JPS6335573B2 - - Google Patents

Info

Publication number
JPS6335573B2
JPS6335573B2 JP55051952A JP5195280A JPS6335573B2 JP S6335573 B2 JPS6335573 B2 JP S6335573B2 JP 55051952 A JP55051952 A JP 55051952A JP 5195280 A JP5195280 A JP 5195280A JP S6335573 B2 JPS6335573 B2 JP S6335573B2
Authority
JP
Japan
Prior art keywords
alumina
silica
soda
added
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051952A
Other languages
Japanese (ja)
Other versions
JPS56149319A (en
Inventor
Koichi Yamada
Katsuzo Shiraishi
Saburo Nabeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5195280A priority Critical patent/JPS56149319A/en
Publication of JPS56149319A publication Critical patent/JPS56149319A/en
Publication of JPS6335573B2 publication Critical patent/JPS6335573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明は低ソーダアルミナの製造方法に関す
る。更に詳細にはソーダ分を含有する水酸化アル
ミニウム又はアルミナにシリカ系物質を添加混合
し、フツ素系物質の存在下加熱処理した後、シリ
カ系物質とアルミナとを分離する低ソーダアルミ
ナの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low soda alumina. More specifically, a method for producing low-soda alumina in which a silica-based substance is added to and mixed with aluminum hydroxide or alumina containing a soda content, heat-treated in the presence of a fluorine-based substance, and then the silica-based substance and alumina are separated. It is related to.

近年、内燃機関の点火栓碍子、電子部品用磁器
等の絶縁材料、耐熱性、耐摩耗性磁器等に高アル
ミナ質材料が多量に使用されているが、その原料
であるアルミナに含有されるソーダは、電気絶縁
性や耐火性を低下させるため、できる限りその含
有量を少なくすることが要求されている。
In recent years, high alumina materials have been used in large quantities for spark plug insulators for internal combustion engines, insulating materials such as porcelain for electronic components, and heat-resistant and wear-resistant porcelain. Because it reduces electrical insulation and fire resistance, it is required to reduce its content as much as possible.

ところが、現在工業的に安価、多量に生産され
ているアルミナはバイヤー法によつて製造されて
いるため得られるアルミナは工程上不可避的に通
常Na2Oとして0.2〜0.7重量%のソーダ分を含有
しており、このアルミナをそのまま上記目的の原
料に使用することはできない。
However, since alumina, which is currently produced industrially at low cost and in large quantities, is produced by the Bayer process, the resulting alumina usually contains 0.2 to 0.7% by weight of sodium as Na 2 O due to the process. Therefore, this alumina cannot be used directly as a raw material for the above purpose.

それ故、該バイヤー工程により得られたアルミ
ナ中よりソーダ分を除去する方法が種々検討され
ており、例えば アルミナを塩酸等の鉱酸に浸漬して水溶液中
にソーダ分を溶出させ、過、水洗洗浄する方
法 ホウ酸を添加して焼成し水溶性のホウ酸ソー
ダとなし、しかる後洗浄してソーダ分を除去す
る方法 水酸化アルミニウム又はアルミナにフツ化ア
ルミニウム、ホウ酸、塩素等を添加混合した後
焼成し、ソーダ化合物を揮散させる方法 水酸化アルミニウム又はアルミナよりも粒径
の大きなシリカ系物質を混合して焼成し、ソー
ダ分をシリカ系物質に付着させた後、シリカ系
物質とアルミナを篩別する方法 水酸化アルミニウム又はアルミナにシリカ系
物質および塩酸又は塩化アルミニウムを添加、
混合して焼成した後、シリカ系物質をアルミナ
より篩別する方法等が提案されている。
Therefore, various methods have been studied to remove the soda content from the alumina obtained by the Bayer process. Cleaning method Adding boric acid and baking to form water-soluble sodium borate, followed by washing to remove the soda component Aluminum fluoride, boric acid, chlorine, etc. are added and mixed with aluminum hydroxide or alumina. Method of post-calcining to volatilize soda compounds Mix silica-based material with a larger particle size than aluminum hydroxide or alumina and sinter it to make the soda adhere to the silica-based material, then sieve the silica-based material and alumina. Separation method Adding a silica-based substance and hydrochloric acid or aluminum chloride to aluminum hydroxide or alumina,
A method has been proposed in which, after mixing and firing, the silica-based material is sieved from the alumina.

