JPS6218671B2 - - Google Patents

Info

Publication number
JPS6218671B2
JPS6218671B2 JP54149705A JP14970579A JPS6218671B2 JP S6218671 B2 JPS6218671 B2 JP S6218671B2 JP 54149705 A JP54149705 A JP 54149705A JP 14970579 A JP14970579 A JP 14970579A JP S6218671 B2 JPS6218671 B2 JP S6218671B2
Authority
JP
Japan
Prior art keywords
carbon fibers
vinyl ester
epoxy
acid
ester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54149705A
Other languages
Japanese (ja)
Other versions
JPS5673174A (en
Inventor
Takashi Tada
Hajime Asai
Tadanori Yoshioka
Naoto Oosuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14970579A priority Critical patent/JPS5673174A/en
Publication of JPS5673174A publication Critical patent/JPS5673174A/en
Publication of JPS6218671B2 publication Critical patent/JPS6218671B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維のサイジング方法に関する。 炭素繊維は、その比強度、比弾性率が高いこと
から、近年注目され、スポーツ用品他航空機部品
として使用されつつある。一般にその使用方法は
熱硬化性樹脂をマトリツクスとして熱硬化して成
形品を得るものであるが、炭素繊維の機械的性能
を充分生かそうとするとマトリツクス樹脂と炭素
繊維との接着力がある程度以上あることが必要で
ある。接着力の評価方法としては層間せん断強度
が測定される。通常炭素繊維用のマトリツクスと
してはエポキシ樹脂が用いられ、層間せん断強度
7Kg/mm2以上を容易に達成することが出来る。し
かるにラジカル重合系のマトリツクス樹脂を用い
た場合、接着力が乏しく、特公昭52―29345号公
報、特公昭52―5064号公報に示される発明の如
く、その層間せん断強度は6〜7Kg/mm2程度に止
まり、実用に耐えなかつたのが実情であつた。本
発明者らはラジカル重合系マトリツクス樹脂が速
硬化性を有することに注目し、このマトリツクス
樹脂と炭素繊維との接着性を向上する方法を鋭意
検討した結果、本発明に到達した。本発明になる
炭素繊維サイジング方法によれば、従来ラジカル
重合系マトリツクス樹脂を用いた場合極めて困難
であつた層間せん断強度8Kg/mm2を容易に越えた
複合材を得ることが出来る。 本発明に使用するビニルエステル樹脂組成物と
しては、分子中に遊離の水酸基を1個以上有する
不飽和エステル樹脂であれば、いずれのものをも
用いることができ、グリセリン,ジグリセリン,
トリメチロールプロパン,ペンタエリスリトール
などの3個以上の水酸基を有するポリオールと不
飽和―塩基酸との反応生成物、多価カルボン酸と
グリシジルメタクリレート、又はグリシジルアク
リレートとの反応生成物、或いはエポキシ基を分
子内に少なくとも1個以上有するエポキシ化合物
と不飽和―塩基酸とをあるいは不飽和―塩基酸の
一部分あるいは大部分を飽和―塩基酸、飽和多塩
基酸、無水飽和多塩基酸、不飽和多塩基酸、無水
不飽和多塩基酸の中から選ばれた1種又は2種以
上で置換したものとを反応触媒、重合防止剤の存
在下で加熱反応せしめ、とくに下式の定数Kを2
以上とした反応物の1種もしくは2種以上の混合
物をさすが K=WPE/WPE・W/W+W WPEO:原料エポキシ化合物のエポキ当量
(g/eq) WPER:反応後組成物のエポキシ当量(g/
eq) W1:原料エポキシ化合物の重量(g) W2:反応に用いたエポキシ化合物以外の成分
重量(g) 50重量%を超えない範囲で、無水マレイン酸、フ
マル酸の如きα,β不飽和ジカルボン酸と飽和ジ
カルボン酸及びグリコール類のポリエステル化縮
合生成樹脂である不飽和アルキド樹脂の1種もし
くは2種以上の混合物やジアリルフタレート,ジ
アリルイソフタレート等のβポリマーの1種もし
くは2種以上の混合物等を混合して用いることも
差支えない。 本反応に用いるエポキシ化合物としては、既に
公知のエポキシ樹脂全般を意味するものであり、
例えばジフエニロールプロパン,ジフエニロール
エタン,ジフエニロールメタンの如きジフエニロ
ールアルカン類のポリグリシジルエーテル類,ノ
ボラツクあるいはレゾールの如き多価フエノール
類のポリグリシジルエーテル類,p―アミノフエ
ノール,m―アミノフエノール,4.4′―ジアミノ
ジフエニルメタン等多価アミン類のポリグリシジ
ルエーテル類,シクロヘキサセン,シクロペンタ
ジエン,ジシクロペンタジエンなどの脂環式化合
物のエポキシ化により生成されるエポキシ樹脂,
3.4―エポキシ―6―メチル―シクロヘキサンカ
ルボン酸類のメチルエステル,エチレングリコー
ル,グリセリンの如き脂肪族ポリエポキシ化合物
のポリ(エポキシアルキル)エーテル類,芳香
族,脂肪族カルボン酸のグリシジルエステル類な
どを言う。これらは単一でも2種以上混合して用
いてもよい。 不飽和―塩基酸としては、メタクリル酸,アク
リル酸,クロトン酸等を、不飽和多塩基酸あるい
はその酸無水物としては、無水マレイン酸,フマ
ル酸,イタコン酸等を挙げることが出来る。 飽和―塩基酸,多塩基酸,無水飽和多塩基酸と
しては、無水フタル酸,テトラヒドロ無水フタル
酸,ヘキサヒドロ無水フタル酸,アジピン酸,ヘ
ツト酸,p―ターシヤリブチル安息香酸等をあげ
ることが出来る。 これら反応の触媒としては、通常のエステル化
触媒が使用可能であるが、より好ましくはハロゲ
ン化リチウム,スルホン酸類,金属水酸化物類,
金属ハロゲン化物類,ホスホン酸類,有機酸類等
の1種もしくは2種以上をエステル化反応物に対
して0.001〜15phrの範囲で使用する。 重合防止剤としては、1価または多価フエノー
ル類などのキノン類、例えばハイドロキノン,メ
トキシハイドロキノン,パラベンゾキノン等の1
種もしくは2種以上をエステル化反応物に対して
0.001〜0.25phrの範囲で使用する。 エポキシ化合物のエポキシ基と不飽和塩基酸の
塩基との反応のモル比は1:0.5〜1.1で用いるこ
とが好ましい。こられの反応は通常無溶剤で100
℃〜200℃で実施するが反応後エポキシ基,不飽
和基と非反応性溶剤で希釈し反応停止冷却するこ
とも有効である。 エポキシ化合物のエポキシ基と不飽和塩基酸の
塩基との反応モル比が1:0.5未満の場合ビニル
