JPS621409B2 - - Google Patents

Info

Publication number
JPS621409B2
JPS621409B2 JP54015987A JP1598779A JPS621409B2 JP S621409 B2 JPS621409 B2 JP S621409B2 JP 54015987 A JP54015987 A JP 54015987A JP 1598779 A JP1598779 A JP 1598779A JP S621409 B2 JPS621409 B2 JP S621409B2
Authority
JP
Japan
Prior art keywords
resin
present
resin composition
epoxy
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015987A
Other languages
Japanese (ja)
Other versions
JPS55110115A (en
Inventor
Tadahide Sato
Kuniaki Tobukuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1598779A priority Critical patent/JPS55110115A/en
Publication of JPS55110115A publication Critical patent/JPS55110115A/en
Publication of JPS621409B2 publication Critical patent/JPS621409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は、すぐれたコンポジツト物性を有する
繊維強化プラスチツク(以下FRPと略称)を製
造するための低粘度の硬化性樹脂組成物に関す
る。 さらに詳しくは、短時間で硬化し耐熱性の高い
FRPをフイラメントワインデイング法によつて
製造するための低粘度でかつポツトライフの長い
硬化性樹脂組成物に関する。 フイラメントワインデイング法は、強化材に液
体樹脂を含浸させながらマンドレルに巻きつける
成形法で、従来よりパイプやタンクの製造に利用
されている。この成形法は、補強材に連続的に樹
脂を含浸させる必要があるため、低粘度の液体樹
脂を使うことと、大型の成形品を製造するために
は樹脂組成物のポツトライフが長くなければなら
ないという制約があり、現在樹脂としては主にエ
ポキシ樹脂と不飽和ポリエステル樹脂が使われて
いる。エポキシ樹脂は、硬化物物性および耐熱性
にすぐれているが、一般に粘度が高くフイラメン
トワインデイングに適した樹脂が少なく、低粘度
のエポキシ樹脂に反応性希釈剤を添加したり、硬
化剤に低粘度の酸無水物を用いたエポキシ系樹脂
が用いられている。しかしながら、このエポキシ
系樹脂に反応性希釈剤を添加したものは耐熱性が
低下するし、酸無水物硬化剤を用いたものは、フ
イラメントワインデイング中の硬化剤の吸湿によ
り硬化特性に影響を受け性能低下を起しやすい。
さらに両者とも、硬化に長時間を有する。一方、
不飽和ポリエステル樹脂は低粘度でポツトライフ
も長く短時間で硬化するが耐熱性が低い。さらに
不飽和ポリエステル樹脂は炭素繊維強化プラスチ
ツクにおいて、炭素繊維に対する接着性が悪く、
樹脂の伸びも小さいために層間セン断強度の低い
ものになつている。 そこで、エポキシ樹脂と不飽和ポリエステル樹
脂の欠点を補うために、エポキシ樹脂にα,β不
飽和カルボン酸であるアクリル酸やメタクリル酸
を付加させた硬化性不飽和エステルすなわちビニ
ルエステルが開発された。この樹脂は、エポキシ
樹脂のすぐれた硬化物物性と不飽和ポリエステル
樹脂の硬化性をかね備え、上記の両者の欠点をか
なり克服されたが、耐熱性の良いものが得られて
いない。 このように、エポキシ樹脂、不飽和ポリエステ
ル樹脂、ビニルエステル樹脂には、各々欠点があ
り、近い将来フイラメントワインデイング法によ
り作られるドライブシヤフトのような産業資材
FRPのマトリツクス樹脂に要求されている機械
的特性が良く、耐熱性が高く、低粘度でポツトラ
イフが長く、さらに、硬化時間が短いという特性
を完全に満足しているものがない。 そこで、本発明者らは、上記の要求項目を満足
するフイラメントワインデイング用マトリツクス
樹脂を開発すべく研究した結果、本発明に到つ
た。 即ち、本発明は、従来のビニルエステル樹脂の
ように、エポキシ樹脂とアクリル酸やメタクリル
酸のようなα,β不飽和カルボン酸をあらかじめ
反応させたものにスチレンのような架橋性モノマ
を加え、ラジカル重合により硬化させるのではな
く、エポキシ樹脂、不飽和カルボン酸、架橋性モ
ノマおよびラジカル反応開始剤からなる樹脂組成
物であつて、加熱によつてラジカル重合と同時に
エポキシ基とカルボン酸との反応により硬化する
樹脂組成物に関するものである。 本発明の樹脂組成物において、エポキシ樹脂は
ラジカル重合と同時にエポキシ基がカルボン酸と
反応する、すなわち無触媒で加熱だけで反応する
ことが必要である。このようなエポキシ樹脂とし
てはポリグリシジルアミンがあり、さらに具体的
には、ポリグリシジルアミンとしてN,N,
N′,N′テトラグリシジルジアミノジフエニルメ
タン、N,N,N′,N′−テトラグリシジル−m
−キシレンジアミン、N,N−ジグリシジルアニ
リン、トリグリシジルイソシアヌレート等を例示
することができる。 本発明に用いられるカルボン酸としては、エポ
キシ基と反応すると共にラジカル重合するもの、
すなわち、一般式CH2=CR(CH2o−COOHで
表わせるカルボン酸であり、たとえばアクリル
酸、メタクリル酸、ビニル酢酸、アリル酢酸、Δ
〓−n−ヘキセノイツク酸等を挙げることができ
る。また、これらの不飽和カルボン酸としてその
無水物を用いることができる。しかし、機械的特
性、耐熱性の面から、アクリル酸、メタクリル酸
が好ましい。 次に、本発明に用いられるエポキシ樹脂とカル
ボン酸の混合割合は、エポキシ樹脂のエポキシ基
1当量に対して1当量のカルボン酸になるように
すればよい。しかし、必要に応じて、硬化物物性
やポツトライフの調節等でこの割合を変えてもさ
しつかえないが、本発明を有効に実施するために
は、エポキシ樹脂のエポキシ基1当量に対して、
カルボン酸1.4〜0.6当量の割合になるように混合
するのが望ましい。 さらに、本発明に用いられる架橋性モノマとし
ては、スチレン、ジアリルフタレート、ジアリル
イソフタレート、アクリル酸エステル、メタクリ
ル酸エステルのようにラジカル重合をするモノマ
であればよいが、耐熱性の面から、スチレン、ジ
アリルフタレート、ジアリルイソフタレートが好
ましい。この架橋性モノマの混合割合は、0.1〜
60部であるが、耐熱性の面から1.0〜40部の範囲
が望ましい。 本発明を有効に実施するための硬化温度は80〜
160℃の範囲が好ましい。この理由から、本発明
に用いられるラジカル開始剤としては、ベンゾイ
ルパーオキサイド、t−ブチルパーベンゾエイ
ト、ジクミルパーオキサイド、ジ−t−ブチルパ
