JPS6335564B2 - - Google Patents

Info

Publication number
JPS6335564B2
JPS6335564B2 JP7488484A JP7488484A JPS6335564B2 JP S6335564 B2 JPS6335564 B2 JP S6335564B2 JP 7488484 A JP7488484 A JP 7488484A JP 7488484 A JP7488484 A JP 7488484A JP S6335564 B2 JPS6335564 B2 JP S6335564B2
Authority
JP
Japan
Prior art keywords
carbon
compound
silicon
powder
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7488484A
Other languages
Japanese (ja)
Other versions
JPS60221310A (en
Inventor
Fumio Nakamura
Kazuyoshi Isotani
Kensaku Maruyama
Norihiro Murakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7488484A priority Critical patent/JPS60221310A/en
Publication of JPS60221310A publication Critical patent/JPS60221310A/en
Publication of JPS6335564B2 publication Critical patent/JPS6335564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は窒化珪素焼結体の原料粉末として好適
な、高純度且つ微細で粒度分布の均一な窒化珪素
粉末の新規な製造方法に関する。 (背景技術) 窒化珪素焼結体は耐熱性が優れ且つ機械的強度
が高いことから、近年高温高応力部材への適用が
試みられている。これら部材に窒化珪素焼結体を
適用する為には、高温での化学的安定性及び物理
的安定性が重要である。 とりわけ物理的安定性である耐熱性及び機械的
強度は、原料である窒化珪素粉末の物性に大きく
起因するので、該粉末は高純度且つ微細で粒度分
布の均一なものが望まれている。 従来、窒化珪素粉末の製造方法は下記の方法が
一般的である。 (1) 金属珪素粉末を窒化する方法 3Si+2N2―→Si3N4 (2) 四塩化珪素やシランとアンモニアを気相で反
応させる方法 3SiCl4+4NH3―→Si3N4+12HCl (3) シリカをカーボンの共存下で窒化する方法 3SiO2+6C+2N2―→Si3N4+6CO (従来技術の問題点) しかしながら、(1)の方法では得られる窒化珪素
は粗大粒子であるので、粉砕工程が必要であり、
粉砕時での粉砕機自身の摩耗による不純物の混入
が避けられない欠点がある。またこの粉砕は回分
方式であるので人手を要するという問題がある。
(2)の方法では収率が低く、工業的製造には適さな
い。(3)の方法はシリカとカーボンをボールミルな
どを用いて回分方式で粉砕、混合した後に窒化す
る方法であるので、粉砕、混合過程においての不
純物の混入を避け難いこと、粉砕、混合工程にお
ける粉塵の発生による作業環境上の問題が著しい
こと、更に生成した窒化珪素粉末には原料である
シリカとカーボンの混合の不均一が原因と推定さ
れる粗大粒子の発生が避け難いなどの種々の問題
がある。 この粗大粒子を排除するには生成した窒化珪素
を再度粉砕しなければならないが、ボールミルな
どでの粉砕では限度があり、従つてこの方法では
耐熱性が優れ、且つ高純度の焼結体を得るに好適
な、すなわち高純度で微細かつ粒径の均一な窒化
珪素粉末を得ることは、事実上極めて困難である
と云う根本的な問題がある。 (発明の要旨) 本発明者らはこの様な問題点を解決すべく種々
検討を進めた結果、まず、充分に均一性が高く且
つ粒度の細かい珪素酸化物粉末及び単体炭素粉末