エステル樹脂が軟質となり、1:1.1を越えると
ビニルエステル樹脂がもろくなり、いずれの場合
も複合材の層間せん断強度を低下する為好ましく
ない。 ビニルエステル樹脂組成物を炭素繊維表面に塗
布するには組成物が溶解し、不飽和基と反応しな
い溶剤、例えばアセトン,メチルエチルケトン,
塩化メチレン,クロロホルム等に固形分0.05〜5
重量%に溶解し、この溶液中に炭素繊維を通過含
浸せしめた後、150℃以下、より好ましくは100℃
以下で溶剤を留去せしめればよい。この過程は溶
剤留去のみであり、低い温度で処理可能な為サイ
ジング剤のエポキシ当量の変動は軽微であり、又
極めて短時間に処理出来る特徴がある。 本発明で用いられるビニルエステル樹脂組成物
は重合禁止剤を含有している為、上述したサイジ
ング糸の剛さの経時安定性の秀れていることも特
徴である。 本発明になるサイジング剤の適正塗布量は0.05
〜5重量%であり、より好ましくは0.2〜4重量
%である。 0.05重量%未満では糸の毛羽立ちが激しく実質
的に有効でなく、5重量%を越えるとこれから得
られるコンポジツトのマトリツクス樹脂と炭素繊
維との接着強度が低くなり適切でない。 本発明に使用する炭素繊維はポリアクリロニト
リル,セルロース,ピツチ等の繊維を800〜2800
℃近くで焼成したいわゆる高強力糸,高弾性糸い
ずれでもよいが、特に表面を酸化処理したものが
望ましい。 本発明の処理を施した炭素繊維は、特に不飽和
ポリエステル樹脂,ビニルエステル樹脂,ジアリ
ールフタレート樹脂等ラジカル重合系樹脂の強化
材として硬化使用する場合に繊維と樹脂とのすぐ
れた接着性を示し、良好な複合材を得ることが出
来る。 製造例 1 3.4―エポキシ―6―メチルシクロヘキシノン
メチル―3.4―エポキシ―6―メチルシクロヘキ
サンカルボキシレート(エポキシ当量156)78部
に対しアクリル酸32.4部、ハイドロキノン0.05
部、リチウムクロリド0.2部加え、100℃で加熱反
応せしめ、定数Kを6.7としたビニルエステル樹
脂組成物(1)を得た。 製造例 2 1―エポキシエチル―3.4―エポキシシクロヘ
キサン(エポキシ当量76)38部にアクリル酸36
部、ハイドロキノン0.05部、リチウムクロリド
0.1部加え、100℃で加熱反応せしめ、定数Kを10
としたビニルエステル樹脂組成物(2)を得た。 製造例 3 エピコート828(シエル化学登録商標、エポキ
シ当量190)95部にメタクリル酸39部、リチウム
クロリド0.7部、ハイドロキノン0.05部を加え、
100℃で加熱反応せしめ、定数Kを5としたビニ
ルエステル樹脂組成物(3)を得た。 製造例 4 製造例1においてハイドロキノンを全く加えな
い他は同様にしてビニルエステル樹脂組成物(4)を
得た。 製造例 5 製造例2においてハイドロキノンを全く加えな
い他は同様にしてビニルエステル樹脂組成物(5)を
得た。 製造例 6 製造例3においてハイドロキノンを全く加えな
い他は同様にしてビニルエステル樹脂組成物(6)を
得た。 実施例 1 製造例1で得たビニルエステル樹脂組成物(1)を
アセトンに固形分0.7重量%で溶解し、これを炭
素繊維パイロフイルAS(三菱レイヨン登録商
標)に均一に含浸した後、90℃の熱風炉を1分通
過せしめて溶剤留去せしめ0.6重量%サイズ処理
炭素繊維を得た。ジアリルフタレートβポリマー
(軟化点80℃、ヨウ素価60)75部に対しジアリル
フタレートモノマー25部、ターシヤリブチルパー
ベンゾエート3部、メチルエチルケトン103部を
加えてラツカーを作り、上で得た炭素繊維に含浸
しつつシリコーンコートした離型紙を巻きつけた
ドラム上に巻きとつた。樹脂含有率は含浸後の炭
素繊維を2本のガラス棒ではさみ、その間げきを
制御することにより40重量%に調節した。ドラム
より離型紙上に巻きとられた炭素繊維を切り開い
てとり出し、熱風乾燥器中で90℃、10分乾燥しプ
リプレグを作製した。得られたプリプレグは一方
向に積層し繊維容積含有率が60%となる様マツチ
ドメタルダイで成型した。硬化条件は圧力7Kg
G/cm2、150℃、30分とした。得られたコンポジ
ツトの層間剪断強度(ILSS)をASTM―D―
2344に従つて測定したところ9.2Kg/mm2であつ
た。なお上記処理を行なわない繊維を用いた場合
6.5Kg/mm2であつた。 実施例 2 製造例2で得たビニルエステル樹脂組成物(2)を
用いた実施例1と同様にしてコンポジツトを作つ
た。得られたコンポジツトのILSSは9.5Kg/mm2
あつた。 実施例 3 製造例3で得たビニルエステル樹脂組成物(3)を
用い実施例1と同様にしてコンポジツトを作つ
た。得られたコンポジツトのILSSは9.1Kg/mm2
あつた。 実施例 4 実施例1で得たサイズ処理炭素繊維を用いて無
水マレイン酸75モル、プロピレングリコール108
モルの組成で140〜230℃で3.5時間エステル化
し、次いでイソフタル酸25モルとヒドロキノン
0.02phrを加えて140〜230℃で3時間エステル化
して得た酸価23.5、軟化点78〜80℃の不飽和アル
キド樹脂にジアリルフタレートモノマー25phr、
ターシヤリブチルパーベンゾエート3phr、メチ
ルエチルケトン128phrを加えてラツカーを調整
した。これを用いて実施例1で得たサイズ処理炭
素繊維に含浸し、実施例1と同様にプリプレグを
作りコンポジツトを作つた。得られたコンポジツ
トのILSSは9.2Kg/mm2であつた。 実施例 5 実施例1で得た炭素繊維に製造例3で得たビニ
ルエステル樹脂組成物(3)をスチレン20phrで希釈
し、これにターシヤリブチルパーベンゾエート
2phr加えたものを含浸せしめ、繊維方向を揃え
て金型に入れ、洩れのない様にして120℃で5分
硬化せしめ、炭素繊維容積含有率50%のコンポジ
ツトを作つた。得られたコンポジツトのILSSは
9.0Kg/mm2であつた。 実施例 6 実施例1,2,3において、製造例4,5,6
で得た樹脂組成物(4),(5),(6)を用いる他は同様に
してサイズ処理炭素繊維を得た。これらの30℃放
置に伴なうサイズ剤のゲル化挙動を炭素繊維をア
セトンに浸漬した場合の濁りの有無で判定した。
結果を表1に示す。本結果よりサイズ剤の調整方
法の差は明らかである。
