JPH0118005B2 - - Google Patents

Info

Publication number
JPH0118005B2
JPH0118005B2 JP57075324A JP7532482A JPH0118005B2 JP H0118005 B2 JPH0118005 B2 JP H0118005B2 JP 57075324 A JP57075324 A JP 57075324A JP 7532482 A JP7532482 A JP 7532482A JP H0118005 B2 JPH0118005 B2 JP H0118005B2
Authority
JP
Japan
Prior art keywords
carbon
weight
reaction
zone
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57075324A
Other languages
Japanese (ja)
Other versions
JPS58194731A (en
Inventor
Akira Enomoto
Toshikazu Amino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP57075324A priority Critical patent/JPS58194731A/en
Publication of JPS58194731A publication Critical patent/JPS58194731A/en
Publication of JPH0118005B2 publication Critical patent/JPH0118005B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主として炭化珪素焼結体用原料とし
て優れた超微細炭化珪素粉末の製造方法に関し、
特に本発明は、平均粒径が1μmを大きく下まわ
る超微細炭化珪素粉末の製造方法に関するもので
ある。 本発明者らは、先に特開昭54−33899号および
特公昭55−40527号により、主としてβ型結晶よ
りなる炭化珪素の製造方法に係る発明を提案し、
世界において初めて工業的なβ型結晶よりなる炭
化珪素の連続的な製造方法を確立した。 ところで、β型結晶よりなる炭化珪素は最近無
加圧焼結体製造用原料としての用途において極め
て優れた特性を有していることが認められ、かか
る用途によれば微細なものほど焼結性あるいは均
一収縮性に優れるため、特に微細なものが要求さ
れており、例えば、特開昭50−160200号公報によ
ればハロゲン化珪素および炭化水水素よりプラズ
マジエツト反応によるサブミクロン粒度のβ型炭
化珪素粉末およびその製造方法が、また特開昭54
−67599号公報によれば有機珪素高分子化合物を
熱分解して得られる1μm以下の高純度β型炭化
珪素粉末の製造方法が開示されている。しかしな
がら、前記諸公報記載の方法において使用される
出発原料はいずれも極めて高価であり、かかる要
求を満足するようなβ型結晶よりなる超微細炭化
珪素粉末を安価に供給することのできる工業的な
製造方法は未だ知られていない。 このような観点に基づき、本発明者らの1人は
先に特願昭56−113615号により、「主としてβ型
結晶よりなる超微細炭化珪素粉末の製造方法」に
係る発明を提案した。 前記発明の方法によれば、シリカと炭素をC/
SiO2モル比で3.2〜5.0の範囲内に配合した原料
を、予熱帯と加熱帯と冷却帯を有する反応容器内
に装入し、反応温度を1650〜2100℃の範囲内に制
御してSiC化反応を行なわせる主としてβ型結晶
よりなる炭化珪素の製造方法において、前記配合
原料を造粒し、粒状物の気孔率40〜55%、粒状物
嵩密度が0.40〜0.90g/cm3の範囲内の粒状原料と
なし、ついで前記粒状原料を反応容器の上部より
装入して加熱帯における装入物の充填幅を0.10〜
0.35mの範囲内として、前記加熱帯における装入
物の降下速度(Um/hr)を前記充填幅(Wm)
と加熱帯の高さ(Hm)の下記関係式で示される
範囲内とすることを特徴とする主としてβ型結晶
よりなる超微細炭化珪素粉末の製造方法である。 17.9(W−0.31)2+0.23≦U≦53.1H(W−0.31
2+1.24 ところで、微細な炭化珪素粉末を製造する方法
としては、例えば特公昭45−10413号公報に「ピ
グメントシリコンカーバイドの製法」にかかる発
明が開示されており、前記発明によれば、微細な
炭化珪素粉末を製造するためにはなるべく微細な
炭素粉末を使用することが重要であることが記載
されている。 そこで、本発明者らは、前記本発明者らの1人
が提案した方法をさらに改良することを目的とし
て極めて微細な炭素粉末の適用を試みた。しかし
ながら、前記本発明者らの1人が提案した方法に
おいて、特に比表面積が1m2/g以上の極めて微
細な炭素粉末を使用すると、反応域における粒状
原料の圧潰強度が著しく劣化して崩壊し、反応域
におけるガス抜けが悪化するため安定して連続操
業を行なうことができないことを知見した。すな
わち、前記方法は、シリカと炭素よりなる粒状原
料を竪型の反応容器の上部より装入して連続的に
SiC化反応を行なわしめる方法であり、前記粒状
原料は取扱い時および反応時において崩壊せず、
当初の形状を保ち得る強度を有するものであるこ
とが必要である。また、微細な炭化珪素粉末を製
造するためにはなるべく低い反応温度で反応せし
めることが好ましいが、前記本発明者らの1人が
提案している如き連続的SiC化反応を行なわしめ
る方法は、前述の如き理由で微細な炭素粉末を使
用することができず、比較的粗い粒径の反応性に
劣る炭素粉末を使用せざるを得なかつたため、操
業時の生産効率および作業性を考慮すると比較的
高い反応温度で操業を行なわなければならない欠
点を有していた。 本発明者らは、本発明者らの1人が先に提案し
た方法をさらに改良することを目的とし、極めて
微細な炭素粉末を使用した粒状原料の反応域にお
ける圧潰強度を向上させるべく種々研究した結
果、極めて微細な炭素粉末を出発原料として使用
し原料を造粒するに際し、粒状原料の結合剤とし
て有機溶剤可溶性成分を含有する炭素系の結合剤
を使用し、かつ前記出発原料の混合時あるいは造
粒時に有機溶剤を使用することによつて反応域に
おいても圧潰強度が強く、当初の形状を保ち得る
粒状原料となすことができることを新規に知見
し、前記粒状原料を使用することによつて、極め
て微細なβ型結晶よりなる炭化珪素粉末を安価に
かつ容易に連続製造することができる本発明を完
成するに至つた。 すなわち、本発明によれば、シリカと炭素と炭
素系の結合剤とを配合し、粒状に成形せしめた原
料を、予熱帯と加熱帯と冷却帯を有する反応容器
の上方より装入し、前記装入された原料を前記反
応容器の予熱帯内を連続的あるいは間歇的に自重
降下させつつ加熱帯に至らせ、前記加熱帯内で水
平方向に間接電気加熱し、反応域における装入原
料ならびに反応生成物の水平方向の温度分布がほ
ぼ均一になるよう電力負荷と反応域を降下する装
入原料ならびに反応生成物の降下速度を制御して
SiC化反応を行なわせ、次いで反応生成物を冷却
帯に降下させ非酸化性雰囲気下で冷却後、前記反
応容器の冷却帯下部より連続的あるいは間歇的に
反応生成物を排出する炭化珪素の製造方法におい
て、前記粒状に成形せしめた原料に含有される炭
素は比表面積が1〜1000m2/gの範囲内の炭素粉
末であり、遅くとも造粒される際には前記炭素系
の結合剤と有機溶剤を使用して混合されており、
加熱帯における反応温度を1500〜2000℃の範囲内
に制御することを特徴とする超微細炭化珪素粉末
の製造方法によつて前記目的を達成することがで
きる。 次に本発明を詳細に説明する。 シリカと炭素とを出発原料とする炭化珪素生成
反応は一般に下記式(1)によつて示されている。 SiO2+3C→SiC+2CO ……(1) しかしながら実際に主体となる生成機構は下記
式(2)によつてSiOガスが生成し、前記SiOガスと
炭素が下記式(3)にしたがつて反応して炭化珪素が
生成することが知られている。 SiO2+C→SiO+CO ……(2) SiO+2C→SiC+CO ……(3) ところで、本発明によれば、前記式(2)によつて
生成したSiOガスは前記式(3)にしたがつて速やか
にSiC化反応せしめ、反応容器内のSiOガス分圧
