られた光学ガラス繊維は−20℃以下で伝送損失の
急激な増加が認められた。 比較例 2 実施例1と同様のフラスコに無水マレイン酸49
g(0.5モル)、アジピン酸73g(0.5モル)及び
プロピレングリコール76g(1.0モル)を仕込み、
150〜200℃で7時間反応させて、酸価25の不飽和
ポリエステルを得た。 この不飽和ポリエステル60部に平均分子量400
のポリエチレングリコールジアクリート400部と
t−ブチルパーベンゾエート1部とを溶解して、
不飽和ポリエステル樹脂組成物を調製した。この
組成物は、その特性を第1表に示すように、低粘
度であり、また、硬化時間も短いが、硬化樹脂被
覆が硬く、従つて、これを被覆した光学ガラス繊
維は光伝送特性に著しく劣る。 即ち、20m/分の速度で紡糸した直径125μm
の光学ガラス繊維の表面に、紡糸工程に引き続く
工程において、上記不飽和ポリエステル樹脂組成
物を塗布した後、450℃の電気炉(長さ1m)を
用いて硬化させた。被覆後の光学ガラス繊維の外
径は239μm、実施例1と同様にして測定した光
学ガラス繊維の破断強度は6.0Kg/cm2であつたが、
0℃の温度で伝送損失の急激な増加が認められ
た。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to coated optical glass fibers for light transmission. BACKGROUND OF THE INVENTION Optical glass fibers used for optical transmission are brittle, easily scratched, and have poor flexibility, and are easily destroyed by even the slightest external force due to such scratches. Therefore, conventionally, optical glass fibers for light transmission have been coated with a resin on the surface immediately after being manufactured from a glass rod. Conventionally, epoxy resins, urethane resins, etc. have been used as such resin coating materials.
Since curing takes a long time, productivity is poor, and adhesion to glass fibers is insufficient, so long-term reliability should not be satisfied. Furthermore, since such a resin coating lacks flexibility, there is a drawback that the transmission characteristics are impaired by lateral pressure. Problems to be Solved by the Invention The present invention has been made in order to solve the above problems, and in particular, it has low viscosity, excellent adhesion to optical glass fibers, high curing speed, and An object of the present invention is to provide a coated optical glass fiber for light transmission with excellent light transmission characteristics, which is obtained by coating an optical glass fiber with an unsaturated polyester resin composition whose resin coating is flexible. Means for Solving the Problems The coated optical glass fiber for light transmission according to the present invention contains (a) a long-chain saturated aliphatic dihydric alcohol having 4 or more carbon atoms as a glycol component, and (b) containing 6 carbon atoms. An unsaturated polyester resin composition consisting of an unsaturated polyester containing ~11 long-chain saturated aliphatic dibasic acids as a saturated polybasic acid component, and (c) an acrylic ester or a methacrylic ester is applied to an optical glass fiber. It is characterized by being coated and cured. That is, in the coated optical glass fiber for light transmission according to the present invention, following the spinning process of the optical glass fiber, in an unsaturated polyester consisting of glycol, an unsaturated polybasic acid, and a saturated polybasic acid, as a saturated polybasic acid component, An unsaturated polyester containing a long chain saturated aliphatic dibasic acid having 6 to 11 carbon atoms and a long chain saturated aliphatic dihydric alcohol having 4 or more carbon atoms as a glycol component, and (meth)acrylic acid ester. When a liquid unsaturated polyester resin composition comprising Since it is flexible and has excellent adhesion to optical glass fibers, it is possible not only to obtain coated optical glass fibers for light transmission with high productivity and reliability, but also to obtain coated optical glass fibers for light transmission that are obtained in this way. This was made based on the discovery that the fiber does not cause transmission loss even at lower temperatures than conventionally known coated optical glass fibers. In the unsaturated polyester resin composition for obtaining a coated optical glass fiber for light transmission according to the present invention, the unsaturated polyester contains a long chain saturated aliphatic dihydric alcohol having 4 or more carbon atoms as a glycol component. Examples of such long-chain saturated aliphatic dihydric alcohols include 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. In the unsaturated polyester, the long-chain saturated aliphatic dihydric alcohol having 4 or more carbon atoms as the glycol component preferably accounts for 10 to 100 mol%, particularly 20 to 100 mol%, of the glycol component.