The present invention relates to a method for sizing carbon fibers. Carbon fiber has attracted attention in recent years because of its high specific strength and specific modulus, and is being used in sports equipment and aircraft parts. Generally, carbon fiber is used by thermosetting a thermosetting resin as a matrix to obtain a molded product, but in order to take full advantage of the mechanical performance of carbon fiber, the adhesion between the matrix resin and carbon fiber must exceed a certain level. It is necessary. As a method for evaluating adhesive strength, interlaminar shear strength is measured. Epoxy resin is usually used as a matrix for carbon fibers, and an interlaminar shear strength of 7 kg/mm 2 or more can be easily achieved. However, when a radical polymerization type matrix resin is used, its adhesive strength is poor, and as in the inventions disclosed in Japanese Patent Publication No. 52-29345 and Japanese Patent Publication No. 52-5064, the interlaminar shear strength is 6 to 7 Kg/ mm2. In reality, it was only a matter of time and could not be put to practical use. The present inventors paid attention to the fact that radical polymerization matrix resins have fast curing properties, and as a result of intensive studies on methods for improving the adhesiveness between this matrix resin and carbon fibers, they arrived at the present invention. According to the carbon fiber sizing method of the present invention, it is possible to easily obtain a composite material having an interlaminar shear strength exceeding 8 Kg/mm 2 , which was extremely difficult when conventional radical polymerization matrix resins were used. As the vinyl ester resin composition used in the present invention, any unsaturated ester resin having one or more free hydroxyl groups in the molecule can be used, including glycerin, diglycerin,
A reaction product of a polyol having three or more hydroxyl groups such as trimethylolpropane or pentaerythritol and an unsaturated basic acid, a reaction product of a polycarboxylic acid and glycidyl methacrylate or glycidyl acrylate, or a molecule with an epoxy group. An epoxy compound containing at least one epoxy compound and an unsaturated basic acid, or a partially or mostly saturated basic acid, a saturated polybasic acid, an anhydrous saturated polybasic acid, an unsaturated polybasic acid , substituted with one or more selected from anhydrous unsaturated polybasic acids, are reacted by heating in the presence of a reaction catalyst and a polymerization inhibitor, especially when the constant K of the following formula is 2.
K=WPE R /WPE O・W 1 /W 1 +W 2 WPE O : Epoxy equivalent of raw material epoxy compound (g/eq) WPE R : After reaction Epoxy equivalent weight of the composition (g/
eq) W 1 : Weight of raw material epoxy compound (g) W 2 : Weight of components other than epoxy compound used in reaction (g) Within a range not exceeding 50% by weight, α, β-amino acids such as maleic anhydride and fumaric acid are added. One or more mixtures of unsaturated alkyd resins, which are polyester condensation products of saturated dicarboxylic acids and saturated dicarboxylic acids and glycols, and one or more β polymers such as diallyl phthalate and diallyl isophthalate. There is no problem in using a mixture of mixtures and the like. The epoxy compound used in this reaction refers to all known epoxy resins,