をそれ程上昇させないことが望ましい。なぜなら
ば、本発明において反応容器内のSiOガス分圧が
上昇するとSiOガス分圧の上昇に伴つて前記式(3)
にしたがう反応速度が相対的に速くなるが、この
場合の前記式(3)にしたがう反応はSiC結晶が成長
し粗大化する反応が主体となるので、SiOガス分
圧の高い条件下では、微細なSiC粒子を得ること
が困難になり、さらに著しい場合にはSiOガスの
一部が予熱帯へ上昇して下記式(4)、(5)、(6)に示す
如き反応を生起し、予熱帯においてSiO2、Si、
SiC、C等が混合した状態で析出する。前記析出
物は粘着性を有するため、原料が互いに凝結し、
炭化珪素を連続的に製造する上で最も重要な原料
の円滑な移動降下が著しく阻害され、長期間にわ
たる安定した連続操業が困難になる。 2SiO→SiO2+Si ……(4) SiO+CO→SiO2+C ……(5) 3SiO+CO→2SiO2+SiC ……(6) 本発明によれば、前記SiOガス分圧の上昇を抑
制し、極めて微細な炭化珪素粉末を得るために、
比表面積が1〜1000m2/gの範囲内の炭素粉末を
使用することが必要である。その理由は、前記比
表面積が1m2/gより小さいと前記式(3)にしたが
う反応の生起する箇所が少なく、結晶の成長によ
るSiCの生成反応が主体となるため、本発明の目
的とする微細な炭化珪素粉末を製造することが困
難であるし、一方1000m2/gより大きい比表面積
を有する炭素粉末は反応性の面から考慮すると極
めて好適であると考えられるが、そのような炭素
粉末は入手が困難であるばかりでなく、嵩比重が
極めて低いため、粒状物の気孔率が高くなり圧潰
強度が著しく低くなる欠点を有するからであり、
なかでも10〜500m2/gの範囲内の炭素粉末が入
手も比較的容易であり、かつ好適な結果を得るこ
とができる。 前記炭素粉末は主としてコンタクトブラツク、
フアーネスブラツク、サーマルブラツク、ランプ
ブラツクより選ばれるいずれか少なくとも1種の
カーボンブラツクであることが好ましいが、なか
でもサーマルブラツクはカーボンブラツク粒子の
連鎖構造あるいは鎖状構造すなわちストラクチヤ
ーが低く圧潰強度の強い粒状原料を容易に製造で
き最も好適である。 本発明によれば、シリカと炭素とを配合し、造
粒した原料が使用される。シリカと炭素とを粉体
のまま造粒せずに使用すると、反応時に生成する
COガスのガス抜けが悪化し反応が進み難くなる
欠点を有するからであり、前記粒状物の平均粒径
は3〜18mmの範囲内とすることが有利である。そ
の理由は、前記粒状物の平均粒径が3mmより小さ
いと粒状物とした効果が殆どなく、一方18mmより
大きいと粒状物内における反応速度が遅くなり、
経済的でないからである。 本発明によれば、前記粒状物は反応域の高温に
さらされても当初の形状を維持することが重要で
あり、前記炭素粉末は遅くとも造粒される際には
炭素系の結合剤と有機溶剤を使用して混合されて
いることが必要である。その理由は、本発明で使
用される如き極めて比表面積の大きな炭素粉末は
極めて凝集性が強く通常微細な粒子が多数凝集し
た粒子群すなわち2次粒子の形態で存在してお
り、シリカと混合して造粒するに際し単に微粉状
の結合剤を配合して混合するだけでは前記炭素粉
末の凝集をほぐして結合剤を均一に分散させるこ
とが困難であるが、前述の如く有機溶剤を使用し
て混合することによつて炭素系の結合剤の有機溶
剤可溶性成分を溶出させて混合できるため、炭素
粉末の2次粒子の内部にまで均一に分散させるこ
とができることによるものと考えられる。 本発明によれば、前記炭素系の結合剤は有機溶
剤可溶性成分を少なくとも30重量%含有し、かつ
固定炭素を20〜80重量%含有するものであること
が好ましい。前記有機溶剤可溶性成分が少なくと
も30重量%であることが好ましい理由は、前記有
機溶剤可溶性成分が30重量%より少ないと結合剤
を炭素粉末の2次粒子の内部にまで均一に分散さ
せることが困難で目的とする圧潰強度を得るため
には大量の炭素系の結合剤を必要とするからであ
る。一方固定炭素を20〜80重量%含有するもので
あることが好ましい理由は、前記固定炭素が20重
量%より少ないと目的とする圧潰強度を得るため
には大量に配合しなければならず作業性に劣るば
かりでなく、粒状原料中に占める結合剤の容積が
大きくなるため、高温域における圧潰強度を維持
することが困難であるし、80重量%より多いと実
質的な結合剤としての作用効果が著しく低く効率
的に適用することが困難であるからである。 本発明によれば、前記炭素系の結合剤は石油ピ
ツチ、コールタールピツチ、木タールピツチ、ア
スフアルト、フエノール樹脂、石油タール、コー
ルタール、木タールより選ばれるいずれか少なく
とも1種を使用することが好ましい。 本発明によれば、前記粒状原料はシリカと炭素
粉末と炭素系の結合剤と有機溶剤とを配合し、混
合した後粒状に成形せしめる方法あるいは炭素系
の結合剤と有機溶剤とを混合し、炭素系の結合剤
の有機溶剤可溶性成分を溶出させた混合液をシリ
カと炭素粉末との混合物に添加して混合した後粒
状に成形せしめる方法のいずれによつても好適に
製造することができる。 また、本発明によれば、前記混合物より有機溶
剤を乾燥して除去した後解砕し再粉化させたもの
に水溶性の粘結剤を添加して造粒することもでき
る。 本発明によれば、前記混合時における有機溶剤
中に溶出された炭素系の結合剤の固定炭素量は前
記シリカと炭素粉末の合計100重量部に対して1.5
〜30重量部とすることが好ましい。その理由は、
前記固定炭素量が1.5重量部より少ないと前記粒
状原料の反応域における圧潰強度が不充分であ
り、一方30重量部より多いと結合剤から生成する
炭素が炭素粉末を包みこんでしまうため、実質的
に炭素粉末の比表面積が減少し、粗大な炭化珪素
粒子が生成し易くなるからである。 本発明によれば、前記炭素系の結合剤をシリカ
と炭素粉末の合計100重量部に対して5〜50重量
部配合することが好ましい。その理由は、前記配
合量が5重量部より少ないと粒状原料の反応域に
おける圧潰強度が低く、反応容器内で生成物が崩
壊し易くなり、一方50重量部より多いと結合剤に
要する費用が増加するし、結合剤の熱分解によつ
て生成する炭素量が増加して粗大な炭化珪素粒子
が生成し易くなるからであり、なかでも10〜40重
量部の範囲内において最も良い結果が得られる。 本発明によれば、前記有機溶剤を炭素粉末100
重量部に対して少なくとも10重量部配合すること
が好ましい。その理由は、前記有機溶剤の配合量
が10重量部より少ないと前記結合剤を均一に分散
させることが困難であるからである。なお、前記
有機溶剤の配合量は結合剤の均一分散性を考慮す
るとなるべく多い方が好ましいが、余り多いと不
経済であるため、前記配合量は100重量部以下と
することが有利である。 本発明によれば、前記有機溶剤は炭素系の結合
剤の有機溶剤可溶性成分をなるべく多く溶出でき
るものが有利であり、例えば、ベンゼン、アセト
ン、トルエン、ヘキサン、イソヘキサン、ヘプタ
ン、イソヘプタン、イソオクタン、シクロヘキサ
ン、エチルベンゼン、クロロホルム、四塩化炭
素、ジクロロエタン、ジクロロエチレン、トリク
ロロエチレン、ノナン、キシレン、メチルアルコ
ール、エチルアルコール、ブチルアルコール、イ
ソブチルアルコール、プロピルアルコール、イソ
プロピルアルコール、エチルエーテル、イソプロ
ピルエーテル、ギ酸エチル、酢酸メチル、酢酸エ
チル、酢酸イソプロピル、プロピオン酸エチル、
プロピオン酸アミル、酪酸ブチル、炭酸ジエチ
ル、フツ化酢酸、ジエチレンジメチルエーテル、
エチルメチルケトン、キノリンおよびこれらと同
等の機能を有するものを使用することができる。 なお、前記結合剤としてコールタールを考える
と、有機溶剤としてベンゼンを用いるとすれば、
ベンゼン不溶分は約7.2%であり、該有機溶剤と
してキノリンを用いると約3.5%がその不溶分で
ある。従つて、前記コールタールの大部分は、ベ
ンゼン、エチルベンゼン、トルエン、m・p−キ
シレン、o−キシレン、スチレン、メチルシクロ
ヘキサン、n−ヘプタン、シクロヘキサン、エチ
ルシクロヘキサン、などの有機溶剤可溶性成分で
構成されており、本発明の一実施態様である該有
機溶剤可溶性成分を溶出させて、シリカと炭素粉
末との混合に供するのに好適である。 本発明によれば、前記SiOガス分圧の上昇を抑