しかしながら上記およびの方法は操作が繁
雑でソーダ分の除去も十分ではなく、の方法は
アルミナ中に包含されるソーダ分が揮散し難いた
め、脱ソーダ効果を成就するためには極めて高温
度での処理が要求され、焼成炉材の腐食が著しく
適切な方法とは言難い。又の方法は揮散したソ
ーダ分とシリカ系物質を反応させることによつて
炉内のソーダ分の蒸気圧を下げ、ソーダ分をアル
ミナより揮散しやすくする方法であるが、この方
法においても高温処理が要求されるため焼成炉材
の腐食が著しいとともにシリカ系物質が高温劣化
し表面剥離を生起してアルミナの純度を低下させ
る等の不都合を有する。更にの方法は塩酸又は
塩化アルミニウムを添加し、ソーダ分と反応させ
ることにより揮散しやすいNaClの形とし、これ
をシリカ系物質のものに吸着させるもので、単に
シリカ系物質のみを加えて加熱し、ソーダ分を吸
着除去するの方法に比較し、ソーダ除去率は優
れているが焼成処理温度は前記方法と大差がな
く、未だ十分満足し得るものではない。
However, the above methods and methods are complicated and do not remove the soda content sufficiently, and the method requires extremely high temperatures to achieve the soda removal effect because the soda content contained in alumina is difficult to volatilize. It is difficult to say that this is an appropriate method as it requires treatment and causes significant corrosion of the firing furnace material. Another method is to lower the vapor pressure of the soda in the furnace by reacting the volatilized soda with a silica-based material, making it easier to volatilize the soda than alumina, but this method also requires high-temperature treatment. As a result, the firing furnace material is severely corroded, and the silica-based material deteriorates at high temperatures, causing surface peeling and reducing the purity of the alumina. A further method is to add hydrochloric acid or aluminum chloride and react with soda to form NaCl, which is easily volatilized, and to adsorb this onto a silica-based material, simply by adding only the silica-based material and heating. Although the soda removal rate is excellent compared to the method of adsorbing and removing the soda content, the firing temperature is not much different from the above method and is still not fully satisfactory.

かかる事情下に鑑み本発明者らは上記欠点を改
良すべく鋭意検討した結果、フツ素系物質および
シリカ系物質を水酸化アルミニウム又はアルミナ
の焼成時に存在せしめた場合には従来よりも焼成
温度を低くして、かつソーダ除去率も向上し得る
ことを見出し本発明方法を完成するに至つた。
Under these circumstances, the inventors of the present invention made extensive studies to improve the above-mentioned drawbacks, and found that when fluorine-based substances and silica-based substances are present during sintering of aluminum hydroxide or alumina, the sintering temperature can be lowered than before. They found that the soda removal rate could be lowered and the soda removal rate improved, and the method of the present invention was completed.

すなわち、本発明はソーダ分を含有する水酸化
アルミニウム又はアルミナにシリカ系物質を添
加、混合し、フツ素系物質の存在下、加熱処理し
た後、シリカ系物質とアルミナを分離することを
特徴とする低ソーダアルミナの製造方法を提供す
るにある。
That is, the present invention is characterized in that a silica-based substance is added to and mixed with aluminum hydroxide or alumina containing a soda content, heat-treated in the presence of a fluorine-based substance, and then the silica-based substance and alumina are separated. The present invention provides a method for producing low soda alumina.

本発明方法の処理の対象となるソーダ分を含有
する水酸化アルミニウム又はアルミナとは特に限
定されるものではなく通常バイヤー工程より得ら
れた水酸化アルミニウム又は部分〓焼アルミナ、
〓焼アルミナ等が挙げられる。
The soda-containing aluminum hydroxide or alumina to be treated in the method of the present invention is not particularly limited, and includes aluminum hydroxide or partially calcined alumina usually obtained from the Bayer process;
Examples include calcined alumina.

一方シリカ系物質としては、粒径0.3mm〜2mm
程度のケイ石、石英、ケイ砂、シヤモツト、ムラ
イト、シリマナイト、マグネシウムシリケート、
アルミナシリケート等が使用できる。
On the other hand, as a silica-based substance, the particle size is 0.3 mm to 2 mm.
degree of silica, quartz, silica sand, siyamoto, mullite, sillimanite, magnesium silicate,
Alumina silicate etc. can be used.