からなる組成物を製造し、これを含窒素化合物ガ
ス雰囲気中で加熱することによつて、目的とする
高純度且つ微細な窒化珪素粉末を製造することが
出来ることを見出し、本発明を完成した。 すなわち、本発明は、水蒸気を含む熱ガス中に
分解性珪素化合物及び分解性炭素化合物を装入し
て珪素酸化物及び単体炭素を含む混合エーロゾル
分散質を生成させ、該分散質を補集して得た含炭
素組成物を、嵩密度0.2g/c.c.以上に緊縮せしめ
た状態で含窒素化合物ガス雰囲気下で加熱するこ
とを特徴とする窒化珪素の製造方法の発明であ
る。 (発明の詳細な開示) 以下、本発明を詳細に説明する。 本発明で言う混合エーロゾル分散質とは、気体
中に、珪素酸化物及び単体炭素の微細な粒子が固
形物として混在しているものを意味する。本発明
におけるかかる珪素酸化物及び単体炭素は、水蒸
気を含む熱ガス中で分解性珪素化合物及び分解性
炭素化合物(以下単に珪素化合物または炭素化合
物という。)を熱分解、酸化、加水分解などを行
わしめることによつて得ることができる。 本発明を更に詳しく説明すると、まず単体炭素
のエーロゾルは、炭素化合物を熱ガス中に装入し
て容易に得ることができる。他方酸化珪素のエー
ロゾルは、例えば四塩化珪素の如き珪素化合物を
水蒸気を含む熱ガス中に装入すると熱分解、酸化
あるいは加水分解が起こり容易に得ることができ
る。この様に水蒸気を含む熱ガス中に炭素化合物
及び珪素化合物を同時に装入すれば、珪素酸化物
及び単体炭素を含む混合エーロゾルが容易に得ら
れるのである。 本発明で使用しうる珪素化合物は、例えば、一
般式SioX2o+2(nは1から4の整数)で表される
もので、Xは水素もしくはハロゲン原子等であ
り、具体的な珪素化合物としては、SiCl4
HSiCl3、SiH4、Si2H6、(CH34Si、
(CH32SiCl2、CH3SiCl3、SiF4などが挙げられ
る。また炭素化合物は常温で気相もしくは液相状
態か昇温により容易に液相状態になり得る炭素水
素やハロゲン化炭化水素が好適である。炭化水素
の例としてはメタノール、エタノール、アセト
ン、n−ヘキサン、ベンゼン、キシレンなどの石
油化学生成物、ナフサ、プロパン、軽油、灯油、
重油などの石油類があり、さらに石油ピツチ、メ
チル油、アントラセン油、クレオソートなどの精
製残留物、C9留分混合物、エチレンボトムなど
の石油化学残留物も使用可能である。 また、ハロゲン化炭化水素の例としては、クロ
ロホルム、塩化ビニール、クロルベンゼンなどが
ある。 本発明の含炭素組成物を得るには炉を用いるの
が好適である。炉の加熱装置としては燃焼バーナ
ー、通電発熱体などが好ましいが特に限定するも
のではない。又、炉は珪素化合物及び炭素化合物
の装入用ノズルと熱風送入ダクト、混合エーロゾ
ル排出ダクトを備えており、耐火物で囲まれた構
造が好適である。第1図はその1例を示す。なお
炉内には少なくとも600℃以上の空間領域がなけ
ればならない。この温度以上であれば炭素化合物
からは単体炭素が、更に水蒸気を含む雰囲気下で
珪素化合物からは熱分解、酸化、加水分解反応に
よつて珪素酸化物が得られ、気体とこれら固形物
との混合体である混合エーロゾルを発生する。得
られる含炭素組成物中の珪素及び炭素の割合の調
節は、単にノズルから熱ガス中に装入する珪素化
合物量および炭素化合物量を調節するだけで可能
である。 水蒸気を含む熱ガスを得る方法としては、通電
発熱方式、高周波加熱方式、放電方式によつて得
た熱ガス中に水蒸気を注入してもよいが、水素、
メタン、プロパン、ブタンなど燃焼して水蒸気を
生成する可燃物を空気で燃焼させる方法が装置上
簡便であり、熱効率の面からも経済的である。 かくして得られた混合エーロゾルは、炉の外に
誘導した後、含まれる固形物をバグフイルター、
サイクロン等の補集装置で補集するが、補集装置
で熱負荷を軽減するためには予め冷却することが
望ましい。 冷却の方法としては、反応後の帯域を冷却する
か、又はエーロゾル中に水を注入してもよい。 以上のごとくして得られた含炭素組成物は高周
波加熱炉、通電抵抗炉などを用いて、例えば窒素
ガス、アンモニアなどの含窒素化合物ガス雰囲気