制するために、原料中の炭素量を増加させて前記
式(3)の生起する箇所を増加させることが有効であ
り、前記配合原料のC/SiO2モル比を3.2〜5.0の
範囲内とすることが有利である。前記C/SiO2
モル比を3.2〜5.0の範囲内とすることが有利であ
る理由は、前記C/SiO2モル比が3.2より小さい
と、前記式(3)に従う反応を充分に行なわせ、SiO
ガス分圧を低く維持することが困難であり、一方
5.0より大きいと反応に寄与しない過剰の炭素を
高温に加熱するために熱効率が低くなるし、炭素
原料に要する費用が増加するので不経済であるか
らである。 本発明者らは、本発明の出発原料として使用さ
れるシリカと炭素および反応条件について種々研
究した結果、炭素粉末の比表面積が1〜1000m2
gの範囲内でかつシリカと炭素とからなる粒状原
料を用いて操業するに当り、シリカの平均粒径
(Xμm)、炭素粉末の比表面積(Sm2/g)、反応
温度(T〓)およびシリカと炭素とのC/SiO2
モル比(R)が下記関係式(7)を満足する場合に極
めて良好な結果を得ることができることを知見し
た。 S-1≦3.1×10-2R・X+1.1×104T-1 ……(7) また、本発明によれば、原料内の通気性を向上
させて反応容器内のSiOガス分圧を均一にするた
めに、前記配合原料を造粒し、粒状物の気孔率が
10〜60%、粒状物嵩密度が0.40〜1.13g/cm3の範
囲内の粒状原料となすことが好ましい。 前記配合原料を造粒し、粒状物の気孔率を10〜
60%の範囲内とすることが好ましい理由は、前記
気孔率が10%より低いと粒状物中における通気性
が悪く、反応生成ガスが放出され難く、粒状物内
で局部的にSiOガス分圧が高くなり、前述の如く
結晶粒の粗大化が発生し易いからであり、一方前
記気孔率は反応生成ガスの放出性の点を考慮すれ
ばなるべく高い方が好ましいが、60%より高いと
粒状物の強度が極めて低く、反応容器中で潰れ通
気性が著しく悪化するからであり、なかでも25〜
55%の範囲内において最も良い結果が得られる。 前記粒状原料の粒状物嵩密度を0.40〜1.13g/
cm3の範囲内とすることが好ましい理由は、前記嵩
密度は低い方が通気性その他の点で好ましいが、
0.40g/cm3より低い粒状原料となすためには、前
記粒状物の気孔率を著しく高めるか、あるいは粒
状物の粒径を極めて均一に揃えなければならず、
前記気孔率は余り高くすると前述の如く粒状物の
強度が著しく低下するし、また粒状物の粒径を均
一に揃えることは原料コストの著しい増大につな
がるからであり、一方1.13g/cm3より高いと反応
生成ガスの通気性が悪く予熱帯における高温ガス
の流れが不均一になり、原料と高温ガスとの熱交
換が不充分になるからであり、さらにまた前記
SiOガスよりの析出物の影響を受け易くなり原料
の円滑な自重降下が阻害され長期間の安定した操
業を維持することが困難になるからである。前記
粒状物嵩密度は0.50〜0.90g/cm3の範囲内におい
て最も良い結果が得られる。 なお、本発明によれば、前記粒状物嵩密度(D
g/cm3)は加熱帯における装入物の充填幅(W
m)と粒状物の気孔率(A%)で示される下記関
係式(8)を満足する場合にさらに好適な結果を得る
ことができる。 0.0146A(W−0.82)3+0.3≦D≦−2.52A(W−
0.22)3+1.0……(8) なお、前記粒状物の気孔率は単位嵩容積当りに
気孔の占める容積比率であり、嵩容積というのは
粒状物中に占める固体と内部空隙を含んだ容積で
ある。前記粒状物嵩密度は粒状物の一定容積の重
量、すなわち固体、内部空隙および外部空隙を含
んだ単位容積当りの重量である。前記装入物の充
填幅は反応容器の側壁から水平方向に最も遠くに
存在する装入物迄の距離の2倍である。 本発明によれば、前記粒状原料を予熱帯と加熱
帯と冷却帯を有する反応容器の上方より装入し、
前記装入された原料を前記反応容器の予熱帯内を
連続的あるいは間歇的に自重降下させつつ加熱帯
に至らせ、前記加熱帯内で水平方向に間接電気加
熱し、反応域における装入原料ならびに反応生成
物の水平方向の温度分布がほぼ均一になるよう電
力負荷と反応域を降下する装入原料ならびに反応
生成物の降下速度を制御してSiC化反応を行なわ
せ、次いで反応生成物を冷却帯に降下させ非酸化
性雰囲気下で冷却後、前記反応容器の冷却帯下部
より連続的あるいは間歇的に反応生成物が排出さ
れる。 本発明によれば、極めて微細な炭化珪素粉末を
製造する上で、加熱帯における反応温度を1500〜
2000℃の範囲内に制御することが必要である。そ
の理由は、前記反応温度が1500℃より低いと前記
式(2)で示される反応の反応速度が極めて遅く効率
的に炭化珪素粉末を製造することが困難であるか
らであり、一方2000℃より高いと一旦生成した炭
化珪素が結晶成長してα型炭化珪素に変化するた
め、本発明の目的とする極めて微細なβ型炭化珪
素粉末を製造することが困難であるからである。 なお、前記反応温度は、従来本発明者らが発明
し提案した炭化珪素の連続操業方法において必要
とされた反応温度に比較して低く、操業に要する
エネルギー量も少なくてすみ、かつ生産設備の耐
久性が著しく向上する等の利点をも有する。 また、前記加熱帯における装入物の降下速度
(Um/hr)を加熱帯における装入物の充填幅
(Wm)と加熱帯の高さ(Hm)の下記関係式(9)
で示される範囲内とすることが有利である。 H(8.3W2−5.8W+1.16)≦U≦H(50W2−36.7W
+7.3)……(9) 前記加熱帯の高さは装入物を加熱する手段すな
わち発熱体の発熱部における高さ方向の長さであ
る。 次に、本発明の方法の実施に直接使用する製造
装置の1例を図面を参照しながら説明する。 本発明の方法の実施に直接使用する装置は、第
1図に示す如く原料装入口1と予熱帯2と加熱帯
3と冷却帯4と密閉自在の生成物排出口5とを有
し、それらが縦方向にそれぞれ連接させてなる反
応容器6であつて、前記加熱帯を形成する筒7は
黒鉛製であり、加熱帯の装入物を間接電気加熱す
る手段8,9を具備し、少なくとも前記加熱帯の
外側に炭素あるいは黒鉛質微粉よりなる断熱層1
0を有するものである。 前記反応容器6は装置の中心部に設置され、間
接加熱手段8,9は黒鉛製発熱体8と前記発熱体
の外側に近接して設けられた黒鉛製反射筒9から
なる。前記加熱帯を形成する筒と黒鉛製反射筒に
囲まれた空間内には非酸化性ガス装入口11より
例えばアルゴン、ヘリウム、窒素、一酸化炭素、
水素、その他の非酸化性ガスが封入され、空気の
侵入による黒鉛製発熱体の酸化消耗が防止され
る。 以下、本発明を実施例について説明する。 実施例 1 平均粒径が153μmのシリカ粉末(SiO2=99.7重
量%)100重量部と比表面積が25m2/gのサーマ
ルブラツク粉末(F.C.=98.5重量%)63重量部と
平均粒径が40μmの高ピツチ粉(ベンゼン可溶性
成分=65.7重量%、F.C.=50.4重量%)35重量部
とベンゼン140重量部を配合し、フレツトミルを
使用して時間混合した後乾燥して固形状の混合物
を得た。ついで前記固形状の混合物を解砕した解
砕物をパン型造粒機に投入しCMC0.5%水溶液を
スプレーしながら造粒し、さらに篩とバーグリズ
リーで整粒した後、バンド型通気乾燥機に入れて
150℃の熱風で90分間乾燥した。得られた粒状原
料は平均粒径が10.3mm、粒状物の気孔率が51%、
粒状物嵩密度が0.64g/cm3、C/SiO2モル比が
4.0であつた。 この粒状原料を第1図に示した如き縦型の間接
加熱炉の上部より装入し、前記加熱炉内を連続的
に自重降下させて、反応温度が1650℃に制御され
た加熱帯に至らせ、加熱帯における装入物を0.60
m/hrの降下速度で自重降下させつつ水平方向に
間接加熱してSiC化反応を行なわせた後、冷却帯
に自重降下させ、排出口より反応生成物を連続的
に排出させた。 使用した間接加熱炉の仕様は第1表に示した如
くであり、加熱帯における装入物の充填幅は0.24
mである。
The present invention mainly relates to a method for producing ultrafine silicon carbide powder that is excellent as a raw material for silicon carbide sintered bodies.
