JPS60221310A - Production of silicon nitride powder - Google Patents

Production of silicon nitride powder

Info

Publication number
JPS60221310A
JPS60221310A JP7488484A JP7488484A JPS60221310A JP S60221310 A JPS60221310 A JP S60221310A JP 7488484 A JP7488484 A JP 7488484A JP 7488484 A JP7488484 A JP 7488484A JP S60221310 A JPS60221310 A JP S60221310A
Authority
JP
Japan
Prior art keywords
carbon
contg
furnace
compd
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7488484A
Other languages
Japanese (ja)
Other versions
JPS6335564B2 (en
Inventor
Fumio Nakamura
文男 中村
Kazuyoshi Isotani
磯谷 計嘉
Kensaku Maruyama
丸山 謙作
Norihiro Murakawa
紀博 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7488484A priority Critical patent/JPS60221310A/en
Publication of JPS60221310A publication Critical patent/JPS60221310A/en
Publication of JPS6335564B2 publication Critical patent/JPS6335564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce silicon nitride powder suitable to members for high temp. and high stress with high purity and fine and uniform particle size distribution by heating a compsn. contg. a specified silicon oxide and single substance carbon in an atmosphere of a gaseous N-contg. compd. CONSTITUTION:Air from a duct 2 of a furnace 1 and fuel for the hot air (e.g. propane) from a burner 3, are fed and burnt to generate hot gas contg. steam. On one hand, a decomposable Si compd. expressed by the formula: SinX2n+2 (where X is H or halogen; n is 1-4) is mixed with a decomposable C compd. (e.g. heavy oil A) with a proportion <2.5 of C/Si. The mixture is charged into said hot gas in the furnace 1 from a nozzle 4 to generate a highly uniform and fine aerosol mixture contg. Si oxide and single substance carbon. The dispersed material is discharged from a duct 5 and a carbonaceous compsn. is collected. The collected compsn. is then compressed to >=0.2g/cc bulk density, which is heated at 1,300-1,500 deg.C in an atmosphere of N-compd. contg. gas (e.g. N2) in a W high frequency heating furnace to obtain the titled powder.

Description

【発明の詳細な説明】 本発明は窒化珪素粉末の製造方法に係り、高純度且つ微
細で粒度分布の均一な窒化珪素粉末の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon nitride powder, and more particularly, to a method for producing silicon nitride powder that is highly pure, fine, and has a uniform particle size distribution.

窒化珪素焼結体は耐熱性が優れ且つ機械的強度が高いこ
とから、近年高温高応力部材への適用が試みられている
。これら部材に窒化珪素焼結体を適用する為には、高温
での化学的安定性及び物理的安定性が重要である。
Since silicon nitride sintered bodies have excellent heat resistance and high mechanical strength, attempts have been made in recent years to apply them to high-temperature, high-stress members. In order to apply silicon nitride sintered bodies to these parts, chemical stability and physical stability at high temperatures are important.

とりわけ物理的安定性である耐熱性及び機械的強度は、
原料である窒化珪素粉末に犬救く起因するので、高純度
且つ微細で粒径の均一なものが望まれている。
In particular, physical stability such as heat resistance and mechanical strength are
Since silicon nitride powder, which is the raw material, is highly pure, it is desired to have high purity, fine particles, and uniform particle size.

従来、窒化珪素粉末の製造方法は下記の方法が一般的で
ある。
Conventionally, the following method is generally used to produce silicon nitride powder.

(1)金属珪素粉末を窒化する方法 3S+ + 2N2.□5i3Nlf (2)四塩化珪素やシランとアンモニアを気相で反応さ
せる方法 3 S iCl++ 4NH3−→S +BNや+12
HCI(3)シリカをカーボンの共存下で窒化する方法
3 S i OL+6 C+21%−→5IBNIt−
16COしかし、(1)の方法では得られる窒化珪素は
粗大粒子であるので、粉砕工程が必要であり、粉砕時で
の粉砕機自身の摩耗による不純物の混入が避けられない
欠点がある。(2)の方法では収率が低く工業的製造に
は適さない。(3)の方法はシリカとカーボンをボール
ミルなどを用いて機械的に混合した後に窒化する方法で
あるので、混合過程においての不純物の混入を避は帷い
こと、粉塵の発生による作業環境上の問題が著しいこと
、更に混合の不均一が原因と推定される粗大粒子の発生
が避は難いなどの問題がある。
(1) Method of nitriding metal silicon powder 3S+ + 2N2. □5i3Nlf (2) Method 3 of reacting silicon tetrachloride or silane with ammonia in the gas phase 3 S iCl++ 4NH3-→S +BN or +12
HCI (3) Method 3 of nitriding silica in the coexistence of carbon S i OL+6 C+21%-→5IBNIt-
However, since the silicon nitride obtained in method (1) is coarse particles, a pulverization step is required, and there is a drawback that impurities are inevitably mixed in due to wear of the pulverizer itself during pulverization. Method (2) has a low yield and is not suitable for industrial production. Method (3) is a method in which silica and carbon are mechanically mixed using a ball mill, etc., and then nitrided. Therefore, it is important to avoid contamination with impurities during the mixing process, and the work environment is affected by the generation of dust. The problem is serious, and furthermore, the generation of coarse particles, which is presumed to be caused by non-uniform mixing, is unavoidable.