ーオキサイドのように、80〜160℃の温度範囲で
ラジカル重合を起すラジカル反応開始剤ならどれ
でもよく、特に限定するものではない。さらに、
機械的特性、耐熱性を向上するには、160〜170℃
で30〜60分間後硬化するのが望ましい。このよう
に、硬化した本発明の樹脂硬化物の熱変形温度は
170℃以上あり、また、本発明の樹脂組成物と炭
素繊維からなるFRPの層間セン断強度は11〜12
Kg/mm2あり、すぐれたコンポジツト物性を有して
いる。 本発明は補強材として、ガラス繊維、有機繊維
炭素繊維など、通常FRPの補強材として用いら
れるものはすべて使用できるし、炭素繊維とガラ
ス繊維等との混合使用の場合にも適用出来る。さ
らに、本発明による樹脂組成物はフイラメントワ
インデイング用に適しているばかりでなく、樹脂
組成物が低粘度でかつポツトライフが長いことを
活かして、キヤステイングモールデイング、レジ
ンインジエクシヨンモールデイグ、シートモール
デイングコンパウド用樹脂組成物としても適して
おり、必要により無水シリカ、顔料などの充填剤
を添加して使用してもさしつかえない。 本発明になる硬化性樹脂組成物の特徴を列挙す
ると、 (1) 硬化時間は不飽和ポリエステルと同様に極め
て短時間である。 (2) 室温では反応性の低いモノマを配合してお
り、低粘度で、かつポツトライフが非常に長く
フイラメントワインデイング成形時の含浸性、
作業性、大型成形性にすぐれている。 (3) 使用時にモノマの配合割合をコントロールす
ることができ、不飽和ポリエステルやビニルエ
ステル樹脂の欠点である濃度、組成の経時変化
や変性のおそれがない。 (4) エポキシ樹脂成分を含有するため、特に炭素
繊維に対する接着力が大きい。 以下、実施例によつて本発明の内容をさらに詳
細に説明する。 実施例 1 N,N,N′,N′−テトラグリシジルジアミノ
ジフエニルメタン40gとスチレン36gとアクリル
酸24gとt−ブチルパーベンゾエイト1gを均一
に混合し樹脂液を調整し実施例1と同様な実験を
行なつた。その結果、25℃における粘度は3ポイ
ズ、ポツトライフは20時間以上あつた。また、
ILSS並びに曲げ特性は表の通りであり、優れた
コンポジツト物性を有している。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-viscosity curable resin composition for producing fiber-reinforced plastics (hereinafter abbreviated as FRP) having excellent composite physical properties. More specifically, it cures in a short time and has high heat resistance.
This invention relates to a curable resin composition with low viscosity and long pot life for producing FRP by filament winding method. The filament winding method is a molding method in which reinforcing material is impregnated with liquid resin and wound around a mandrel, and has traditionally been used to manufacture pipes and tanks. This molding method requires the reinforcing material to be continuously impregnated with resin, so a low-viscosity liquid resin must be used, and the resin composition must have a long pot life in order to produce large molded products. Due to these restrictions, currently epoxy resins and unsaturated polyester resins are mainly used as resins. Epoxy resins have excellent physical properties and heat resistance of cured products, but they generally have high viscosity and there are few resins that are suitable for filament winding. Epoxy resins using acid anhydrides are used. However, when a reactive diluent is added to this epoxy resin, the heat resistance decreases, and when an acid anhydride curing agent is used, the curing characteristics are affected by moisture absorption of the curing agent during filament winding. Performance is likely to deteriorate.
Furthermore, both have long curing times. on the other hand,
Unsaturated polyester resin has a low viscosity, a long pot life, and cures in a short time, but has low heat resistance. Furthermore, unsaturated polyester resin has poor adhesion to carbon fibers in carbon fiber reinforced plastics.