下で1300℃〜1500℃程度で加熱することにより本
発明の目的とする窒化珪素粉末とすることができ
る。 なお、本発明においては上記含窒素化合物雰囲
気下で加熱する工程において、該含炭素組成物を
嵩密度が0.2g/c.c.以上に緊縮した後に加熱する
ことが望ましい。含炭素組成物の嵩密度がこれ未
満の状態では、生成する窒化珪素粉末にウイスカ
ー状の形態のものが混在し易くなり、また、予め
嵩密度を0.2g/c.c.以上に緊縮すると、微細で粒
径の均一な窒化珪素粉末が得られるという本発明
者らの実験的知見に基づくものである。なお本発
明にいう緊縮とは粉体の嵩密度を上げる操作を意
味し圧縮、撹拌式造粒などにより容易に行うこと
ができる。 含炭素組成物中の珪素と炭素の割合は、式量比
(グラムアトムもしくはグラムモルの比を云う。
以下同じ。)(C/Si)で2.5以上であることが好
ましい。式量比C/Siが2.5未満であると含炭素
組成物中の珪素酸化物の窒化珪素に転換する割合
が急激に減少するからである。但しこの比をこの
値以上に余り大きくする場合は特に得るものがな
く炭素化合物の単なる損失にしかならない。もし
本発明の実施の結果得られる窒化珪素粉末中に単
体炭素が残存する場合は、この窒化珪素粉末を酸
素の存在下で500〜800℃程度に加熱することによ
り、該残存炭素は容易に燃焼除去することができ
る。例えば窒化珪素粉末を空気中で加熱するか、
燃料を過剰空気で燃焼させた酸素を含む熱ガス雰
囲気下におくことで簡便に残存炭素を除去するこ
とができる。 (発明の作用効果) 以上詳細に説明した如く、本発明は先ず水蒸気
を含む熱ガス中に珪素化合物及び炭素化合物を装
入して珪素酸化物及び単体炭素を含む混合エーロ
ゾル分散質を生成させ、この分散質を補集して含
炭素組成物を連続的に製造し、次にこの含炭素組
成物を嵩密度0.2g/c.c.以上に緊縮せしめた状態
で、含窒素化合物雰囲気化で加熱して目的とする
窒素粉末を得る方法である。従つて本発明に方法
によつて得られる含炭素組成物中に珪素酸化物と
単体炭素の混合状態は、従来の機械的混合に比べ
て格段に均一且つ微細なものが得られ易く、また
連続的に得ることができるので粉塵の発生、不純
物の混入といつた問題もない。 更に本発明の窒化珪素粉末は上記の通りこの様
に微細な含炭素組成物を加熱して得るものである
から、本発明の実施の結果得られる窒化珪素は粗
大粒子を含まず、すでに微細で粒径の均一な粉末
であるので、従来の粗大粒子を含む粉末を粉砕す
る方法で問題とされてきた不純物の混入などとい
つた問題が全くない。何故に本発明において容易
に窒化珪素の微粉末が得られるかの詳細は正確に
は明らかにし得ないが、おそらくは得られる含炭
素組成物自体中の珪素酸化物と単体炭素の混合形
態が従来になく極めて均一かつ微細であるためと
推察される。本発明で得られた窒化珪素粉末はこ
の様に高純度且つ微細で粒径の均一な粉末である
ので、これを焼結して得た焼結体は高温での化学
的及び機械的安定性が極めて優れたものが得られ
るものである。 (実施例及び比較例) 以下実施例及び比較例により本発明を具体的に
説明する。 尚、実施例、比較例に示す%は全て重量%を表
す。 実施例 1 第1図に示す炉を用いてダクト2より空気を、
燃焼バーナー3より熱風用燃料としてのプロパン
を、それぞれ100Nm3/h、3Nm3/hの流量で送
入し、炭素化合物としてA重油を、珪素化合物と
してSiCl4を、予め重量比で1.5:1.0の割合に混合
したものを25Kg/hの流量でノズル4より炉内へ
装入した。燃焼帯は約1200℃の温度に保つた。炉
内に生成したエーロゾルは冷却後バグフイルター
で補集して含炭素化合物8.9Kg/hを得た。含炭
素組成物には二酸化ケイ素39.1%単体炭素60.9%
が含まれていて、嵩密度は0.09g/c.c.であつた。 この含炭素組成物を緊縮するためこの30gを%
円筒容器に入れ、一軸圧縮し0.38g/c.c.の嵩密度
とした後、高周波炉を用いN2雰囲気で1400℃8
時間加熱し、さらに空気中700℃に加熱し残存し
た単体炭素を燃焼除去して9.0gの粉末を得た。