本発明者らはこの様な問題点を解決すべく種々検討を進
めた結果、充分に均一性が高く叶つ構成粒度の細かい珪
素酸化物及び単体炭素を含む組成物を先ず製造し、これ
を含窒素化合物ガス雰囲気中で加熱することによって、
目的とする高純度且つ微細な窒化珪素を製造する技術を
開発した。
The inventors of the present invention conducted various studies to solve these problems, and as a result, we first produced a composition containing silicon oxide and elemental carbon with a sufficiently high uniformity and fine particle size. By heating in a nitrogen-containing compound gas atmosphere,
We have developed a technology to produce the desired high-purity and fine silicon nitride.

すなわち、本発明は水蒸気を含む熱ガス中に分解性珪素
化合物及び分解性炭素化合物を装入して珪素酸化物及び
単体炭素を含む混合エローゾルを生成させ、この分散質
を捕集して得た含炭素組成物を嵩密度0.2シ/cc以
上に緊縮せしめた状態で含窒素化合物ガス雰囲気で加熱
することを特徴とする窒化珪素の製造方法の発明である
That is, in the present invention, a decomposable silicon compound and a decomposable carbon compound are charged into hot gas containing water vapor to generate a mixed aerosol containing silicon oxide and elemental carbon, and this dispersoid is collected. This invention is a method for producing silicon nitride, characterized in that a carbon-containing composition is compressed to a bulk density of 0.2 sh/cc or more and heated in a nitrogen-containing compound gas atmosphere.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で言う混合エローゾルとは気体中に珪素酸化物及
び単体炭素が固形物として混在しているものを意味する
。本発明での珪素酸化物及び単体炭素は、水蒸気を含む
熱ガス中で分解性珪素化合物及び分解性炭素化合物を熱
分解、酸化、加水分解などすることによって得ることが
出来る。
The mixed aerosol used in the present invention refers to a mixture of silicon oxide and elemental carbon as a solid substance in a gas. The silicon oxide and elemental carbon in the present invention can be obtained by thermally decomposing, oxidizing, hydrolyzing, etc. a decomposable silicon compound and a decomposable carbon compound in a hot gas containing water vapor.

生成した珪素酸化物と単体炭素の混合状態は、従来の機
械的混合に比べて格段に均−且つ微細なものが得られ易
く、又連続的に得ることができるので粉塵の発生、不純
物の混入といった問題がない。
The resulting mixture of silicon oxide and elemental carbon is much more uniform and fine than conventional mechanical mixing, and can be obtained continuously, reducing the generation of dust and the contamination of impurities. There are no such problems.

本発明を更に詳しく説明すると、まず単体炭素のエロー
ゾルは分解性炭素化合物を熱ガス中に装入して容易に得
ることができる。他方酸化珪素のエローゾルは、例えば
四塩化珪素の如き分解性のケイ素化合物を水蒸気を含む
熱ガス中に装入すると熱分解、酸化ちるいは加水分解に
より得ることができる。この様に水蒸気を含む熱ガス中
に炭素化合物及び珪素化合物を同時に装入すれば、容易
に珪素酸化物及び単体炭素を含む混合エローノ゛ルが得
られる。
To explain the present invention in more detail, first, an aerosol of elemental carbon can be easily obtained by charging a decomposable carbon compound into hot gas. On the other hand, aerosols of silicon oxide can be obtained by pyrolysis, oxidation or hydrolysis when a decomposable silicon compound such as silicon tetrachloride is introduced into a hot gas containing water vapor. By simultaneously charging a carbon compound and a silicon compound into hot gas containing water vapor in this manner, a mixed aerosol containing silicon oxide and elemental carbon can be easily obtained.