シリカ系物質の粒度が0.3mmより小さい場合に
は、焼成後アルミナとの分離が困難となり好まし
くなく、又2mmより大きいと脱ソーダ効果が悪く
なり、このため脱ソーダの効果を高めるためシリ
カ系物質の添加量を多くしなければならず経済
性、作業性ともに低下するので好ましくない。
If the particle size of the silica-based material is smaller than 0.3 mm, it will be difficult to separate it from the alumina after firing, which is undesirable.If it is larger than 2 mm, the desodalizing effect will be poor. This is not preferable because it requires a large amount of addition, which lowers both economic efficiency and workability.

添加量はアルミナ(乾量基準)に対し1〜20重
量%(SiO2換算)、好ましくは3〜10重量%であ
る。
The amount added is 1 to 20% by weight (calculated as SiO 2 ), preferably 3 to 10% by weight, based on alumina (dry weight basis).

他方、フツ素系物質としては、フツ化水素ガ
ス、フツ素ガス、フツ化アルミニウム、フツ化カ
ルシウム、フツ化マグネシウム、フツ化アンモウ
ム等が挙げられる。
On the other hand, examples of fluorine-based substances include hydrogen fluoride gas, fluorine gas, aluminum fluoride, calcium fluoride, magnesium fluoride, ammonium fluoride, and the like.

水酸化アルミニウム又はアルミナに対するフツ
素系物質の添加量はアルミナ乾量基準で0.02重量
%以上(F2換算)、より好ましくは0.1〜0.3重量
%である。フツ素系物質の添加量が0.02重量%よ
り少ないとフツ素系物質の添加効果が十分ではな
く、低温焼成での脱ソーダ効果が期待し難い。ま
たフツ素系物質の添加上限量は特に制限されるも
のではないが多量に添加させても添加量に見合う
焼成温度の低下効果および脱ソーダ効果がないの
で、経済性および装置保護上より添加上限量は自
と決定される。
The amount of the fluorine-based substance added to aluminum hydroxide or alumina is 0.02% by weight or more (in terms of F2 ), more preferably 0.1 to 0.3% by weight, based on the dry weight of alumina. If the amount of the fluorine-based substance added is less than 0.02% by weight, the effect of the addition of the fluorine-based substance will not be sufficient, and it is difficult to expect a soda removal effect at low temperature firing. In addition, there is no particular upper limit on the amount of fluorine-based substances added, but even if a large amount is added, there will be no firing temperature lowering effect or soda removal effect commensurate with the added amount, so it is recommended to add fluorine-based substances for reasons of economy and equipment protection. The limit is determined by itself.

本発明方法の実施に際し焼成条件は使用する焼
成炉により一義的ではないが通常1000℃以上、よ
り好ましくは1100〜1400℃の温度範囲で数分以
上、一般には10分〜3時間焼成される。
When carrying out the method of the present invention, the firing conditions are not unique depending on the firing furnace used, but firing is usually carried out at a temperature of 1000°C or higher, more preferably 1100 to 1400°C for several minutes or more, generally 10 minutes to 3 hours.

焼成温度が1000℃より低い場合にはアルミナの
脱ソーダが困難であり、他方1400℃を越える場合
にはフツ素の揮散が激しく、例えばキルン壁のレ
ンガの損耗が大きい等好ましくない。
If the firing temperature is lower than 1000°C, it is difficult to remove soda from the alumina, while if it exceeds 1400°C, fluorine volatilization will be severe, which is undesirable, for example, causing large wear and tear on the bricks of the kiln wall.

使用される焼成炉については該焼成温度が得ら
れるものであればその種類、型式は特に限定され
るものではないが、ロータリーキルン、ローラー
ハースキルンあるいは電気炉等が挙げられる。就
中、バイヤー工程中に水酸化アルミニウムの〓焼
のために組込まれたロータリーキルンの使用はシ
リカ含有物質およびフツ素系物質を別工程で均一
に混合する操作を省略し得ること、別途焼成エネ
ルギーを必要としないこと等の経済性の点より最
も推奨し得る方法である。
The type and model of the firing furnace used is not particularly limited as long as the firing temperature can be obtained, and examples include a rotary kiln, a roller hearth kiln, and an electric furnace. Among other things, the use of a rotary kiln built into the Bayer process for calcination of aluminum hydroxide makes it possible to omit the operation of uniformly mixing silica-containing substances and fluorine-containing substances in a separate process, and requires additional calcination energy. This is the most recommended method from the economic point of view, as it is not necessary.