If the amount of the long-chain saturated aliphatic dihydric alcohol is too small, the resulting coating resin composition will have a high viscosity and the cured coating will lack flexibility. Glycol components other than those mentioned above are not particularly limited, and for example, ethylene glycol, propylene glycol, glycerin, etc. can be used. In the present invention, in order to obtain an unsaturated polyester, the polybasic acid reacted with the glycol component contains an unsaturated dibasic acid and a long-chain aliphatic saturated dibasic acid having 6 to 11 carbon atoms. Examples of such long-chain aliphatic saturated dibasic acids include adipic acid and sebacic acid. As the unsaturated dibasic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, etc. are used. The amount of the long-chain aliphatic saturated dibasic acid used is 10 to 90 mol% of the total amount of polybasic acid,
Preferably it is 20 to 80 mol%. If the amount of long-chain aliphatic saturated dibasic acid used is too small, the resin coating will lack flexibility, while if it is too large, the curing speed of the resin composition will be undesirably low. In the present invention, up to 50 mol% of the above long chain aliphatic saturated dibasic acid having 6 to 11 carbon atoms is
It can be used in place of the following aliphatic saturated dibasic acids. Furthermore, part or all of this aliphatic saturated dibasic acid having 5 or less carbon atoms can be converted into phthalic anhydride, isophthalic acid, terephthalic acid, trimellitic anhydride,
An aromatic polybasic acid such as pyromellitic anhydride, hexahydrophthalic anhydride, etc. may be substituted for use. An unsaturated polyester can be obtained by reacting the above-mentioned glycol component and polybasic acid component according to a conventional method, but preferably the hydroxyl group and the carboxyl group are equimolar or approximately equimolar. What is necessary is to react the glycol component and the polybasic acid component. The appropriate molecular weight of the unsaturated polyester is about 500 to 10,000. The coated optical glass fiber for light transmission according to the present invention comprises:
Following the optical glass fiber spinning process, a liquid unsaturated polyester resin composition containing an unsaturated polyester and (meth)acrylic acid ester as described above is applied to the optical glass fiber and cured. . Here, the (meth)acrylic acid ester that is a crosslinking agent for unsaturated polyester is not particularly limited, but examples include 2-ethylhexyl (meth)acrylate, 1,6-hexanediol di(meth)acrylate, and trimethylolpropane tri( Meth)acrylate, pentaerythritol tetra(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, etc. are used. The blending ratio of these (meth)acrylates to the unsaturated polyester is selected so as to optimize the viscosity and curing speed of the resulting unsaturated polyester resin composition, as well as the flexibility of the resin coating after curing.
In the present invention, the resin composition usually consists of 30 to 90 parts by weight of unsaturated polyester and 70 to 10 parts by weight of (meth)acrylate, preferably 50 to 80 parts by weight of unsaturated polyester and (meth)acrylate. It consists of 50 to 20 parts by weight of acrylic acid ester. The unsaturated polyester resin composition is cured with a radical polymerization initiator or a photopolymerization initiator. As the polymerization initiator, conventionally known ones are used as appropriate; for example, benzoyl peroxide, t-butyl perbenzoate, etc. are used as radical polymerization initiators, and acetophenone, benzophenone, benzoin are used as photopolymerization initiators. Ipropyl ether etc. are used. These initiators are usually used in an amount of 0.1 to 10% by weight of the resin composition. In the present invention, the unsaturated polyester resin composition may contain a modifying resin and various additives as required, and may be diluted with a solvent before use if desired. The amount of the modifying resin is equal to or less than the amount of the unsaturated polyester used, preferably 1/
Used in amounts of 4 or less. Examples of the modifying resin include epoxy resin, polyamide, polyurethane, polyether, polyamideimide, silicone resin, and phenol resin. In addition, the above additives include cobalt naphthenate,