In particular, the present invention relates to a method for producing ultrafine silicon carbide powder having an average particle size of significantly less than 1 μm. The present inventors previously proposed an invention relating to a method for producing silicon carbide mainly composed of β-type crystals in Japanese Patent Application Laid-Open No. 54-33899 and Japanese Patent Publication No. 55-40527,
For the first time in the world, we established an industrial continuous manufacturing method for silicon carbide made of β-type crystals. By the way, silicon carbide consisting of β-type crystals has recently been recognized to have extremely excellent properties when used as a raw material for producing pressureless sintered bodies, and according to such uses, the finer the silicon carbide, the easier it is to sinter. Or, because of its excellent uniform shrinkability, particularly fine particles are required. For example, according to Japanese Patent Application Laid-Open No. 160200/1987, β-type particles with submicron particle size are produced by plasma jet reaction from silicon halides and hydrocarbons. Silicon carbide powder and its manufacturing method were also published in Japanese Unexamined Patent Publication No. 1983
Publication No. 67599 discloses a method for producing high purity β-type silicon carbide powder of 1 μm or less obtained by thermally decomposing an organosilicon polymer compound. However, the starting materials used in the methods described in the above-mentioned publications are all extremely expensive, and there is no industrial method that can supply ultrafine silicon carbide powder consisting of β-type crystals that satisfies such requirements at low cost. The manufacturing method is still unknown. Based on this viewpoint, one of the present inventors previously proposed an invention relating to ``a method for producing ultrafine silicon carbide powder consisting mainly of β-type crystals'' in Japanese Patent Application No. 113615/1982. According to the method of the invention, silica and carbon are
Raw materials with a SiO2 molar ratio in the range of 3.2 to 5.0 are charged into a reaction vessel having a pre-heating zone, a heating zone, and a cooling zone, and the reaction temperature is controlled within the range of 1650 to 2100℃ to produce SiC. In the method for producing silicon carbide mainly composed of β-type crystals, which undergoes a chemical reaction, the raw materials are granulated, and the porosity of the granules is 40 to 55%, and the bulk density of the granules is in the range of 0.40 to 0.90 g/cm 3 Then, the granular raw material is charged from the top of the reaction vessel until the filling width of the charge in the heating zone is 0.10~
Within the range of 0.35 m, the charging width (Wm) is the descending speed (Um/hr) of the charge in the heating zone.
and heating zone height (Hm) within the range shown by the following relational expression. 17.9 (W-0.31) 2 +0.23≦U≦53.1H (W-0.31
) 2 +1.24 By the way, as a method for producing fine silicon carbide powder, for example, Japanese Patent Publication No. 45-10413 discloses an invention related to a "method for producing pigment silicon carbide," and according to the invention, It is stated that in order to produce fine silicon carbide powder, it is important to use carbon powder as fine as possible. Therefore, the present inventors attempted to apply extremely fine carbon powder for the purpose of further improving the method proposed by one of the present inventors. However, in the method proposed by one of the present inventors, especially when extremely fine carbon powder with a specific surface area of 1 m 2 /g or more is used, the crushing strength of the granular raw material in the reaction zone is significantly deteriorated and it collapses. It was discovered that stable continuous operation could not be carried out due to deterioration of outgassing in the reaction zone. That is, in the above method, granular raw materials made of silica and carbon are charged from the top of a vertical reaction vessel and continuously heated.
This is a method of carrying out a SiC conversion reaction, in which the granular raw material does not disintegrate during handling and reaction,
It needs to have enough strength to maintain its original shape. In addition, in order to produce fine silicon carbide powder, it is preferable to carry out the reaction at as low a reaction temperature as possible, but the method of carrying out the continuous SiC formation reaction as proposed by one of the inventors mentioned above is For the reasons mentioned above, it was not possible to use fine carbon powder, and we had to use carbon powder with a relatively coarse particle size and poor reactivity. This method had the disadvantage that it had to be operated at a relatively high reaction temperature. The present inventors have conducted various studies to improve the crushing strength in the reaction zone of granular raw materials using extremely fine carbon powder, with the aim of further improving the method previously proposed by one of the present inventors. As a result, when granulating raw materials using extremely fine carbon powder as a starting material, a carbon-based binder containing an organic solvent-soluble component is used as a binder for the granular raw material, and when the starting materials are mixed, Alternatively, we have discovered that by using an organic solvent during granulation, it is possible to create a granular raw material that has strong crushing strength even in the reaction zone and can maintain its original shape. As a result, we have completed the present invention, which enables the continuous production of silicon carbide powder consisting of extremely fine β-type crystals at low cost and easily. That is, according to the present invention, a raw material prepared by blending silica, carbon, and a carbon-based binder and molded into granules is charged from above a reaction vessel having a preheating zone, a heating zone, and a cooling zone, and The charged raw materials are allowed to fall continuously or intermittently under their own weight in the pre-heating zone of the reaction vessel until they reach the heating zone, where they are indirectly electrically heated horizontally in the heating zone, and the charged raw materials and the raw materials in the reaction zone are The power load and the rate of descent of the charging materials and reaction products are controlled so that the horizontal temperature distribution of the reaction products is almost uniform.
Production of silicon carbide by carrying out a SiC conversion reaction, then dropping the reaction product into a cooling zone, cooling it in a non-oxidizing atmosphere, and then discharging the reaction product continuously or intermittently from the lower part of the cooling zone of the reaction vessel. In the method, the carbon contained in the raw material formed into granules is a carbon powder with a specific surface area in the range of 1 to 1000 m 2 /g, and at the latest when granulated, the carbon-based binder and organic It is mixed using a solvent,
The above object can be achieved by a method for producing ultrafine silicon carbide powder, which is characterized in that the reaction temperature in the heating zone is controlled within the range of 1500 to 2000°C. Next, the present invention will be explained in detail. A reaction for producing silicon carbide using silica and carbon as starting materials is generally represented by the following formula (1). SiO 2 +3C→SiC+2CO... (1) However, the actual main generation mechanism is that SiO gas is generated according to the following formula (2), and the SiO gas and carbon react according to the following formula (3). It is known that silicon carbide is produced by SiO 2 +C→SiO+CO ...(2) SiO+2C→SiC+CO ...(3) By the way, according to the present invention, the SiO gas generated according to the above formula (2) is quickly converted according to the above formula (3). It is desirable that the SiO gas partial pressure in the reaction vessel not be increased so much during the SiC conversion reaction. This is because, in the present invention, when the SiO gas partial pressure in the reaction vessel increases, the equation (3)
However, in this case, the reaction according to equation (3) above is mainly a reaction in which SiC crystals grow and become coarse, so under conditions of high SiO gas partial pressure, fine It becomes difficult to obtain SiC particles, and in even more serious cases, a part of the SiO gas rises to the pre-preparation zone and causes reactions as shown in equations (4), (5), and (6) below, causing pre-preparation. In the tropics, SiO 2 , Si,
SiC, C, etc. are precipitated in a mixed state. Since the precipitate is sticky, the raw materials coagulate together,
The smooth movement and descent of the most important raw material in the continuous production of silicon carbide is significantly hindered, making stable continuous operation over a long period of time difficult. 2SiO→SiO 2 +Si ……(4) SiO+CO→SiO 2 +C ……(5) 3SiO+CO→2SiO 2 +SiC ……(6) According to the present invention, the rise in the SiO gas partial pressure is suppressed, and extremely fine To obtain silicon carbide powder,
It is necessary to use carbon powder with a specific surface area within the range of 1 to 1000 m 2 /g. The reason for this is that when the specific surface area is smaller than 1 m 2 /g, there are few places where the reaction according to the above formula (3) occurs, and the SiC production reaction due to crystal growth becomes the main reaction, which is the object of the present invention. It is difficult to produce fine silicon carbide powder, and on the other hand, carbon powder with a specific surface area larger than 1000 m 2 /g is considered to be extremely suitable from the viewpoint of reactivity. This is because it is not only difficult to obtain, but also has an extremely low bulk specific gravity, which has the disadvantage of increasing the porosity of the granules and significantly lowering the crushing strength.
Among them, carbon powder in the range of 10 to 500 m 2 /g is relatively easy to obtain, and suitable results can be obtained. The carbon powder is mainly used as contact black,
It is preferable to use at least one type of carbon black selected from furnace black, thermal black, and lamp black. Among them, thermal black has a chain structure or chain structure of carbon black particles, that is, a low structure and high crushing strength. This is the most suitable method because it allows easy production of granular raw materials. According to the present invention, a raw material obtained by blending silica and carbon and granulating the mixture is used. If silica and carbon are used as powder without granulation, they will be generated during the reaction.
This is because it has the disadvantage that the outgassing of CO gas deteriorates, making it difficult for the reaction to proceed. Therefore, it is advantageous for the average particle diameter of the granules to be within the range of 3 to 18 mm. The reason for this is that if the average particle diameter of the granules is smaller than 3 mm, there is almost no effect as a granule, while if it is larger than 18 mm, the reaction rate within the granules slows down.