この様にして焼成されたアルミナは次いで篩に
よつてシリカ系物質を分離することにより低ソー
ダアルミナが得られる。
The alumina calcined in this manner is then sieved to separate silica-based substances to obtain low soda alumina.

以上詳述した本発明方法によればシリカ系物質
のみを添加する方法に比較して、焼成系内に存在
するフツ素の作用によりアルミナ又は水酸化アル
ミニウム中のソーダ分が揮散しやすくなるため、
より低温での焼成による脱ソーダが可能となり、
換言すれば同一焼成温度の場合本発明方法を実施
することにより優れた脱ソーダ効果が達成され、
更に水酸化アルミニウム又はアルミナに塩酸等を
含浸させ、シリカ系物質を混合して焼成する方法
に比較しても理由は詳らかではないが、同一焼成
温度における脱ソーダ効率が優れているとの利点
を有するもので、その工業的価値は頗る大なるも
のである。
According to the method of the present invention described in detail above, compared to the method of adding only silica-based substances, the soda content in alumina or aluminum hydroxide is more likely to volatilize due to the action of fluorine present in the firing system.
It is now possible to remove soda by firing at lower temperatures.
In other words, by implementing the method of the present invention at the same firing temperature, an excellent soda removal effect can be achieved,
Furthermore, compared to a method in which aluminum hydroxide or alumina is impregnated with hydrochloric acid, etc. and mixed with a silica-based material and fired, it has the advantage of superior soda removal efficiency at the same firing temperature, although the reason is not clear. Its industrial value is enormous.

以下実施例により本発明方法を更に詳細に説明
するが実施例は本発明方法の一実施態様を示すも
のであり、これにより本発明方法は限定されるも
のではない。
The method of the present invention will be explained in more detail with reference to Examples below, but the Examples show one embodiment of the method of the present invention, and the method of the present invention is not limited thereby.

尚、実施例において特にことわらない限りパー
セントはすべて重量パーセントである。
In the examples, all percentages are by weight unless otherwise specified.

実施例 1 バイヤー法の水酸化アルミニウムを500℃で〓
焼したアルミナ(Na2O、0.30%)に、フツ化ア
ルミニウムをF2として0.2%、0.5〜1.19m/mの
ケイ砂を10%添加、混合し、アルミナ製のルツボ
に入れて、電気炉中で1150℃、2時間焼成した。
冷却後、149μの篩でケイ砂を除去してアルミナ
を得た。このアルミナ中のNa2Oは0.03%であり、
SiO2は0.02%であつた。原料アルミナ中のSiO2
0.01%なのでシリカの汚染はほとんどなかつた。
Example 1 Aluminum hydroxide by Bayer method at 500℃
To calcined alumina (Na 2 O, 0.30%), 0.2% aluminum fluoride as F 2 and 10% silica sand of 0.5 to 1.19 m/m were added and mixed, placed in an alumina crucible, and heated in an electric furnace. It was baked at 1150°C for 2 hours.
After cooling, silica sand was removed using a 149μ sieve to obtain alumina. Na 2 O in this alumina is 0.03%,
SiO 2 was 0.02%. SiO 2 in raw material alumina is
Since it was 0.01%, there was almost no silica contamination.

比較のため、フツ化アルミニウムを添加せずに
焼成して、上記同一条件で処理したアルミナ中の
Na2Oは0.22%であつた。
For comparison, alumina calcined without adding aluminum fluoride and treated under the same conditions as above.
Na 2 O was 0.22%.

また、ケイ砂を添加しない他は実施例1と同様
の条件で処理したアルミナ中のNa2Oは0.26%で
あつた。
Further, the Na 2 O content in alumina treated under the same conditions as in Example 1 except that silica sand was not added was 0.26%.