本発明で使用し5る分解性珪素化合物は、一般式 S 
in XzfL+z (nは1から4の整数)で表わさ
れるもので、Xは水素もしくはノ・ロゲン原子等であり
具体的なケイ素化合物を洋げれば5iC14、H8IC
13、S iHゆ、S i、He、(CHう)4 S 
r 、 (Q(3%SiC11、Cl13S i C1
3、S i F4 などが挙げられる。又分解性炭素化
合物は常温で気相もしくは液相状態か昇温により容易に
液相状態になり得る炭化水素や〕・ロゲン化炭化水素が
好適である。炭化水素の例としてはメタノール、エタノ
ール、アセトン、n−ヘキサン、ベンゼン、キシレンな
どの石油化学生成物、ナフサ、プロパン、軽油、灯油、
重油などの石油類があり、石油ピッチ、メチル油、アン
トラセン油、クレオソートなどの精製残留物、9留物混
合物、エチレンボトムなどの石油化学残留物でも使用可
能である。
The decomposable silicon compound used in the present invention has the general formula S
It is expressed as in
13, S iH Yu, S i, He, (CH U) 4 S
r, (Q(3%SiC11, Cl13S i C1
3, S i F4, etc. The decomposable carbon compound is preferably a hydrocarbon that is in a gaseous or liquid phase at room temperature, or a hydrocarbon that can easily become a liquid phase by increasing the temperature, or a logenated hydrocarbon. Examples of hydrocarbons include petrochemical products such as methanol, ethanol, acetone, n-hexane, benzene, xylene, naphtha, propane, light oil, kerosene,
Petroleum oils such as heavy oil can be used, as well as refinery residues such as petroleum pitch, methyl oil, anthracene oil, and creosote, and petrochemical residues such as 9-distillate mixtures and ethylene bottoms.

ハロゲン化炭素の例としてはクロロホルム、塩化ビニー
ル、クロルベンゼンなどカアル。
Examples of halogenated carbons include chloroform, vinyl chloride, and chlorobenzene.

本発明の含炭素組成物を得るには炉を用いるのが好適で
ある。炉の加熱装置としては燃焼バーナー、通電発熱体
などが好ましいが特に限定するものではない。又炉は珪
素化合物及び炭素化合物の装入用ノズルと熱風装入ダク
ト、混合エローゾル排出ダクトとを備えており、耐火物
で囲まれた構造が好適である。第1図はその1例を示す
。なお炉内には少なくとも600°C以上の空間領域が
なければならない。この温度以上であれば炭素化合物か
らは単体炭素カ瓢更に水蒸気を含む雰囲気下で珪素化合
物からは珪素酸化物が得られ、気体とこれら固形物との
混合体である混合エローゾルを発生する。得られる含炭
素組成物中の珪素及び炭素の割合の調節は、単にノズル
から熱ガス中に装入する珪素化合物、炭素化合物量を調
節するだけで可能である。
It is preferable to use a furnace to obtain the carbon-containing composition of the present invention. The heating device for the furnace is preferably a combustion burner, an energized heating element, etc., but is not particularly limited. The furnace is equipped with a charging nozzle for silicon compounds and carbon compounds, a hot air charging duct, and a mixed aerosol discharge duct, and preferably has a structure surrounded by refractories. FIG. 1 shows one example. Note that there must be a space area in the furnace that is at least 600°C or higher. At temperatures above this temperature, elemental carbon is obtained from the carbon compound, and silicon oxide is obtained from the silicon compound in an atmosphere containing water vapor, and a mixed aerosol, which is a mixture of gas and these solid substances, is generated. The proportions of silicon and carbon in the resulting carbon-containing composition can be adjusted simply by adjusting the amounts of the silicon compound and carbon compound charged into the hot gas from the nozzle.

水蒸気を含む熱ガスを得る方法としては、通電発熱方式
、高周波加熱方式、放電方式によって得た熱ガス中に水
蒸気を注入してもよいが、水素、メタン、プロパン、ブ
タンなど燃焼して水蒸気を生成する可燃物を空気で燃焼
させる方法が装置ヒ簡便であり、熱効率の面からも経済
的である。得られた混合エローゾルは炉の外に誘導した
後、含まれる固形物をバグフィルタ−、ザイクロン等の
捕集装置で捕集するが、捕集装置で熱負荷を軽減するた
めには予め冷却することが望ましい。
As a method of obtaining hot gas containing water vapor, water vapor may be injected into hot gas obtained by an electric heating method, a high frequency heating method, or a discharge method, but water vapor can be produced by burning hydrogen, methane, propane, or butane. The method of burning the generated combustibles with air is simple and economical in terms of thermal efficiency. After the obtained mixed aerosol is guided out of the furnace, the solids contained therein are collected using a collection device such as a bag filter or Zyclone, but in order to reduce the heat load on the collection device, it must be cooled beforehand. This is desirable.

冷却の方法としては、反応後の帯域を冷却するか、又は
エローゾル中に水を注入してもよい。
Cooling may be achieved by cooling the zone after the reaction or by injecting water into the aerosol.