Since the elongation of the resin is also small, the interlaminar shear strength is low. Therefore, in order to compensate for the drawbacks of epoxy resins and unsaturated polyester resins, curable unsaturated esters, that is, vinyl esters, were developed by adding α,β unsaturated carboxylic acids such as acrylic acid and methacrylic acid to epoxy resins. This resin has both the excellent physical properties of an epoxy resin and the curability of an unsaturated polyester resin, and has largely overcome the drawbacks of both of the above, but a resin with good heat resistance has not yet been obtained. In this way, epoxy resin, unsaturated polyester resin, and vinyl ester resin each have their own drawbacks, and in the near future industrial materials such as drive shafts made using the filament winding method will be used.
There is no material that completely satisfies the requirements of FRP matrix resins: good mechanical properties, high heat resistance, low viscosity, long pot life, and short curing time. Therefore, the present inventors conducted research to develop a matrix resin for filament winding that satisfies the above-mentioned requirements, and as a result, they arrived at the present invention. That is, in the present invention, like conventional vinyl ester resins, an epoxy resin and an α,β unsaturated carboxylic acid such as acrylic acid or methacrylic acid are reacted in advance, and a crosslinking monomer such as styrene is added thereto. Rather than being cured by radical polymerization, the resin composition consists of an epoxy resin, an unsaturated carboxylic acid, a crosslinking monomer, and a radical reaction initiator, and the reaction between the epoxy group and the carboxylic acid is carried out simultaneously with radical polymerization by heating. This invention relates to a resin composition that is cured by. In the resin composition of the present invention, it is necessary that the epoxy group of the epoxy resin reacts with the carboxylic acid at the same time as radical polymerization, that is, the reaction occurs without a catalyst and only by heating. Such epoxy resins include polyglycidylamines, and more specifically, polyglycidylamines include N, N,
N',N'tetraglycidyldiaminodiphenylmethane, N,N,N',N'-tetraglycidyl-m
Examples include -xylene diamine, N,N-diglycidylaniline, and triglycidyl isocyanurate. The carboxylic acids used in the present invention include those that react with epoxy groups and undergo radical polymerization;
That is, it is a carboxylic acid represented by the general formula CH 2 = CR (CH 2 ) o -COOH, such as acrylic acid, methacrylic acid, vinyl acetic acid, allyl acetic acid, Δ
〓-n-hexenoitsic acid and the like can be mentioned. Furthermore, anhydrides thereof can be used as these unsaturated carboxylic acids. However, from the viewpoint of mechanical properties and heat resistance, acrylic acid and methacrylic acid are preferred. Next, the mixing ratio of the epoxy resin and carboxylic acid used in the present invention may be such that 1 equivalent of carboxylic acid per 1 equivalent of epoxy group in the epoxy resin. However, if necessary, this ratio may be changed to adjust the physical properties of the cured product or the pot life, but in order to effectively carry out the present invention, it is necessary to