実施例 2 実施例1で用いたと同様の〓焼アルミナにフツ
化アルミニウムをF2として0.1%、0.5〜1.19m/
mのケイ砂を5%添加混合し、アルミナ製のルツ
ボに入れて電気炉中で、1250℃、2時間焼成し
た。冷却後、149μの篩でケイ砂を除去してアル
ミナを得た。このアルミナ中のNa2Oは0.03%で
あり、SiO2は0.01%であつた。
Example 2 Aluminum fluoride was added to the same calcined alumina used in Example 1 as F2 at 0.1%, 0.5 to 1.19 m/
5% of silica sand was added and mixed, and the mixture was placed in an alumina crucible and fired at 1250°C for 2 hours in an electric furnace. After cooling, silica sand was removed using a 149μ sieve to obtain alumina. This alumina contained 0.03% Na 2 O and 0.01% SiO 2 .

実施例 3 〓焼していないバイヤー法の水酸化アルミニウ
ムを原料として用いる他は実施例1と同様にして
焼成、処理したアルミナ中のNa2Oは0.02%であ
つた。
Example 3 The alumina was calcined and treated in the same manner as in Example 1 except that uncalcined Bayer process aluminum hydroxide was used as the raw material, and the Na 2 O content in the alumina was 0.02%.

実施例 4 バイヤー工程から得たα化率35%のアルミナ
(Na2O、0.32%)を原料として用いる他は実施例
1と同様にして焼成、処理したアルミナ中の
Na2Oは0.04%であつた。
Example 4 Alumina in alumina calcined and treated in the same manner as in Example 1 except that alumina (Na 2 O, 0.32%) with a pregelatinization rate of 35% obtained from the Bayer process was used as a raw material.
Na 2 O was 0.04%.

実施例 5 実施例1で用いたと同様の〓焼アルミナにフツ
化アルミニウムをFとして0.2%、0.5〜1.19m/
mのケイ砂を2%添加、混合し、電気炉中で1200
℃で2時間焼成した。冷却後、149μの篩でケイ
砂を除去してアルミナを得た。このアルミナ中の
Na2Oは0.04%であつた。
Example 5 0.2% aluminum fluoride as F was added to the same calcined alumina as used in Example 1, 0.5 to 1.19 m/
Add 2% of quartz sand, mix and heat in an electric furnace for 1200 m.
It was baked at ℃ for 2 hours. After cooling, silica sand was removed using a 149μ sieve to obtain alumina. in this alumina
Na 2 O was 0.04%.

比較のため、フツ化アルミニウムのかわりに塩
酸をHClとして0.4%添加する以外は実施例5と
同じ条件で処理したアルミナ中のNa2Oは0.08%
であつた。
For comparison, Na 2 O in alumina was treated under the same conditions as in Example 5 except that 0.4% hydrochloric acid was added as HCl instead of aluminum fluoride. Na 2 O in alumina was 0.08%.
It was hot.

実施例 6 実施例1に於けるフツ化アルミニウムをF2
算で0.2%のフツ化カルシウムに代えて添加した
以外は実施例1と同様の処理をした。このように
して得たアルミナ中のNa2O及びSiO2はそれぞれ
0.03%であつた。
Example 6 The same treatment as in Example 1 was carried out except that aluminum fluoride in Example 1 was added instead of 0.2% calcium fluoride in terms of F2 . Na 2 O and SiO 2 in the alumina thus obtained are each
It was 0.03%.

実施例 7 実施例1に於けるフツ化アルミニウムをF2
算で0.2%のフツ化アンモニウムに代えて添加し
た以外は実施例1と同様の処理をした。このよう
にして得たアルミナ中のNa2Oは0.03%、SiO2
0.02%であつた。
Example 7 The same treatment as in Example 1 was carried out except that aluminum fluoride in Example 1 was replaced with 0.2% ammonium fluoride in terms of F 2 . The alumina thus obtained contains 0.03% Na 2 O and SiO 2
It was 0.02%.