For example, polyglycidyl ethers of diphenylolalkanes such as diphenylolpropane, diphenyloethane, and diphenylomethane, polyglycidyl ethers of polyhydric phenols such as novolak or resol, p-aminophenol, m- Epoxy resins produced by epoxidation of polyglycidyl ethers of polyvalent amines such as aminophenol and 4,4′-diaminodiphenylmethane, alicyclic compounds such as cyclohexacene, cyclopentadiene, and dicyclopentadiene,
It refers to methyl esters of 3.4-epoxy-6-methyl-cyclohexanecarboxylic acids, poly(epoxyalkyl)ethers of aliphatic polyepoxy compounds such as ethylene glycol and glycerin, and glycidyl esters of aromatic and aliphatic carboxylic acids. These may be used singly or in combination of two or more. Examples of unsaturated basic acids include methacrylic acid, acrylic acid, crotonic acid, etc., and examples of unsaturated polybasic acids or acid anhydrides thereof include maleic anhydride, fumaric acid, itaconic acid, etc. Saturated basic acids, polybasic acids, and anhydrous saturated polybasic acids include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, adipic acid, hettic acid, p-tertiarybutylbenzoic acid, etc. . As a catalyst for these reactions, ordinary esterification catalysts can be used, but more preferably lithium halides, sulfonic acids, metal hydroxides,
One or more types of metal halides, phosphonic acids, organic acids, etc. are used in an amount of 0.001 to 15 phr based on the esterification reaction product. Examples of polymerization inhibitors include quinones such as monovalent or polyvalent phenols, such as hydroquinone, methoxyhydroquinone, and parabenzoquinone.
species or two or more species to the esterification reaction product
Use in the range of 0.001 to 0.25 phr. The molar ratio of the reaction between the epoxy group of the epoxy compound and the base of the unsaturated basic acid is preferably 1:0.5 to 1.1. These reactions are usually carried out without solvent at 100
Although the reaction is carried out at a temperature of 200°C to 200°C, it is also effective to dilute the epoxy groups and unsaturated groups with a non-reactive solvent to stop the reaction and cool the reaction. When the reaction molar ratio between the epoxy group of the epoxy compound and the base of the unsaturated basic acid is less than 1:0.5, the vinyl ester resin becomes soft, and when it exceeds 1:1.1, the vinyl ester resin becomes brittle, and in either case, the composite material This is not preferable because it lowers the interlaminar shear strength. To apply the vinyl ester resin composition to the surface of carbon fibers, use a solvent that dissolves the composition and does not react with unsaturated groups, such as acetone, methyl ethyl ketone,
Solid content 0.05-5 in methylene chloride, chloroform, etc.
After passing through and impregnating the carbon fibers in this solution, the temperature is below 150℃, more preferably at 100℃.
The solvent may be distilled off as follows. This process involves only solvent distillation and can be carried out at low temperatures, so there is only slight variation in the epoxy equivalent of the sizing agent, and the process can be carried out in an extremely short time. Since the vinyl ester resin composition used in the present invention contains a polymerization inhibitor, it is also characterized by the excellent stability of the stiffness of the sizing yarn over time as described above. The appropriate application amount of the sizing agent of the present invention is 0.05