It is desirable to mix the carboxylic acids in a proportion of 1.4 to 0.6 equivalents. Further, as the crosslinking monomer used in the present invention, any monomer that undergoes radical polymerization such as styrene, diallyl phthalate, diallyl isophthalate, acrylic ester, and methacrylic ester may be used. , diallyl phthalate, and diallyl isophthalate are preferred. The mixing ratio of this crosslinking monomer is 0.1~
The amount is 60 parts, but from the viewpoint of heat resistance, a range of 1.0 to 40 parts is desirable. The curing temperature for effectively implementing the present invention is 80~
A range of 160°C is preferred. For this reason, the radical initiators used in the present invention, such as benzoyl peroxide, t-butyl perbenzoate, dicumyl peroxide, and di-t-butyl peroxide, are suitable for use in the temperature range of 80 to 160°C. Any radical reaction initiator that causes radical polymerization may be used, and is not particularly limited. moreover,
160-170℃ to improve mechanical properties and heat resistance
It is desirable to post-cure for 30 to 60 minutes. In this way, the heat distortion temperature of the cured resin of the present invention is
170℃ or higher, and the interlaminar shear strength of FRP made of the resin composition of the present invention and carbon fibers is 11 to 12.
Kg/mm 2 and has excellent composite properties. The present invention can use any reinforcing material that is normally used as a reinforcing material for FRP, such as glass fibers and organic fibers and carbon fibers, and can also be applied to the case where carbon fibers, glass fibers, etc. are used in combination. Further, the resin composition according to the present invention is not only suitable for filament winding, but also for casting molding, resin injection molding, etc., by taking advantage of the resin composition's low viscosity and long pot life. It is also suitable as a resin composition for sheet molding compounds, and if necessary, fillers such as anhydrous silica and pigments may be added thereto. The characteristics of the curable resin composition of the present invention are listed below: (1) The curing time is extremely short, similar to unsaturated polyester. (2) Contains monomers that have low reactivity at room temperature, resulting in low viscosity and a very long pot life.
Excellent workability and large-scale moldability. (3) The mixing ratio of monomers can be controlled during use, and there is no risk of changes in concentration or composition over time or denaturation, which are disadvantages of unsaturated polyester and vinyl ester resins. (4) Because it contains an epoxy resin component, it has particularly strong adhesion to carbon fibers. Hereinafter, the content of the present invention will be explained in more detail with reference to Examples. Example 1 40 g of N,N,N',N'-tetraglycidyldiaminodiphenylmethane, 36 g of styrene, 24 g of acrylic acid, and 1 g of t-butyl perbenzoate were mixed uniformly to prepare a resin liquid, and the same procedure as in Example 1 was carried out. I conducted an experiment. As a result, the viscosity at 25°C was 3 poise and the pot life was over 20 hours. Also,
The ILSS and bending properties are shown in the table, indicating that the composite has excellent physical properties. 【table】