得られた粉末はX線回析の結果α−Si3N4である
ことが確認された。電子顕微鏡解析の結果、その
平均粒径は0.15μmで粒子形状は均一な粒度分布
をもつた球形であつた。 実施例 2〜4 熱風用燃料としてプロパンの他にメタン、水素
を用い、珪素化合物、炭素化合物として第1表に
示すものをそれぞれ用いて実施例1と同様な方法
で第2表に示す組成の含炭素組成物を得た。得ら
れた含炭素組成物を実施例1と全く同様にして圧
縮して緊縮した後、含窒素化合物としてN2の他
(Technical Field) The present invention relates to a novel method for producing silicon nitride powder that is highly pure, fine, and has a uniform particle size distribution, and is suitable as a raw material powder for silicon nitride sintered bodies. (Background Art) Since silicon nitride sintered bodies have excellent heat resistance and high mechanical strength, attempts have been made in recent years to apply them to high-temperature, high-stress members. In order to apply silicon nitride sintered bodies to these parts, chemical stability and physical stability at high temperatures are important. In particular, heat resistance and mechanical strength, which are physical stability, largely depend on the physical properties of the silicon nitride powder that is the raw material, so it is desired that the powder be highly pure, fine, and have a uniform particle size distribution. Conventionally, the following method is generally used to produce silicon nitride powder. (1) Method of nitriding metal silicon powder 3Si+2N 2 ―→Si 3 N 4 (2) Method of reacting silicon tetrachloride or silane with ammonia in the gas phase 3SiCl 4 +4NH 3 ―→Si 3 N 4 +12HCl (3) Silica 3SiO 2 +6C+2N 2 ―→Si 3 N 4 +6CO (problems with conventional technology) However, with method (1), the silicon nitride obtained in method (1) is coarse particles, so a pulverization process is required. and
There is a drawback that impurities cannot be avoided due to wear of the crusher itself during crushing. Furthermore, since this grinding is done in batches, there is a problem in that it requires manual labor.