-5% by weight, more preferably 0.2-4% by weight. If it is less than 0.05% by weight, the yarn will become too fluffy and is not substantially effective, and if it exceeds 5% by weight, the adhesive strength between the matrix resin and the carbon fibers of the composite obtained therefrom will be low, which is not appropriate. The carbon fibers used in the present invention are polyacrylonitrile, cellulose, pitch, etc.
Either a so-called high-strength yarn or a high-elasticity yarn fired at a temperature close to 0.degree. C. may be used, but one whose surface has been oxidized is particularly preferable. Carbon fibers treated according to the present invention exhibit excellent adhesion between fibers and resins, especially when used as a reinforcing material for radical polymerization resins such as unsaturated polyester resins, vinyl ester resins, and diaryl phthalate resins. A good composite material can be obtained. Production example 1 78 parts of 3.4-epoxy-6-methylcyclohexynone methyl-3.4-epoxy-6-methylcyclohexanecarboxylate (epoxy equivalent: 156), 32.4 parts of acrylic acid, 0.05 parts of hydroquinone
1 part and 0.2 parts of lithium chloride were added thereto, and the mixture was heated and reacted at 100°C to obtain a vinyl ester resin composition (1) having a constant K of 6.7. Production Example 2 38 parts of 1-epoxyethyl-3.4-epoxycyclohexane (epoxy equivalent: 76) and 36 parts of acrylic acid
part, hydroquinone 0.05 part, lithium chloride
Add 0.1 part, heat the reaction at 100℃, and adjust the constant K to 10.
A vinyl ester resin composition (2) was obtained. Production Example 3 39 parts of methacrylic acid, 0.7 parts of lithium chloride, and 0.05 parts of hydroquinone were added to 95 parts of Epicote 828 (Ciel Chemical registered trademark, epoxy equivalent: 190),
A heating reaction was carried out at 100° C. to obtain a vinyl ester resin composition (3) with a constant K of 5. Production Example 4 A vinyl ester resin composition (4) was obtained in the same manner as Production Example 1 except that no hydroquinone was added. Production Example 5 A vinyl ester resin composition (5) was obtained in the same manner as Production Example 2 except that no hydroquinone was added. Production Example 6 A vinyl ester resin composition (6) was obtained in the same manner as Production Example 3 except that no hydroquinone was added. Example 1 The vinyl ester resin composition (1) obtained in Production Example 1 was dissolved in acetone at a solid content of 0.7% by weight, and carbon fiber Pyrofil AS (Mitsubishi Rayon registered trademark) was uniformly impregnated with this, and then heated at 90°C. The solvent was distilled off by passing through a hot air oven for 1 minute to obtain a 0.6% by weight sized carbon fiber. Add 25 parts of diallyl phthalate monomer, 3 parts of tertiary butyl perbenzoate, and 103 parts of methyl ethyl ketone to 75 parts of diallyl phthalate β polymer (softening point 80°C, iodine value 60) to make a lacquer, and impregnate it into the carbon fiber obtained above. While doing so, it was wound onto a drum wrapped with silicone-coated release paper. The resin content was adjusted to 40% by weight by sandwiching the impregnated carbon fiber between two glass rods and controlling the gap between them. The carbon fibers wound on the release paper were cut open and taken out from the drum, and dried in a hot air dryer at 90°C for 10 minutes to produce prepreg. The obtained prepreg was laminated in one direction and molded with a matted metal die so that the fiber volume content was 60%. Curing conditions are pressure 7Kg.
G/cm 2 , 150°C, and 30 minutes. The interlaminar shear strength (ILSS) of the resulting composite was determined according to ASTM-D-
2344, it was 9.2Kg/mm 2 . In addition, when using fibers that are not subjected to the above treatment
It was 6.5Kg/ mm2 . Example 2 A composite was prepared in the same manner as in Example 1 using the vinyl ester resin composition (2) obtained in Production Example 2. The ILSS of the resulting composite was 9.5 Kg/mm 2 . Example 3 A composite was prepared in the same manner as in Example 1 using the vinyl ester resin composition (3) obtained in Production Example 3. The ILSS of the resulting composite was 9.1 Kg/mm 2 . Example 4 Using the size-treated carbon fiber obtained in Example 1, 75 mol of maleic anhydride and 108 mol of propylene glycol were added.
Esterified for 3.5 hours at 140-230 °C with a composition of mol, then 25 mol of isophthalic acid and hydroquinone
Diaryl phthalate monomer 25 phr was added to an unsaturated alkyd resin with an acid value of 23.5 and a softening point of 78 to 80 °C obtained by esterification at 140 to 230 °C for 3 hours with the addition of 0.02 phr.
The lacquer was adjusted by adding 3 phr of tertiary butyl perbenzoate and 128 phr of methyl ethyl ketone. This was used to impregnate the size-treated carbon fiber obtained in Example 1 to prepare a prepreg and a composite in the same manner as in Example 1. The ILSS of the resulting composite was 9.2 Kg/mm 2 . Example 5 The vinyl ester resin composition (3) obtained in Production Example 3 was diluted with 20 phr of styrene on the carbon fiber obtained in Example 1, and tertiary butyl perbenzoate was added to the carbon fiber obtained in Example 1.
The carbon fibers were impregnated with 2 phr, placed in a mold with the fibers aligned, and cured at 120°C for 5 minutes without leakage to produce a composite with a carbon fiber volume content of 50%. The ILSS of the resulting composite is
It was 9.0Kg/ mm2 . Example 6 In Examples 1, 2, and 3, Production Examples 4, 5, and 6
Size-treated carbon fibers were obtained in the same manner except that resin compositions (4), (5), and (6) obtained in (2) were used. The gelling behavior of these sizing agents upon standing at 30°C was determined by the presence or absence of turbidity when carbon fibers were immersed in acetone.
The results are shown in Table 1. From this result, it is clear that there is a difference in the method of adjusting the sizing agent.