This is because it is not economical. According to the present invention, it is important that the granules maintain their original shape even when exposed to high temperatures in the reaction zone, and the carbon powder is mixed with a carbon-based binder and an organic It is necessary to mix using a solvent. The reason for this is that the carbon powder used in the present invention, which has an extremely large specific surface area, has extremely strong agglomeration properties and usually exists in the form of secondary particles, which are agglomerated large numbers of fine particles, and cannot be mixed with silica. When granulating, it is difficult to loosen the agglomeration of the carbon powder and disperse the binder uniformly by simply blending and mixing a fine powder binder, but as mentioned above, using an organic solvent This is thought to be due to the fact that by mixing, the organic solvent-soluble components of the carbon-based binder can be eluted and mixed, so that they can be uniformly dispersed even inside the secondary particles of the carbon powder. According to the present invention, the carbon-based binder preferably contains at least 30% by weight of organic solvent-soluble components and 20 to 80% by weight of fixed carbon. The reason why the organic solvent soluble component is preferably at least 30% by weight is that if the organic solvent soluble component is less than 30% by weight, it is difficult to uniformly disperse the binder even inside the secondary particles of carbon powder. This is because a large amount of carbon-based binder is required to obtain the desired crushing strength. On the other hand, the reason why it is preferable to use fixed carbon in an amount of 20 to 80% by weight is that if the fixed carbon is less than 20% by weight, a large amount must be added in order to obtain the desired crushing strength, resulting in poor workability. Not only is the binder occupying a large volume in the granular raw material, it is difficult to maintain crushing strength in a high temperature range. This is because it is extremely low and difficult to apply efficiently. According to the present invention, the carbon-based binder is preferably at least one selected from petroleum pitch, coal tar pitch, wood tar pitch, asphalt, phenolic resin, petroleum tar, coal tar, and wood tar. . According to the present invention, the granular raw material is prepared by blending silica, carbon powder, a carbon-based binder, and an organic solvent, and then forming the mixture into granules, or by mixing the carbon-based binder and an organic solvent. It can be suitably produced by any method in which a liquid mixture in which organic solvent-soluble components of a carbon-based binder are eluted is added to a mixture of silica and carbon powder, mixed, and then formed into granules. Further, according to the present invention, the organic solvent may be removed from the mixture by drying, then crushed and re-pulverized, and a water-soluble binder may be added to the resulting mixture for granulation. According to the present invention, the amount of fixed carbon in the carbon-based binder eluted into the organic solvent during the mixing is 1.5 with respect to 100 parts by weight of the silica and carbon powder in total.
It is preferable to set it as 30 parts by weight. The reason is,
If the amount of fixed carbon is less than 1.5 parts by weight, the crushing strength of the granular raw material in the reaction zone will be insufficient, while if it is more than 30 parts by weight, the carbon generated from the binder will envelop the carbon powder, resulting in This is because the specific surface area of the carbon powder decreases, and coarse silicon carbide particles are likely to be produced. According to the present invention, it is preferable to mix 5 to 50 parts by weight of the carbon-based binder with respect to a total of 100 parts by weight of silica and carbon powder. The reason for this is that if the amount is less than 5 parts by weight, the crushing strength of the granular raw material in the reaction zone will be low and the product will easily collapse in the reaction vessel, while if it is more than 50 parts by weight, the cost of the binder will be high. This is because the amount of carbon generated by thermal decomposition of the binder increases, making it easier to generate coarse silicon carbide particles, and the best results are obtained within the range of 10 to 40 parts by weight. It will be done. According to the present invention, the organic solvent is
It is preferable to add at least 10 parts by weight. The reason for this is that if the amount of the organic solvent blended is less than 10 parts by weight, it is difficult to uniformly disperse the binder. Note that the amount of the organic solvent to be blended is preferably as large as possible in consideration of the uniform dispersibility of the binder; however, if it is too large, it is uneconomical, so it is advantageous that the amount to be blended is 100 parts by weight or less. According to the present invention, the organic solvent is advantageously one that can elute as much of the organic solvent-soluble components of the carbon-based binder as possible, such as benzene, acetone, toluene, hexane, isohexane, heptane, isoheptane, isooctane, cyclohexane, etc. , ethylbenzene, chloroform, carbon tetrachloride, dichloroethane, dichloroethylene, trichloroethylene, nonane, xylene, methyl alcohol, ethyl alcohol, butyl alcohol, isobutyl alcohol, propyl alcohol, isopropyl alcohol, ethyl ether, isopropyl ether, ethyl formate, methyl acetate, acetic acid ethyl, isopropyl acetate, ethyl propionate,
Amyl propionate, butyl butyrate, diethyl carbonate, fluorinated acetic acid, diethylene dimethyl ether,
Ethyl methyl ketone, quinoline and those having equivalent functions can be used. In addition, if we consider coal tar as the binder and use benzene as the organic solvent,
The insoluble content in benzene is about 7.2%, and when quinoline is used as the organic solvent, the insoluble content is about 3.5%. Therefore, most of the coal tar is composed of organic solvent-soluble components such as benzene, ethylbenzene, toluene, m/p-xylene, o-xylene, styrene, methylcyclohexane, n-heptane, cyclohexane, and ethylcyclohexane. Therefore, it is suitable for eluting the organic solvent-soluble component and mixing it with silica and carbon powder, which is an embodiment of the present invention. According to the present invention, in order to suppress the increase in the SiO gas partial pressure, it is effective to increase the amount of carbon in the raw material to increase the number of places where the formula (3) occurs, and It is advantageous for the C/SiO 2 molar ratio to be in the range from 3.2 to 5.0. Said C/SiO 2
The reason why it is advantageous to set the molar ratio within the range of 3.2 to 5.0 is that when the C/SiO 2 molar ratio is smaller than 3.2, the reaction according to the formula (3) can be sufficiently carried out, and SiO
It is difficult to maintain the gas partial pressure low, while
This is because if it is larger than 5.0, excess carbon that does not contribute to the reaction will be heated to a high temperature, resulting in lower thermal efficiency and increased costs for carbon raw materials, which is uneconomical. The present inventors conducted various studies on the silica and carbon used as starting materials in the present invention and the reaction conditions, and found that the specific surface area of the carbon powder was 1 to 1000 m 2 /
When operating within the range of C/SiO 2 of silica and carbon
It has been found that extremely good results can be obtained when the molar ratio (R) satisfies the following relational expression (7). S -1 ≦3.1×10 -2 R・X+1.1×10 4 T -1 ...(7) Furthermore, according to the present invention, the SiO gas partial pressure in the reaction vessel can be reduced by improving the permeability in the raw materials. In order to make the porosity of the granules uniform, the raw materials are granulated, and the porosity of the granules is
It is preferable that the granular raw material has a bulk density of 0.40 to 1.13 g/cm 3 and a bulk density of 10 to 60%. The above blended raw materials are granulated, and the porosity of the granules is reduced to 10~10.
The reason why it is preferable to set it within the range of 60% is that if the porosity is lower than 10%, the permeability in the granules will be poor, making it difficult for the reaction product gas to be released, and the SiO gas partial pressure will locally decrease within the granules. This is because the porosity becomes high, which tends to cause coarsening of the crystal grains as described above. On the other hand, it is preferable that the porosity is as high as possible in consideration of the release of reaction product gas, but if it is higher than 60%, the grains become coarser. This is because the strength of the material is extremely low, and it will collapse in the reaction vessel and the breathability will deteriorate significantly.
Best results are obtained within a range of 55%. The granular bulk density of the granular raw material is 0.40 to 1.13 g/
The reason why it is preferable to set it within the range of cm 3 is that the lower the bulk density is, the more preferable it is in terms of air permeability and other aspects.
In order to obtain a granular raw material with a lower value than 0.40 g/cm 3 , it is necessary to significantly increase the porosity of the granules or make the particle size of the granules extremely uniform.
This is because if the porosity is too high, the strength of the granules will drop significantly as described above, and making the particle size uniform will lead to a significant increase in raw material cost. If the temperature is high, the permeability of the reaction product gas will be poor, and the flow of the high-temperature gas in the preheating zone will become uneven, resulting in insufficient heat exchange between the raw material and the high-temperature gas.