Claims (1)

【特許請求の範囲】 1 ポリグリシジルアミン、下記一般式で示され
る不飽和カルボン酸、架橋性モノマおよびラジカ
ル反応開始剤ととからなる繊維強化複合材料用硬
化性樹脂組成物。 H2C=CR(CH2)−COOH (ただし上式中、RはH又はCH3、nは0〜5
の整数を示す。)
[Scope of Claims] 1. A curable resin composition for fiber-reinforced composite materials, comprising a polyglycidylamine, an unsaturated carboxylic acid represented by the following general formula, a crosslinking monomer, and a radical reaction initiator. H 2 C=CR(CH 2 )-COOH (in the above formula, R is H or CH 3 and n is 0 to 5
indicates an integer. )
JP1598779A 1979-02-16 1979-02-16 Curable resin composition Granted JPS55110115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1598779A JPS55110115A (en) 1979-02-16 1979-02-16 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1598779A JPS55110115A (en) 1979-02-16 1979-02-16 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS55110115A JPS55110115A (en) 1980-08-25
JPS621409B2 true JPS621409B2 (en) 1987-01-13

Family

ID=11904007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1598779A Granted JPS55110115A (en) 1979-02-16 1979-02-16 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS55110115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127804A (en) * 1988-11-08 1990-05-16 Nippon Telegr & Teleph Corp <Ntt> Helical antenna

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486350B2 (en) * 2003-11-28 2010-06-23 日本ユピカ株式会社 Nitrogen-containing epoxy (meth) acrylate and method for producing the same, and composition and cured product thereof
EP2468793B1 (en) 2009-08-17 2015-02-25 DIC Corporation Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
WO2011034042A1 (en) * 2009-09-18 2011-03-24 Dic株式会社 Resin composition for fiber-reinforced composite material, cured object obtained therefrom, fiber-reinforced composite material, fiber-reinforced molded resin, and process for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948774A (en) * 1972-09-12 1974-05-11
JPS5074000A (en) * 1973-10-18 1975-06-18
JPS51125200A (en) * 1974-09-13 1976-11-01 Hitachi Chem Co Ltd Curable resin composition
JPS5247086A (en) * 1975-10-14 1977-04-14 Nippon Shokubai Kagaku Kogyo Co Ltd Method for curing thermosetting resin compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948774A (en) * 1972-09-12 1974-05-11
JPS5074000A (en) * 1973-10-18 1975-06-18
JPS51125200A (en) * 1974-09-13 1976-11-01 Hitachi Chem Co Ltd Curable resin composition
JPS5247086A (en) * 1975-10-14 1977-04-14 Nippon Shokubai Kagaku Kogyo Co Ltd Method for curing thermosetting resin compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127804A (en) * 1988-11-08 1990-05-16 Nippon Telegr & Teleph Corp <Ntt> Helical antenna

Also Published As

Publication number Publication date
JPS55110115A (en) 1980-08-25

Similar Documents

Publication Publication Date Title
KR100554589B1 (en) Epoxy Resin Composition for Fiber-Reinforced Composite Material, Prepreg, and Fiber-Reinforced Composite Material
US4260538A (en) Matured moldable thermosetting dual polyester resin system
US4316835A (en) Polyester resin compositions
US4293686A (en) Thermosetting polyester resin composition
US4224430A (en) Resinous composition
US4229559A (en) Novel bis(half ester) and compositions containing the same
KR20100075790A (en) Carbon fiber sheet molding compound used epoxy resin modified vinyl ester resin composites
US4383091A (en) Urethane modified polymers having hydroxyl groups
JP2943148B2 (en) Thermosetting resin composition
JPS621409B2 (en)
US3957906A (en) Chemically resistant polyester resins compositions
JPS5817535B2 (en) Epoxy resin composition for carbon fiber reinforcement
USRE31310E (en) Impact resistant vinyl ester resin and process for making same
US4316002A (en) Molding compositions comprised of polyimide/N-vinylpyrrolidone prepolymer and epoxy resin
JPH0233724B2 (en)
US3733311A (en) Thermoset resin from glycidol and a cyclic anhydride
JPS621408B2 (en)
JPS6218671B2 (en)
JPS5887109A (en) Resin composition
JP2851414B2 (en) Heat resistant vinyl ester resin composition
US3535404A (en) Unsaturated polyester resins containing tetracarboxylic acids or dianhydrides
JPS61166850A (en) Unsaturated polyester resin composition
JPS59217719A (en) Resin composition
JPH0236212A (en) Unsaturated vinyl ester resin and thickening composition thereof
JPH0618907B2 (en) Fiber reinforced composite material