【表】 ×:濁りあり
[Table] ×: Cloudy

Claims (1)

【特許請求の範囲】 1 ビニルエステル樹脂として分子中に少なくと
も遊離の水酸基を1個以上有するものを炭素繊維
に対して0.05〜5重量%の量付着せしめることを
特徴とする炭素繊維のサイジング方法。 2 ビニルエステル樹脂としてエポキシ基と酸基
とをモル比で1:0.5〜1.1なる割合となるように
エポキシ化合物と不飽和―塩基酸とを反応せしめ
たものを用いることを特徴とする特許請求の範囲
第1項記載の炭素繊維のサイジング方法。 3 ビニルエステル樹脂としてエポキシ化合物と
不飽和―塩基酸との反応後の組成物が下記定数K
が2以上であるものを用いることを特徴とする特
許請求の範囲第2項記載の炭素繊維のサイジング
方法。 K=WPE/WPE・W/W+W WPEO:原料エポキシ化合物のエポキシ当量
(g/eq) WPER:反応後組成物のエポキシ当量(g/
eq) W1:原料エポキシ化合物の重量(g) W2:反応に用いたエポキシ化合物以外の成分
重量(g)
[Scope of Claims] 1. A method for sizing carbon fibers, which comprises attaching a vinyl ester resin having at least one free hydroxyl group in its molecule in an amount of 0.05 to 5% by weight to carbon fibers. 2. A patent claim characterized in that the vinyl ester resin is made by reacting an epoxy compound with an unsaturated basic acid such that the molar ratio of epoxy groups to acid groups is 1:0.5 to 1.1. A method for sizing carbon fibers according to Scope 1. 3 The composition after the reaction of an epoxy compound and an unsaturated basic acid as a vinyl ester resin has the following constant K.
3. The method for sizing carbon fibers according to claim 2, characterized in that carbon fibers are sized using carbon fibers in which the carbon fiber is 2 or more. K=WPE R /WPE O・W 1 /W 1 +W 2 WPE O : Epoxy equivalent of the raw material epoxy compound (g/eq) WPER : Epoxy equivalent of the composition after reaction (g/eq)
eq) W 1 : Weight of raw material epoxy compound (g) W 2 : Weight of components other than epoxy compound used in reaction (g)
JP14970579A 1979-11-19 1979-11-19 Sizing of carbon fiber Granted JPS5673174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14970579A JPS5673174A (en) 1979-11-19 1979-11-19 Sizing of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14970579A JPS5673174A (en) 1979-11-19 1979-11-19 Sizing of carbon fiber