Method (2) has a low yield and is not suitable for industrial production. Method (3) is a method in which silica and carbon are crushed and mixed in a batch manner using a ball mill, etc., and then nitrided. Therefore, it is difficult to avoid contamination of impurities during the crushing and mixing process, and there are dust particles in the crushing and mixing process. The production of silicon nitride powder causes serious problems in the working environment, and the resulting silicon nitride powder has various problems such as the unavoidable formation of coarse particles, which is presumed to be caused by the uneven mixing of the raw materials silica and carbon. be. In order to eliminate these coarse particles, the produced silicon nitride must be re-pulverized, but there are limits to pulverization using a ball mill, etc. Therefore, this method cannot produce a sintered body with excellent heat resistance and high purity. There is a fundamental problem in that it is actually extremely difficult to obtain silicon nitride powder suitable for use, that is, with high purity, fineness, and uniform particle size. (Summary of the Invention) As a result of various studies carried out by the present inventors in order to solve these problems, we first developed a composition consisting of a silicon oxide powder and an elemental carbon powder with sufficiently high uniformity and fine particle size. The present invention has been completed based on the discovery that the desired high purity and fine silicon nitride powder can be produced by producing and heating this in a nitrogen-containing compound gas atmosphere. That is, in the present invention, a decomposable silicon compound and a decomposable carbon compound are charged into hot gas containing water vapor to generate a mixed aerosol dispersoid containing silicon oxide and elemental carbon, and the dispersoid is collected. This invention relates to a method for producing silicon nitride, which is characterized in that the carbon-containing composition obtained is heated in a nitrogen-containing compound gas atmosphere in a state where the carbon-containing composition is compressed to a bulk density of 0.2 g/cc or more. (Detailed Disclosure of the Invention) The present invention will be described in detail below. The mixed aerosol dispersoid referred to in the present invention refers to one in which fine particles of silicon oxide and elemental carbon are mixed as a solid substance in a gas. Such silicon oxide and elemental carbon in the present invention are obtained by thermally decomposing, oxidizing, hydrolyzing, etc. a decomposable silicon compound and a decomposable carbon compound (hereinafter simply referred to as a silicon compound or carbon compound) in a hot gas containing water vapor. It can be obtained by tightening. To explain the present invention in more detail, first, an aerosol of simple carbon can be easily obtained by charging a carbon compound into hot gas. On the other hand, an aerosol of silicon oxide can be easily obtained by introducing a silicon compound such as silicon tetrachloride into a hot gas containing water vapor to cause thermal decomposition, oxidation, or hydrolysis. By simultaneously charging a carbon compound and a silicon compound into hot gas containing water vapor in this manner, a mixed aerosol containing silicon oxide and elemental carbon can be easily obtained. The silicon compound that can be used in the present invention is, for example, one represented by the general formula Si o X 2o+2 (n is an integer from 1 to 4), where X is hydrogen or a halogen atom, and Compounds include SiCl 4 ,
HSiCl3 , SiH4 , Si2H6 , ( CH3 ) 4Si ,
Examples include (CH 3 ) 2 SiCl 2 , CH 3 SiCl 3 and SiF 4 . Preferably, the carbon compound is a gaseous or liquid phase at room temperature, or a carbon hydrogen or a halogenated hydrocarbon that can easily become a liquid phase by increasing the temperature. Examples of hydrocarbons include petrochemical products such as methanol, ethanol, acetone, n-hexane, benzene, xylene, naphtha, propane, light oil, kerosene,
Petroleum such as heavy oil can be used, as well as petroleum pit, methyl oil, anthracene oil, refining residues such as creosote, C9 distillate mixtures, and petrochemical residues such as ethylene bottoms. Examples of halogenated hydrocarbons include chloroform, vinyl chloride, and chlorobenzene. It is preferable to use a furnace to obtain the carbon-containing composition of the present invention. The heating device for the furnace is preferably a combustion burner, an energized heating element, etc., but is not particularly limited. Further, the furnace is equipped with a charging nozzle for silicon compounds and carbon compounds, a hot air supply duct, and a mixed aerosol discharge duct, and preferably has a structure surrounded by refractory material. FIG. 1 shows one example. There must be a space inside the furnace with a temperature of at least 600°C. At temperatures above this temperature, elemental carbon is obtained from carbon compounds, and silicon oxide is obtained from silicon compounds through thermal decomposition, oxidation, and hydrolysis reactions in an atmosphere containing water vapor, and the gas and these solids are combined. Generates a mixed aerosol, which is a mixture. The proportions of silicon and carbon in the resulting carbon-containing composition can be adjusted simply by adjusting the amount of silicon compound and carbon compound charged into the hot gas from the nozzle. As a method for obtaining hot gas containing water vapor, water vapor may be injected into hot gas obtained by an electric heating method, a high frequency heating method, or a discharge method.