Examples include curing accelerators such as zinc naphthenate and dimethylaniline, organosilicon compounds, and surfactants. Effects of the Invention The coated optical glass fiber for light transmission according to the present invention has
As described above, the glycol component contains a long chain saturated aliphatic dihydric alcohol with 4 or more carbon atoms, and the saturated polybasic acid component contains a long chain saturated aliphatic dibasic acid with 6 to 11 carbon atoms. A liquid unsaturated polyester resin composition containing a saturated polyester and a (meth)acrylic acid ester is applied to an optical glass fiber for light transmission and cured,
First, this resin composition has a significantly lower viscosity and a faster curing speed than conventional coating resin compositions, such as compositions made of epoxy resins. Because it has excellent adhesion to fibers, it is possible to manufacture coated optical glass fibers for light transmission with high productivity.Furthermore, the coated optical glass fibers for light transmission that are obtained have excellent strength and reliability, and can be used at low temperatures. It has excellent optical transmission characteristics with no optical transmission loss. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, parts indicate parts by weight. Example 1 49 g (0.5 mol) of maleic anhydride, 101 g (0.5 mol) of sebacic acid, and 118 g (1.0 mol) of 1,6-hexanediol were placed in a 14-piece Clasco equipped with a stirrer, thermometer, and reflux condenser. , 150~200°C
The reaction was carried out at a temperature of 7 hours to obtain an unsaturated polyester with an acid value of 20. An unsaturated polyester resin composition was prepared by dissolving 40 parts of polyethylene glycol diacrylate having an average molecular weight of 400 and 1 part of t-butyl perbenzoate in 60 parts of this unsaturated polyester. Its characteristics are shown in Table 1. In a process subsequent to the spinning process, the unsaturated polyester resin composition was applied to the surface of an optical glass fiber with a diameter of 125 μm spun at a speed of 30 m/min, and then the unsaturated polyester resin composition was applied using an electric furnace (length 1 m) at 450°C and cured. The outer diameter of the optical glass fiber after coating is approx.
The diameter was 230 μm, and the surface was uniform. In addition, the breaking strength of the obtained optical glass fiber (sample length 10 m,
Average value of 20 samples, same below. ) was 6.1Kg, and no increase in transmission loss was observed up to -40℃. Comparative example 1 Epoxy resin Epon-828 (manufactured by Shell Oil Co., Ltd.) 100
A coating composition was prepared by dissolving 5 parts of 2-ethyl-4-methylimidazole in 1 part of the solution. Its characteristics are shown in Table 1. Using the above resin composition, it was cured in the same manner as in Example 1 in an electric furnace heated to 650°C,
A coated optical glass fiber was obtained. The outer diameter of this fiber is
It varied in the range of 150 to 310 μm. Furthermore, a rapid increase in transmission loss was observed in the obtained optical glass fiber at temperatures below -20°C. Comparative Example 2 Maleic anhydride 49 was added to the same flask as in Example 1.
g (0.5 mol), adipic acid 73 g (0.5 mol) and propylene glycol 76 g (1.0 mol),
The reaction was carried out at 150 to 200°C for 7 hours to obtain an unsaturated polyester with an acid value of 25. 60 parts of this unsaturated polyester has an average molecular weight of 400
400 parts of polyethylene glycol diacrylate and 1 part of t-butyl perbenzoate were dissolved,
An unsaturated polyester resin composition was prepared. As shown in Table 1, this composition has a low viscosity and a short curing time, but the cured resin coating is hard, and the optical glass fiber coated with this composition has poor optical transmission properties. Significantly inferior. That is, a diameter of 125 μm spun at a speed of 20 m/min.
The unsaturated polyester resin composition was applied to the surface of the optical glass fiber in a step subsequent to the spinning step, and then cured using an electric furnace (length 1 m) at 450°C. The outer diameter of the optical glass fiber after coating was 239 μm, and the breaking strength of the optical glass fiber measured in the same manner as in Example 1 was 6.0 Kg/cm 2 .
A rapid increase in transmission loss was observed at a temperature of 0°C.