Publications (2)

Publication Number Publication Date
JPS5673174A JPS5673174A (en) 1981-06-17
JPS6218671B2 true JPS6218671B2 (en) 1987-04-23

Family

ID=15481005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14970579A Granted JPS5673174A (en) 1979-11-19 1979-11-19 Sizing of carbon fiber

Country Status (1)

Country Link
JP (1) JPS5673174A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558149B2 (en) * 2000-06-29 2010-10-06 三菱レイヨン株式会社 Sizing agent for carbon fiber, method for sizing carbon fiber, sized carbon fiber, sheet-like material including the same, and fiber-reinforced composite material
US7585558B2 (en) 2003-01-30 2009-09-08 Toho Tenax Co., Ltd. Carbon fiber-reinforced resin composite materials
JP2007051183A (en) * 2005-08-16 2007-03-01 Showa Highpolymer Co Ltd Carbon fiber-reinforced composite material and its molded article
FR2909676B1 (en) * 2006-12-11 2009-03-20 Astrium Sas Soc Par Actions Si PROCESS FOR IMPROVING THE ADHESION OF CARBON FIBERS IN RELATION TO AN ORGANIC MATRIX
US8487052B2 (en) * 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
JP6083919B1 (en) * 2016-09-07 2017-02-22 竹本油脂株式会社 Sizing agent for carbon fiber, method for preparing sizing agent for carbon fiber, and aqueous liquid of sizing agent for carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196599A (en) * 1975-02-20 1976-08-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196599A (en) * 1975-02-20 1976-08-24

Also Published As

Publication number Publication date
JPS5673174A (en) 1981-06-17

Similar Documents

Publication Publication Date Title
US3301743A (en) Polyhydroxy polyacrylate esters of epoxidized phenol-formaldehyde novolac resins and laminates therefrom
US2683131A (en) Acidic polyester-ethoxyline resinous compositions
US4954304A (en) Process for producing prepreg and laminated sheet
US4107128A (en) Carbon fiber composition
US4818613A (en) Single tow prepreg
US3506736A (en) Thermosetting resins from polyepoxides,unsaturated polyesters and ethylenically unsaturated carboxylic acids
JPS63315671A (en) Sizing agent for carbon fiber
JPS6218671B2 (en)
US4163003A (en) Unsaturated epoxides as coupling agents for carbon fibers and unsaturated matrix resins
JPH05501733A (en) Process for producing flexible protective, auxiliary and insulating materials based on fibers for electrical applications using impregnated materials curable by high-energy radiation
US2806834A (en) Copolymers of polyesters condensed with xylene-formaldehyde resins, modified by treatment with polymerizable unsaturated compounds and method of making same
JPS621409B2 (en)
US3733311A (en) Thermoset resin from glycidol and a cyclic anhydride
JP2851414B2 (en) Heat resistant vinyl ester resin composition
JPH04218556A (en) Resin comprising styrene, epoxy and acid anhydride
JPH0587539B2 (en)
JPS625447B2 (en)
TW593462B (en) Method for the production of reinforcing or laminating materials treated with resin
US4384109A (en) Unsaturated polyesters prepared from a dicarboxylic acid and dibromoneopentyl glycol
JP3017523B2 (en) Dicyclopentadiene-modified unsaturated polyester resin, composition thereof, fiber-reinforced laminated cured product using the same, and method for producing the same
JPS6335582B2 (en)
JPS61252233A (en) Fiber-reinforced plastic intermediate material
JPH0393840A (en) High-strength laminated material using vinylbenzyl ether
JPH0129816B2 (en)
JPS5949240A (en) Prepreg with both high workability and compression moldability