The method of burning combustible substances such as methane, propane, and butane that produce water vapor by combustion with air is simple in terms of equipment and economical in terms of thermal efficiency. The mixed aerosol thus obtained is guided out of the furnace, and then the solids contained are removed through a bag filter.
Although it is collected using a collection device such as a cyclone, it is desirable to cool it beforehand in order to reduce the heat load on the collection device. Cooling may be achieved by cooling the zone after the reaction or by injecting water into the aerosol. The carbon-containing composition obtained as described above is heated at about 1300°C to 1500°C in an atmosphere of a nitrogen-containing compound gas such as nitrogen gas or ammonia using a high frequency heating furnace, an electric current resistance furnace, etc. The silicon nitride powder that is the object of the present invention can be obtained. In the present invention, in the step of heating in the nitrogen-containing compound atmosphere, it is desirable to heat the carbon-containing composition after the carbon-containing composition has been compressed to a bulk density of 0.2 g/cc or more. If the bulk density of the carbon-containing composition is less than this, whisker-like substances tend to be mixed in the silicon nitride powder produced, and if the bulk density is tightened to 0.2 g/cc or more in advance, fine and grainy This is based on the inventors' experimental findings that silicon nitride powder with a uniform diameter can be obtained. In the present invention, austerity refers to an operation to increase the bulk density of powder, and can be easily carried out by compression, stirring granulation, or the like. The ratio of silicon and carbon in the carbon-containing composition is a formula ratio (gram atom or gram mole ratio).
same as below. )(C/Si) is preferably 2.5 or more. This is because if the formula weight ratio C/Si is less than 2.5, the rate of conversion of silicon oxide to silicon nitride in the carbon-containing composition will sharply decrease. However, if this ratio is made too large beyond this value, there is nothing to be gained and the result is only a mere loss of the carbon compound. If elemental carbon remains in the silicon nitride powder obtained as a result of implementing the present invention, the remaining carbon can be easily combusted by heating the silicon nitride powder to about 500 to 800°C in the presence of oxygen. Can be removed. For example, heating silicon nitride powder in air,
Residual carbon can be easily removed by burning the fuel with excess air and placing it in a hot gas atmosphere containing oxygen. (Operations and Effects of the Invention) As explained in detail above, the present invention first charges a silicon compound and a carbon compound into a hot gas containing water vapor to generate a mixed aerosol dispersoid containing silicon oxide and elemental carbon, This dispersoid is collected to continuously produce a carbon-containing composition, and then this carbon-containing composition is compressed to a bulk density of 0.2 g/cc or more and heated in a nitrogen-containing compound atmosphere. This is a method to obtain the desired nitrogen powder. Therefore, the mixed state of silicon oxide and elemental carbon in the carbon-containing composition obtained by the method of the present invention is much more uniform and fine than that obtained by conventional mechanical mixing, and is also continuous. Therefore, there are no problems such as generation of dust or contamination with impurities. Furthermore, since the silicon nitride powder of the present invention is obtained by heating such a fine carbon-containing composition as described above, the silicon nitride obtained as a result of implementing the present invention does not contain coarse particles and is already fine. Since the powder is uniform in particle size, there are no problems such as contamination with impurities, which has been a problem with conventional methods of pulverizing powders containing coarse particles. Although the details of why fine powder of silicon nitride can be easily obtained in the present invention cannot be clarified exactly, it is likely that the mixed form of silicon oxide and elemental carbon in the obtained carbon-containing composition itself is different from the conventional one. This is presumed to be because it is extremely uniform and fine. Since the silicon nitride powder obtained in the present invention is a powder of high purity, fineness, and uniform particle size, the sintered body obtained by sintering it has chemical and mechanical stability at high temperatures. An extremely excellent product can be obtained. (Examples and Comparative Examples) The present invention will be specifically explained below using Examples and Comparative Examples. It should be noted that all percentages shown in Examples and Comparative Examples are percentages by weight. Example 1 Using the furnace shown in Fig. 1, air was introduced from duct 2.