This is because it becomes susceptible to the effects of precipitates from SiO gas, which inhibits the smooth fall of the raw material under its own weight, making it difficult to maintain stable operation over a long period of time. The best results can be obtained when the bulk density of the granules is within the range of 0.50 to 0.90 g/cm 3 . According to the present invention, the bulk density of the granules (D
g/cm 3 ) is the charging width (W
More suitable results can be obtained when the following relational expression (8) expressed by m) and the porosity (A%) of the granular material is satisfied. 0.0146A (W-0.82) 3 +0.3≦D≦-2.52A (W-
0.22) 3 +1.0...(8) The porosity of the granular material is the volume ratio occupied by pores per unit bulk volume, and the bulk volume includes the solids and internal voids in the granular material. It is volume. The bulk density of the granules is the weight of a given volume of the granules, ie the weight per unit volume including solids, internal voids and external voids. The filling width of the charge is twice the distance from the side wall of the reaction vessel to the farthest horizontal charge. According to the present invention, the granular raw material is charged from above a reaction vessel having a preheating zone, a heating zone, and a cooling zone,
The charged raw materials are allowed to fall continuously or intermittently under their own weight in the pre-heating zone of the reaction vessel until they reach the heating zone, and are indirectly electrically heated horizontally within the heating zone to cool the charged raw materials in the reaction zone. In addition, the SiC conversion reaction is carried out by controlling the power load and the rate of descent of the charged raw materials and reaction products that descend through the reaction zone so that the horizontal temperature distribution of the reaction products is almost uniform. After being lowered into a cooling zone and cooled in a non-oxidizing atmosphere, the reaction product is continuously or intermittently discharged from the lower part of the cooling zone of the reaction vessel. According to the present invention, in producing extremely fine silicon carbide powder, the reaction temperature in the heating zone is set at 1500-
It is necessary to control the temperature within the range of 2000℃. The reason for this is that when the reaction temperature is lower than 1500°C, the reaction rate of the reaction represented by formula (2) is extremely slow and it is difficult to efficiently produce silicon carbide powder; This is because if the temperature is too high, silicon carbide once produced undergoes crystal growth and changes to α-type silicon carbide, making it difficult to produce extremely fine β-type silicon carbide powder, which is the object of the present invention. Note that the reaction temperature is lower than that required in the conventional continuous operation method for silicon carbide invented and proposed by the present inventors, and the amount of energy required for operation is small, and the production equipment is It also has advantages such as significantly improved durability. In addition, the rate of descent of the charge in the heating zone (Um/hr) can be calculated using the following relational expression (9) between the filling width of the charge in the heating zone (Wm) and the height of the heating zone (Hm).
It is advantageous to keep the value within the range shown in . H(8.3W 2 −5.8W+1.16)≦U≦H(50W 2 −36.7W
+7.3)...(9) The height of the heating zone is the length in the height direction of the means for heating the charge, that is, the heating part of the heating element. Next, an example of a manufacturing apparatus directly used for carrying out the method of the present invention will be described with reference to the drawings. The apparatus directly used for carrying out the method of the present invention has a raw material charging port 1, a preheating zone 2, a heating zone 3, a cooling zone 4, and a sealable product outlet 5, as shown in FIG. The tube 7 forming the heating zone is made of graphite and is equipped with means 8, 9 for indirectly electrically heating the charge in the heating zone, and is provided with means 8, 9 for indirectly electrically heating the charge in the heating zone, and at least A heat insulating layer 1 made of carbon or graphite fine powder is provided on the outside of the heating zone.
0. The reaction vessel 6 is installed in the center of the apparatus, and the indirect heating means 8 and 9 are composed of a graphite heating element 8 and a graphite reflection tube 9 provided close to the outside of the heating element. In the space surrounded by the cylinder forming the heating zone and the graphite reflector cylinder, for example, argon, helium, nitrogen, carbon monoxide,
Hydrogen and other non-oxidizing gases are sealed to prevent the graphite heating element from being consumed by oxidation due to air intrusion. Hereinafter, the present invention will be described with reference to examples. Example 1 100 parts by weight of silica powder (SiO 2 =99.7% by weight) with an average particle size of 153 μm, 63 parts by weight of thermal black powder (FC = 98.5% by weight) with a specific surface area of 25 m 2 /g, and an average particle size of 40 μm 35 parts by weight of high pitch powder (benzene soluble component = 65.7% by weight, FC = 50.4% by weight) and 140 parts by weight of benzene were mixed for a period of time using a fret mill and then dried to obtain a solid mixture. . Next, the crushed product obtained by crushing the solid mixture was put into a pan-type granulator and granulated while spraying a 0.5% CMC aqueous solution, and after being sized with a sieve and Burr Grizzly, it was passed through a band-type aerated dryer. put it in
It was dried with hot air at 150°C for 90 minutes. The obtained granular raw material had an average particle size of 10.3 mm, a porosity of 51%,
The bulk density of the granules is 0.64 g/cm 3 and the C/SiO 2 molar ratio is
It was 4.0. This granular raw material is charged from the top of a vertical indirect heating furnace as shown in Fig. 1, and is continuously lowered by its own weight inside the heating furnace until it reaches a heating zone where the reaction temperature is controlled at 1650°C. The charge in the heating zone is 0.60
After the SiC formation reaction was carried out by indirect heating in the horizontal direction while descending under its own weight at a rate of descent of m/hr, it was allowed to descend under its own weight into a cooling zone, and the reaction product was continuously discharged from the discharge port. The specifications of the indirect heating furnace used are as shown in Table 1, and the filling width of the charge in the heating zone is 0.24.
It is m.

【表】 得られた反応生成物から遊離炭素を除去した
後、内径が250mmφのボールミルを用いて回転数
48rpmで5hr湿式解砕し、さらに10%HF水溶液に
3hr浸漬して遊離シリカを除去精製した。前記精
製して得られた炭化珪素中のβ型結晶よりなる炭
化珪素の含有率はX線回析によつて測定したとこ
ろ96.6%であり、その粒子形状は第2図の走査型
電子顕鏡写真(2700倍)に示した如く、極めて丸
い形状で、比較的粒径がそろつた微粉であり、そ
の比表面積は36.2m2/gであつた。 比較例 1 平均粒径が153μmのシリカ粉末(SiO2=99.7重
量%)100重量部と平均粒径が29μmの石油コー
クス粉末(F.C.=98.7重量%)76重量部および平
均粒径が43μmの高ピツチ粉(F.C.=50.4重量%)
7重量部を配合し、縦型スクリユー混合機にて10
分間混合した。前記配合原料にCMC0.5%水溶液
をスプレーしながらパン型造粒機を用いて成形
し、篩とバーグリズリーで整粒した後、バンド型
通気乾燥機に入れて150℃の熱風で90分間乾燥し
て平均粒径が10.5mm、粒状物の気孔率が47%、粒
状物嵩密度が0.62g/cm3、C/SiO2モル比が4.0
の粒状原料を得た。 前記粒状原料を使用して実施例1とほぼ同様で
あるが、反応温度を1900℃に制御し、加熱帯にお
ける装入物を0.60m/hrの降下速度で自重降下さ
せてSiC化反応を行なわせた。 得られた反応生成物の物性は実施例1と同様の
方法で測定した。結果は第2表に示した。その粒
子形状は第3図の走査型電子顕微鏡写真(2700
倍)に示した。 比較例 2 比較例1と同様であるが、比較例1よりも反応
温度を1650℃と低く制御し、かつ装入物の降下速
度を0.40m/hrと遅くして反応生成物を得た。 得られた反応生成物の物性は実施例1と同様の
方法で測定した。結果は第2表に示す如く、比表
面積が22.7m2/gと比較的微細な炭化珪素粉末を
得ることができたが、生成物中遊離シリカ含有率
が21.7重量%と未反応シリカが多量に残存するば
かりでなく、予熱帯においてSiOガスからの析出
物が多量に生成し、装入物を円滑に自重降下させ
ることが困難であつた。 実施例2、比較例3 実施例1と同様であるが、第2表に示した如く
高ピツチ粉およびベンゼンの配合量を変えて調製
した粒状原料を使用して反応生成物を得た。 得られた反応生成物の物性は実施例1と同様の
方法で測定し、結果は第2表に示した。 前記実施例2は長期間安定して連続操業するこ
とができた。これに対し、比較例3は反応容器内
で装入物が崩壊し、連続操業が困難であつた。 実施例 3 実施例1と同様であるが第2表に示した如き物
性の粒状原料を得た。 前記粒状原料を実施例1で使用した間接加熱炉
に装入し、第2表に示した如き条件で操業を行な
い反応生成物を得た。 得られた反応生成物の物性は実施例1と同様の
方法で測定し、結果は第2表に示した。 実施例 4 実施例1と同様であるが、第2表に示した如く
平均粒径が2μmのシリカ(SiO2=99.6重量%)を
使用して粒状原料を調整し、実施例1と同様の条
件で反応生成物を得た。 得られた反応生成物の物性は実施例1と同様の
方法で測定し、結果は第2表に示した。 実施例 5 実施例1と同様であるが、実施例1よりも反応
温度を高く制御し、かつ装入物の降下速度を速く
して反応生成物を得た。 得られた反応生成物の物性は実施例1と同様の
方法で測定した。結果は第2表に示した如く、炭
化珪素粉末の比表面積が29.8m2/gと若干小さく
なつたが、装入物の自重降下も順調で長期間安定
して連続操業することができ、単位設備あたりの
生産能力を向上させることができた。 実施例 6 実施例1と同様であるが、結合剤として高ピツ
チ粉に換えてコールタールピツチ、木タールピツ
チ、アスフアルト、フエノール樹脂、石油ター
ル、コールタールおよび木タールを使用して粒状
原料を調製し、実施例1と同様に反応生成物を得
た。 前記反応生成物を精製して得られた炭化珪素粉
末はいずれも極めて微細で本発明の目的を充分に
満足させるものであつた。また操業も長時間安定
して行うことができた。 なお、前記粒状原料中のC/SiO2モル比はい
ずれも4.0になるよう調製した。 以上、本発明によれば、平均粒径が1μmを大
きく下まわる比表面積の極めて大きな超微細炭化
珪素粉末を高収率に製造することができ、この粉
末を用いることにより、従来の炭化珪素粉末を用
いて造つた炭化珪素無加圧焼結体に比較して極め
て高強度で、かつ耐熱衝撃性に優れ、しかも信頼
性の高い炭化珪素焼結体を製造することができる
ものであつて産業上に寄与する効果は極めて大き
い。
[Table] After removing free carbon from the obtained reaction product, the rotation speed was measured using a ball mill with an inner diameter of 250 mmφ.