【表】 尚、1表において、シヨア硬度Aは、各樹脂組
成物を150℃、15分間の条件で加熱硬化させて、
厚み2mmの板状体を作成し、これを用いて測定し
た。
[Table] In Table 1, Shore hardness A is determined by heating and curing each resin composition at 150°C for 15 minutes.
A plate-shaped body with a thickness of 2 mm was prepared, and measurements were made using this plate.

Claims (1)

【特許請求の範囲】 1 (a) 炭素数4以上の長鎖飽和脂肪族二価アル
コールをグリコール成分として含有すると共
に、 (b) 炭素数6〜11の長鎖飽和脂肪族二塩基酸を飽
和多塩基酸成分として含有する不飽和ポリエス
テルと、 (c) アクリル酸エステル又はメタアクリル酸エス
テルとからなる不飽和ポリエステル樹脂組成物
を光学ガラス繊維に塗布し、硬化させてなるこ
とを特徴とする光伝送用被覆光学ガラス繊維。 2 不飽和ポリエステルにおいて、長鎖飽和脂肪
族二価アルコールがグリコール成分の10〜100モ
ル%を占め、且つ、長鎖飽和脂肪族二塩基酸が飽
和及び不飽和多塩基酸成分の10〜90モル%を占め
ることを特徴とする特許請求の範囲第1項記載の
光伝送用被覆光学ガラス繊維。 3 不飽和ポリエステル樹脂組成物が不飽和ポリ
エステル30〜90重量部とアクリル酸エステル又は
メタアクリル酸エステル70〜10重量部とを含有す
ることを特徴とする特許請求の範囲第1項又は第
2項記載の光伝送用被覆光学ガラス繊維。
[Scope of Claims] 1 (a) Contains a long chain saturated aliphatic dihydric alcohol having 4 or more carbon atoms as a glycol component, and (b) Contains a long chain saturated aliphatic dibasic acid having 6 to 11 carbon atoms. An optical fiber characterized by applying an unsaturated polyester resin composition comprising an unsaturated polyester contained as a polybasic acid component and (c) an acrylic ester or a methacrylic ester to an optical glass fiber and curing the composition. Coated optical glass fiber for transmission. 2 In the unsaturated polyester, long chain saturated aliphatic dihydric alcohol accounts for 10 to 100 mol% of the glycol component, and long chain saturated aliphatic dibasic acid accounts for 10 to 90 mol % of the saturated and unsaturated polybasic acid component. % of the coated optical glass fiber for light transmission according to claim 1. 3. Claim 1 or 2, characterized in that the unsaturated polyester resin composition contains 30 to 90 parts by weight of unsaturated polyester and 70 to 10 parts by weight of acrylic ester or methacrylic ester. A coated optical glass fiber for light transmission as described.
JP59261565A 1984-12-10 1984-12-10 Coated optical glass fiber for optical transmission Granted JPS60173514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261565A JPS60173514A (en) 1984-12-10 1984-12-10 Coated optical glass fiber for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261565A JPS60173514A (en) 1984-12-10 1984-12-10 Coated optical glass fiber for optical transmission

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55133252A Division JPS5756803A (en) 1980-09-24 1980-09-24 Composition for coating optical glass fibers

Publications (2)

Publication Number Publication Date
JPS60173514A JPS60173514A (en) 1985-09-06
JPS6335582B2 true JPS6335582B2 (en) 1988-07-15

Family

ID=17363669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261565A Granted JPS60173514A (en) 1984-12-10 1984-12-10 Coated optical glass fiber for optical transmission

Country Status (1)

Country Link
JP (1) JPS60173514A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133252A (en) * 1979-04-05 1980-10-16 Yukio Sakakibara Driving mechanism for push piece in fingerrpressure therapy instrument
JPS5756803A (en) * 1980-09-24 1982-04-05 Nippon Telegr & Teleph Corp <Ntt> Composition for coating optical glass fibers
JPS6219378A (en) * 1985-07-17 1987-01-28 Tohoku Kako Kk Grindstone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133252A (en) * 1979-04-05 1980-10-16 Yukio Sakakibara Driving mechanism for push piece in fingerrpressure therapy instrument
JPS5756803A (en) * 1980-09-24 1982-04-05 Nippon Telegr & Teleph Corp <Ntt> Composition for coating optical glass fibers
JPS6219378A (en) * 1985-07-17 1987-01-28 Tohoku Kako Kk Grindstone

Also Published As

Publication number Publication date
JPS60173514A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
JP4095065B2 (en) UV curable resin composition for optical fiber cladding
US4639080A (en) Optical fibers coated with modified 1,4-polybutadienes
JPS6083907A (en) Coating material for optical glass fiber
JPS6121180B2 (en)
JPS6219378B2 (en)
JPS6335582B2 (en)
JPS6363503B2 (en)
AU703759B2 (en) Compositions containing unsaturated polyester resins and their use for the production of coatings
JPS6219379B2 (en)
JPS6218671B2 (en)
JPH1160540A (en) Aromatic ester (meth)acrylate dendrimer and curable resin composition
EP0089811A2 (en) Modified unsaturated polyester resins
JPS59227915A (en) Curable liquid resin composition and optical fiber coating material based thereon
US6200645B1 (en) Polyester resin impregnating and coating solutions and their use
JPS6121181B2 (en)
JPS63235316A (en) Polyester acrylate resin composition
JPS58160308A (en) Thermosetting resin composition
JPS6359978B2 (en)
JPS6220144B2 (en)
JPS6114154A (en) Coating material for optical glass fiber
JPS62123044A (en) Coating material for optical glass fiber
JPS636507B2 (en)
JPS636505B2 (en)
JPS59114504A (en) Material for coating optical plastic fiber
JPS62148346A (en) Material for coating optical glass fiber