Propane as a hot air fuel is fed from the combustion burner 3 at a flow rate of 100Nm 3 /h and 3Nm 3 /h, respectively, and heavy oil A as the carbon compound and SiCl 4 as the silicon compound are mixed in advance at a weight ratio of 1.5:1.0. The mixture was charged into the furnace through nozzle 4 at a flow rate of 25 kg/h. The combustion zone was kept at a temperature of approximately 1200°C. The aerosol produced in the furnace was collected by a bag filter after cooling, yielding 8.9 kg/h of carbon-containing compounds. Carbon-containing composition contains 39.1% silicon dioxide and 60.9% elemental carbon.
was contained, and the bulk density was 0.09 g/cc. To tighten this carbon-containing composition, add 30g of this %
After putting it in a cylindrical container and uniaxially compressing it to a bulk density of 0.38 g/cc, it was heated at 1400℃8 in an N2 atmosphere using a high frequency furnace.
The mixture was heated for several hours, and further heated to 700°C in air to burn off the remaining elemental carbon, yielding 9.0 g of powder.
The obtained powder was confirmed to be α-Si 3 N 4 as a result of X-ray diffraction. As a result of electron microscopic analysis, the average particle size was 0.15 μm, and the particle shape was spherical with a uniform particle size distribution. Examples 2 to 4 The compositions shown in Table 2 were prepared in the same manner as in Example 1, using methane and hydrogen in addition to propane as hot air fuels, and using the silicon compounds and carbon compounds shown in Table 1, respectively. A carbon-containing composition was obtained. After compressing and tightening the obtained carbon-containing composition in exactly the same manner as in Example 1, in addition to N 2 as a nitrogen-containing compound,

【表】【table】

【表】 NH3ガスを用いてそれぞれ第1表に示す温度、
時間の加熱を行い粉末を得た。得られた粉末はX
線回折の結果いずれもα−Si3N4であることが確
認された。電子顕微鏡解析の結果、その平均粒径
は第2表に示す値で粒子形状はいずれも均一な粒
度分布をもつた球形であつた。 比較例 1 実施例1で得られた含炭素組成物6gを嵩密度
が0.09g/c.c.のままで加熱する以外は、実施例1
と全く同様にしてN2雰囲気中で1400℃8時間加
熱し、さらに空気中700℃で加熱して残存した単
体炭素を燃焼除去して1.7gの粉末を得た。得ら
れた粉末はX線回析の結果α−Si3N4であること
が確認された。電子顕微鏡解析の結果、粒子形状
はウイスカ状であつた。 比較例 2 実施例1で得られた含炭素組成物と同一組成と
なる様に比表面積200m2/gのエロジル39.1gと
比表面積120m2/gのカーボンブラツク60.9gを
ボールミルを用いて24時間粉砕混合した。この30
gを円筒容器に入れ一軸圧縮し0.38g/c.c.の嵩密
度とした後、実施例1と全く同じ条件で加熱及び
単体炭素の除去を行い8.8gの粉末を得た。得ら
れた粉末はX線回折の結果α−Si3N4であること
が確認された。電子顕微鏡解析の結果、その平均
粒子形は0.77μmで1μm以上の粗大粒子が多く観
察され粒度は広い分布をもつていた。
[Table] The temperatures shown in Table 1 using NH 3 gas,
A powder was obtained by heating for several hours. The obtained powder is
As a result of line diffraction, it was confirmed that all of them were α-Si 3 N 4 . As a result of electron microscopic analysis, the average particle size was as shown in Table 2, and the particle shape was all spherical with a uniform particle size distribution. Comparative Example 1 Example 1 except that 6 g of the carbon-containing composition obtained in Example 1 was heated while the bulk density remained 0.09 g/cc.