実施例 8 実施例1で用いたと同じか焼アルミナにフツ素
ガスを導入しF2として0.2%吸着させた後、0.5−
1.19mmのケイ砂を10%添加、混合しアルミナ製の
ルツボに入れて、電気炉中で、1150℃、2時間焼
成した。冷却後、149μmの篩でケイ砂を除去し
てアルミナを得た。このようにして得たアルミナ
中のNa2Oは0.03%、SiO2は0.02%であつた。
Example 8 Fluorine gas was introduced into the same calcined alumina used in Example 1, and after adsorbing 0.2% F2 , 0.5-
1.19 mm of silica sand was added at 10%, mixed, placed in an alumina crucible, and fired at 1150°C for 2 hours in an electric furnace. After cooling, silica sand was removed using a 149 μm sieve to obtain alumina. The alumina thus obtained contained 0.03% Na 2 O and 0.02% SiO 2 .

Claims (1)

【特許請求の範囲】[Claims] 1 ソーダ分を含有する水酸化アルミニウム又は
アルミナにシリカ系物質を添加、混合し、フツ素
系物質の存在下、加熱処理した後、シリカ系物質
とアルミナを分離することを特徴とする低ソーダ
アルミナの製造方法。
1. A low-soda alumina characterized by adding and mixing a silica-based substance to aluminum hydroxide or alumina containing a soda content, heat-treating the mixture in the presence of a fluorine-based substance, and then separating the silica-based substance and alumina. manufacturing method.
JP5195280A 1980-04-18 1980-04-18 Manufacture of low-soda alumina Granted JPS56149319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195280A JPS56149319A (en) 1980-04-18 1980-04-18 Manufacture of low-soda alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195280A JPS56149319A (en) 1980-04-18 1980-04-18 Manufacture of low-soda alumina

Publications (2)

Publication Number Publication Date
JPS56149319A JPS56149319A (en) 1981-11-19
JPS6335573B2 true JPS6335573B2 (en) 1988-07-15

Family

ID=12901204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195280A Granted JPS56149319A (en) 1980-04-18 1980-04-18 Manufacture of low-soda alumina

Country Status (1)

Country Link
JP (1) JPS56149319A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748693B2 (en) * 1998-11-24 2011-08-17 日本特殊陶業株式会社 High voltage endurance alumina-based sintered body and method for producing the same
JP4780628B2 (en) * 1999-08-04 2011-09-28 日本特殊陶業株式会社 Insulator for spark plug and manufacturing method thereof
JP5103700B2 (en) * 2001-06-26 2012-12-19 住友化学株式会社 Method for producing low soda alumina
JP2005263529A (en) * 2004-03-17 2005-09-29 Sumitomo Chemical Co Ltd Method for producing activated alumina having low alkali content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253907A (en) * 1975-10-28 1977-04-30 Nikkei Kako Kk Manufacture of alumina for ceramics
JPS5416398A (en) * 1977-07-07 1979-02-06 Showa Denko Kk Production of low soda alumina

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253907A (en) * 1975-10-28 1977-04-30 Nikkei Kako Kk Manufacture of alumina for ceramics
JPS5416398A (en) * 1977-07-07 1979-02-06 Showa Denko Kk Production of low soda alumina

Also Published As

Publication number Publication date
JPS56149319A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
US2331232A (en) Method of making refractories
JPS6335573B2 (en)
US2732283A (en) O minutes
JP3893823B2 (en) Method for producing low soda alumina
JP3875952B2 (en) Low soda alumina manufacturing apparatus and manufacturing method
US5032376A (en) Method for producing aluminum titanate
US1785464A (en) Process of preparing pure alumina
JP5103700B2 (en) Method for producing low soda alumina
JP3389642B2 (en) Method for producing low soda alumina
JP4488444B2 (en) Method for producing porous ceramics and porous ceramics
JP3975513B2 (en) Continuous production of alpha alumina
JP2004508271A (en) Refractory
JPS60131825A (en) Manufacture of low soda alumina
JPH0637293B2 (en) Method for producing high-purity alumina
CN104876607A (en) Manufacturing method of refractory brick for boiler
JP2018002502A (en) Manufacturing method of silicon carbide powder
CN110642592A (en) Heat-resistant pottery and manufacturing method thereof
US3091514A (en) Production of dead burned magnesia
US3442606A (en) Removal of fluorine from alumina by steam
US1373854A (en) Refractory brick
EA024901B1 (en) Composition and method for producing ceramic proppant
JP2001302361A (en) Firing tool and method of producing the same
JPH10167725A (en) Continuous production of alumina
JPS60215524A (en) Production of alumina having low sodium content
JPS63156013A (en) Removing method for trace fluorine incorporated in metallic compound