Wet crushing at 48 rpm for 5 hours, and further into 10% HF aqueous solution.
Free silica was removed and purified by immersion for 3 hours. The content of silicon carbide consisting of β-type crystals in the purified silicon carbide was measured by X-ray diffraction and was 96.6%, and the particle shape was determined using a scanning electron microscope as shown in Figure 2. As shown in the photograph (2700x), it was a fine powder with an extremely round shape and relatively uniform particle size, and its specific surface area was 36.2 m 2 /g. Comparative Example 1 100 parts by weight of silica powder (SiO 2 = 99.7% by weight) with an average particle size of 153 μm, 76 parts by weight of petroleum coke powder (FC = 98.7% by weight) with an average particle size of 29 μm, and 76 parts by weight of silica powder (FC = 98.7% by weight) with an average particle size of 43 μm Pituchi powder (FC=50.4% by weight)
Mix 7 parts by weight and mix 10 parts by weight in a vertical screw mixer.
Mixed for a minute. While spraying a 0.5% CMC aqueous solution onto the above-mentioned blended raw materials, the mixture is molded using a pan-type granulator, sized using a sieve and a burr grizzly, and then placed in a band-type ventilation dryer and dried with hot air at 150°C for 90 minutes. The average particle diameter is 10.5 mm, the porosity of the granules is 47%, the bulk density of the granules is 0.62 g/cm 3 , and the C/SiO 2 molar ratio is 4.0.
A granular raw material was obtained. The process was almost the same as in Example 1 using the granular raw material, but the reaction temperature was controlled at 1900°C, and the SiC formation reaction was carried out by lowering the charge in the heating zone by its own weight at a rate of descent of 0.60 m/hr. I set it. The physical properties of the obtained reaction product were measured in the same manner as in Example 1. The results are shown in Table 2. The particle shape is shown in the scanning electron micrograph (2700
times). Comparative Example 2 A reaction product was obtained in the same manner as in Comparative Example 1, but the reaction temperature was controlled lower than in Comparative Example 1 to 1650° C., and the rate of descent of the charge was slowed to 0.40 m/hr. The physical properties of the obtained reaction product were measured in the same manner as in Example 1. As shown in Table 2, we were able to obtain relatively fine silicon carbide powder with a specific surface area of 22.7 m 2 /g, but the free silica content in the product was 21.7% by weight, which contained a large amount of unreacted silica. In addition, a large amount of precipitates from SiO gas were formed in the preheating zone, making it difficult to lower the charge smoothly under its own weight. Example 2, Comparative Example 3 A reaction product was obtained using the same method as in Example 1, but using granular raw materials prepared with different amounts of high pitch powder and benzene as shown in Table 2. The physical properties of the obtained reaction product were measured in the same manner as in Example 1, and the results are shown in Table 2. Example 2 was able to operate stably and continuously for a long period of time. On the other hand, in Comparative Example 3, the charge collapsed within the reaction vessel, making continuous operation difficult. Example 3 A granular raw material similar to Example 1 but having physical properties as shown in Table 2 was obtained. The granular raw material was charged into the indirect heating furnace used in Example 1 and operated under the conditions shown in Table 2 to obtain a reaction product. The physical properties of the obtained reaction product were measured in the same manner as in Example 1, and the results are shown in Table 2. Example 4 The same procedure as in Example 1 was carried out, except that the granular raw material was prepared using silica (SiO 2 =99.6% by weight) with an average particle size of 2 μm as shown in Table 2, and the same procedure as in Example 1 was carried out. A reaction product was obtained under these conditions. The physical properties of the obtained reaction product were measured in the same manner as in Example 1, and the results are shown in Table 2. Example 5 A reaction product was obtained in the same manner as in Example 1, except that the reaction temperature was controlled higher than in Example 1, and the rate of descent of the charge was increased. The physical properties of the obtained reaction product were measured in the same manner as in Example 1. The results are shown in Table 2, although the specific surface area of the silicon carbide powder was slightly smaller at 29.8 m 2 /g, the dead weight of the charge fell smoothly and stable continuous operation was possible for a long period of time. We were able to improve the production capacity per unit of equipment. Example 6 A granular raw material was prepared as in Example 1, but using coal tar pitch, wood tar pitch, asphalt, phenolic resin, petroleum tar, coal tar, and wood tar instead of high pitch flour as the binder. A reaction product was obtained in the same manner as in Example 1. All of the silicon carbide powders obtained by purifying the reaction products were extremely fine and fully satisfied the purpose of the present invention. In addition, stable operation was possible for a long period of time. The C/SiO 2 molar ratio in each of the granular raw materials was adjusted to 4.0. As described above, according to the present invention, it is possible to produce ultrafine silicon carbide powder with an extremely large specific surface area and an average particle diameter of much less than 1 μm at a high yield, and by using this powder, it is possible to produce ultrafine silicon carbide powder with an extremely large specific surface area, which has an average particle diameter of much less than 1 μm. It is possible to produce silicon carbide sintered bodies that have extremely high strength and excellent thermal shock resistance compared to pressureless silicon carbide sintered bodies made using The effect that contributes to the above is extremely large.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例および比較例において
使用した竪型連続製造装置の縦断面図、第2図は
実施例1に記載の炭化珪素粉末の走査型電子顕微
鏡写真(2700倍)、第3図は比較例1に記載の炭
化珪素粉末の走査型電子顕微鏡写真(2700倍)で
ある。 1……原料装入口、2……予熱帯、3……加熱
帯、4……冷却帯、5……生成物排出口、6……
反応容器、7……加熱帯を形成する筒、8……黒
鉛製発熱体、9……黒鉛製反射筒、10……断熱
層、11……非酸化性ガス装入口、12……案内
電極、13……可とう導体、14……ブスバー、
15……測温パイプ、16……外殻、17……耐
火煉瓦、18……排気ダクト、19……原料ホツ
パー。
FIG. 1 is a vertical cross-sectional view of the vertical continuous manufacturing apparatus used in the examples and comparative examples of the present invention, and FIG. 2 is a scanning electron micrograph (2700x) of the silicon carbide powder described in Example 1. Figure 3 is a scanning electron micrograph (2700x magnification) of the silicon carbide powder described in Comparative Example 1. 1... Raw material charging port, 2... Pre-preparation zone, 3... Heating zone, 4... Cooling zone, 5... Product discharge port, 6...
Reaction vessel, 7...Cylinder forming a heating zone, 8...Heating element made of graphite, 9...Reflector tube made of graphite, 10...Insulating layer, 11...Non-oxidizing gas charging port, 12...Guiding electrode , 13... Flexible conductor, 14... Bus bar,
15... Temperature measuring pipe, 16... Outer shell, 17... Refractory brick, 18... Exhaust duct, 19... Raw material hopper.