In exactly the same manner as above, the mixture was heated at 1400°C for 8 hours in a N 2 atmosphere, and further heated at 700°C in air to burn off the remaining elemental carbon, yielding 1.7 g of powder. The obtained powder was confirmed to be α-Si 3 N 4 as a result of X-ray diffraction. As a result of electron microscopy analysis, the particle shape was whisker-like. Comparative Example 2 39.1 g of Erosil with a specific surface area of 200 m 2 /g and 60.9 g of carbon black with a specific surface area of 120 m 2 /g were mixed in a ball mill for 24 hours so as to have the same composition as the carbon-containing composition obtained in Example 1. Grind and mix. This 30
g was placed in a cylindrical container and uniaxially compressed to give a bulk density of 0.38 g/cc, and then heated and elemental carbon was removed under exactly the same conditions as in Example 1 to obtain 8.8 g of powder. The obtained powder was confirmed to be α-Si 3 N 4 as a result of X-ray diffraction. As a result of electron microscopy analysis, the average particle size was 0.77 μm, and many coarse particles of 1 μm or more were observed, and the particle size had a wide distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に使用する炉の1例を
示す断面図である。 図面において、1……炉材、2……ダクト、3
……燃焼バーナ、4……ノズル、5……ダクトを
示す。
FIG. 1 is a cross-sectional view showing one example of a furnace used in carrying out the present invention. In the drawings, 1...Furnace material, 2...Duct, 3
... combustion burner, 4 ... nozzle, 5 ... duct.

Claims (1)

【特許請求の範囲】[Claims] 1 水蒸気を含む熱ガス中に分解性珪素化合物及
び分解性炭素化合物を装入して珪素酸化物及び単
体炭素を含む混合エーロゾル分散質を生成させ、
該分散質を補集して得た含炭素組成物を、嵩密度
0.2g/c.c.以上に緊縮せしめた状態で含窒素化合
物ガス雰囲気下で加熱することを特徴とする窒化
珪素粉末の製造方法。
1 Charge a decomposable silicon compound and a decomposable carbon compound into hot gas containing water vapor to generate a mixed aerosol dispersoid containing silicon oxide and elemental carbon,
The carbon-containing composition obtained by collecting the dispersoids has a bulk density of
1. A method for producing silicon nitride powder, which comprises heating in a nitrogen-containing compound gas atmosphere under tight conditions of 0.2 g/cc or more.
JP7488484A 1984-04-16 1984-04-16 Production of silicon nitride powder Granted JPS60221310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7488484A JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7488484A JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS60221310A JPS60221310A (en) 1985-11-06
JPS6335564B2 true JPS6335564B2 (en) 1988-07-15

Family

ID=13560233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7488484A Granted JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS60221310A (en)

Also Published As

Publication number Publication date
JPS60221310A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
US6022515A (en) Process for producing silicon carbide
US4731236A (en) Process for producing sialon
US4719095A (en) Production of silicon ceramic powders
JPS6335564B2 (en)
JPS6225605B2 (en)
JPH0118005B2 (en)
CA1214309A (en) Process for preparing metal carbides and precursors thereof
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JPS60200811A (en) Novel production of boron nitride
JPS63147811A (en) Production of fine sic powder
JPS62132718A (en) Novel carbon-containing composition
JPH0137323B2 (en)
JPH05132307A (en) Method for producing finely granulated silicon carbide
JPS59227706A (en) Production of silicon carbide fine powder
JPH0339988B2 (en)
JPH06166510A (en) Production of silicon carbide fine powder
KR910001302B1 (en) Process for production of silicon carbide
JP2916303B2 (en) Carbon containing composition
JPS6250402B2 (en)
US6395245B1 (en) Method for preparing carbon-containing composition
JPH06115919A (en) Production of silicon carbide powder
JPH07206418A (en) Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound
JPS5983922A (en) Preparation of silicon carbide powder
JPH04362009A (en) Production of fine particle beta type silicon carbide