Claims (1)

【特許請求の範囲】 1 シリカと炭素と炭素系の結合剤とを配合し、
粒状に成形せしめた原料を、予熱帯と加熱帯と冷
却帯を有する反応容器の上方より装入し、前記装
入された原料を前記反応容器の予熱帯内を連続的
あるいは間歇的に自重降下させつつ加熱帯に至ら
せ、前記加熱帯内で水平方向に間接電気加熱し、
反応域における装入原料ならびに反応生成物の水
平方向の温度分布がほぼ均一になるよう電力負荷
と反応域を降下する装入原料ならびに反応生成物
の降下速度を制御してSiC化反応を行わせ、次い
で反応生成物を冷却帯に降下させ非酸化性雰囲気
下で冷却後、前記反応容器の冷却帯下部より連続
的あるいは間歇的に1μmを大きく下まわる超微
細な反応生成物を排出する炭化珪素の製造方法に
おいて、 前記粒状に成形せしめた原料に含有される炭素
は比表面積が1〜1000m2/gの範囲内の炭素粉末
であり、遅くとも造粒される際には有機溶剤可溶
性成分を含む前記炭素系結合剤と有機溶剤を使用
して混合されており、加熱帯における反応温度を
1500〜2000℃の範囲内に制御することを特徴とす
る超微細炭化珪素粉末の製造方法。 2 前記炭素粉末は、主としてコンタクトブラツ
ク、フアーネスブラツク、サーマルブラツク、ラ
ンプブラツクより選ばれるいずれか少なくとも1
種である特許請求の範囲第1項記載の製造方法。 3 前記炭素系の結合剤は有機溶剤可溶性成分を
少なくとも30重量%含有し、かつ固定炭素を20〜
80重量%含有する特許請求の範囲第1項あるいは
2項に記載の製造方法。 4 前記炭素系の結合剤は、石油ピツチ、コール
タールピツチ、木タールピツチ、アスフアルト、
フエノール樹脂、石油タール、コールタール、木
タールより選ばれるいずれか少なくとも1種であ
る特許請求の範囲第1〜3項のいずれかに記載の
製造方法。 5 シリカと炭素粉末と炭素系の結合剤と有機溶
剤とを配合し、混合した後粒状に成形せしめるこ
とを特徴とする特許請求の範囲第1〜4項のいず
れかに記載の製造方法。 6 炭素系の結合剤と有機溶剤とを混合し、炭素
系の結合剤の有機溶剤可溶性成分を溶出させた混
合液をシリカと炭素粉末との混合物に添加して混
合した後、粒状に成形せしめることを特徴とする
特許請求の範囲第1〜4項のいずれかに記載の製
造方法。 7 前記混合時における有機溶剤中に溶出された
炭素系の結合剤の固定炭素量は前記シリカと炭素
粉末の合計100重量部に対して1.5〜30重量部の範
囲内とする特許請求の範囲第1〜6項のいずれか
に記載の製造方法。 8 前記炭素系の結合剤をシリカと炭素粉末の合
計100重量部に対して5〜50重量部配合する特許
請求の範囲第1〜7項のいずれかに記載の製造方
法。 9 前記有機溶剤を炭素粉末100重量部に対して
少なくとも10重量部配合する特許請求の範囲第1
〜8項のいずれかに記載の製造方法。 10 前記粒状に成形せしめた原料の気孔率を10
〜60%、粒状物嵩密度を0.40〜1.13g/cm3の範囲
内となす特許請求の範囲第1〜9項のいずれかに
記載の製造方法。
[Claims] 1. Blending silica, carbon, and a carbon-based binder,
The raw material formed into granules is charged from above into a reaction vessel having a preheating zone, a heating zone, and a cooling zone, and the charged raw material is lowered by its own weight continuously or intermittently within the preheating zone of the reaction vessel. while reaching a heating zone, and indirectly electrically heating in the horizontal direction within the heating zone,
The SiC formation reaction is carried out by controlling the power load and the rate of descent of the charged raw materials and reaction products in the reaction zone so that the horizontal temperature distribution of the charged raw materials and reaction products in the reaction zone is almost uniform. Then, the reaction product is lowered into a cooling zone, and after cooling in a non-oxidizing atmosphere, the ultrafine reaction product of much less than 1 μm is continuously or intermittently discharged from the lower part of the cooling zone of the reaction vessel. In the manufacturing method, the carbon contained in the raw material formed into granules is carbon powder with a specific surface area in the range of 1 to 1000 m 2 /g, and contains an organic solvent soluble component at the latest when granulated. It is mixed using the carbon-based binder and organic solvent, and the reaction temperature in the heating zone is controlled.
A method for producing ultrafine silicon carbide powder, characterized by controlling the temperature within a range of 1500 to 2000°C. 2. The carbon powder is mainly at least one selected from contact black, furnace black, thermal black, and lamp black.
The manufacturing method according to claim 1, which is a seed. 3. The carbon-based binder contains at least 30% by weight of organic solvent-soluble components and 20 to 20% of fixed carbon.
The manufacturing method according to claim 1 or 2, containing 80% by weight. 4 The carbon-based binder includes petroleum pitch, coal tar pitch, wood tar pitch, asphalt,
The manufacturing method according to any one of claims 1 to 3, wherein at least one selected from phenolic resin, petroleum tar, coal tar, and wood tar is used. 5. The manufacturing method according to any one of claims 1 to 4, characterized in that silica, carbon powder, a carbon-based binder, and an organic solvent are blended, mixed, and then formed into granules. 6. A mixture of a carbon-based binder and an organic solvent is added to the mixture of silica and carbon powder, and the mixed liquid obtained by eluting the organic solvent-soluble components of the carbon-based binder is formed into granules. A manufacturing method according to any one of claims 1 to 4, characterized in that: 7. The amount of fixed carbon in the carbon-based binder eluted into the organic solvent during the mixing is within the range of 1.5 to 30 parts by weight based on the total of 100 parts by weight of the silica and carbon powder. The manufacturing method according to any one of items 1 to 6. 8. The manufacturing method according to any one of claims 1 to 7, wherein 5 to 50 parts by weight of the carbon-based binder is added to a total of 100 parts by weight of silica and carbon powder. 9. Claim 1, wherein the organic solvent is blended in an amount of at least 10 parts by weight based on 100 parts by weight of carbon powder.
The manufacturing method according to any one of items 1 to 8. 10 The porosity of the raw material formed into granules is 10
9. The manufacturing method according to any one of claims 1 to 9, wherein the bulk density of the granules is within the range of 0.40 to 1.13 g/cm 3 .
JP57075324A 1982-05-07 1982-05-07 Preparation of ultrafine silicon carbide powder Granted JPS58194731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075324A JPS58194731A (en) 1982-05-07 1982-05-07 Preparation of ultrafine silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075324A JPS58194731A (en) 1982-05-07 1982-05-07 Preparation of ultrafine silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS58194731A JPS58194731A (en) 1983-11-12
JPH0118005B2 true JPH0118005B2 (en) 1989-04-03

Family

ID=13572966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075324A Granted JPS58194731A (en) 1982-05-07 1982-05-07 Preparation of ultrafine silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS58194731A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062565B2 (en) * 1984-11-29 1994-01-12 株式会社ブリヂストン Method for producing silicon carbide
JPS61168514A (en) * 1985-01-17 1986-07-30 Bridgestone Corp Production of easily sinterable silicon carbide
US4784839A (en) * 1986-04-03 1988-11-15 Atochem Method of making metal carbide and nitride powders
US5070049A (en) * 1987-12-16 1991-12-03 Ibiden, Co. Ltd. Starting composition for the production of silicon carbide and method of producing the same
US5108729A (en) * 1989-10-02 1992-04-28 Phillips Petroleum Company Production of carbide products
CN100386947C (en) * 2004-01-14 2008-05-07 东方电机股份有限公司 Stator bar coating type corona protective layer and its making process

Also Published As

Publication number Publication date
JPS58194731A (en) 1983-11-12

Similar Documents

Publication Publication Date Title
US4529575A (en) Process for producing ultrafine silicon carbide powder
US4292276A (en) Apparatus for producing silicon carbide
JP2934648B2 (en) Method for producing boron carbide
JP2874925B2 (en) Apparatus and method for producing uniform, fine boron-containing ceramic powder
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
JP2002533289A (en) Agglomeration of silicon powder
JP2002540054A (en) Method and apparatus for producing amorphous silica from silicon and silicon-containing materials
US4217335A (en) Process for producing β-silicon carbide fine powder
US5194234A (en) Method for producing uniform, fine boron-containing ceramic powders
JPH0118005B2 (en)
JP2841862B2 (en) Method for producing silicon carbide
JPH0138042B2 (en)
JPH0135773B2 (en)
JPS60235706A (en) Continuous production of silicon ceramics powder
JPS6362449B2 (en)
JPS59141411A (en) Production of ultrafine powder of silicon carbide
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JP2634451B2 (en) Method and apparatus for producing fine β-type silicon carbide powder
JPH01172205A (en) Raw material composition for producing metal carbide
JPS6327286B2 (en)
JPS63297205A (en) Production of nitride
JPS6358769B2 (en)
JPH08253364A (en) Preparation of sialon
JPS5836915A (en) Continuous manufacture of sic type substance