以上のごとくして得られた含炭素組成物は高周波加熱炉
、通電抵抗炉などを用いて、例えば窒素ガス、アンモニ
アなどの含窒素化合物ガス雰囲気下で1300°C〜1
500”C;で加熱することにより本発明の目的とする
窒化珪素粉末とすることができる。
The carbon-containing composition obtained as described above is heated at 1,300°C to 1,000°C in an atmosphere of a nitrogen-containing compound gas such as nitrogen gas or ammonia using a high-frequency heating furnace, an electric resistance furnace, or the like.
By heating at 500''C; the silicon nitride powder targeted by the present invention can be obtained.

なお、本発明においては上記含窒素化合物雰囲気下で加
熱する工程において、該含炭素組成物を嵩密度が0,2
 !7/cc以上に緊縮した後に加熱することが必要で
ある。含炭素組成物の嵩密度がこれ未満の状態では、生
成する窒化珪素にウィスカー状の形態のものが混在し易
くなる。これに対し予め嵩密度を0.2 Lj /cc
以上に緊縮すると、微細で粒径の均一な窒化珪素が得ら
れる。これは本発明者らの実験的知見に基づくものであ
る。なお本発明にいう緊縮とは嵩密度を上げる操作を意
味し圧縮、攪拌式造粒などにより容易に行なうことがで
きる。
In addition, in the present invention, in the step of heating in the nitrogen-containing compound atmosphere, the carbon-containing composition has a bulk density of 0.2
! It is necessary to heat after tightening to 7/cc or more. When the bulk density of the carbon-containing composition is less than this, silicon nitride that is produced tends to contain whisker-like substances. On the other hand, the bulk density is set to 0.2 Lj/cc in advance.
When tightened to the above level, silicon nitride that is fine and has a uniform particle size can be obtained. This is based on the experimental findings of the present inventors. In addition, tightening as used in the present invention means an operation to increase the bulk density, and can be easily carried out by compression, stirring granulation, etc.

含炭素組成物中の珪素と炭素の割合は、重量比(C/S
 i )で2.5以上であることが好ましい。
The ratio of silicon and carbon in the carbon-containing composition is determined by the weight ratio (C/S
i) is preferably 2.5 or more.

C/Siが2.5未満であると含炭素組成物中の珪素質
の窒化珪素に転換する割合が急激に減少するからである
。但しこの比をこの値以上に余りに大きくする場合は特
に得るものがなく炭素化合物の単なる損失にしかならな
い。もし本発明の実施の結果得られる窒化珪素に単体炭
素が残存する場合、この炭素は酸素の存在下で500〜
800℃に加熱して容易に燃焼除去することができ、空
気中で加熱するか燃料を過剰空気で燃焼させた酸素を含
む熱ガス雰囲気下におくことで簡便に行なうことができ
る。
This is because when C/Si is less than 2.5, the ratio of conversion to silicon-based silicon nitride in the carbon-containing composition is sharply reduced. However, if this ratio is made too large beyond this value, there is nothing to be gained and the result is only a mere loss of the carbon compound. If elemental carbon remains in the silicon nitride obtained as a result of carrying out the present invention, this carbon has an
It can be easily burned and removed by heating it to 800° C., and it can be easily carried out by heating it in air or by burning the fuel with excess air and placing it in a hot gas atmosphere containing oxygen.

本発明の実施の結果得られる窒化珪素は粗大粒子を含ま
ずすでに微細で粒径の均一な粉末であるので、従来の粗
大粒子を含む粉末を粉砕する方法で問題とされてきた不
純物の混入といった問題が全くない。何故に本発明にお
いて容易に窒化珪素の微粉末が得られるかの詳細は正確
には明らかにし得ないが、おそらくは得られる含炭素組
成物自体の中の珪素酸化物と炭素の混合形態が従来にな
く極めて均一かつ微細であるためと推察される。
The silicon nitride obtained as a result of implementing the present invention does not contain coarse particles and is already a fine powder with a uniform particle size, so there is no possibility of contamination with impurities, which has been a problem with conventional methods of pulverizing powder containing coarse particles. No problems at all. Although the details of why fine silicon nitride powder is easily obtained in the present invention cannot be clarified, it is likely that the mixed form of silicon oxide and carbon in the obtained carbon-containing composition itself is different from the conventional one. This is presumed to be because it is extremely uniform and fine.

本発明で得られた窒化珪素粉末は高純変且つ微細で粒径
の均一な、例えば高温高応力部材として適する粉末であ
る。
The silicon nitride powder obtained in the present invention is a powder with high purity, fineness, and uniform particle size, and is suitable for use as a high-temperature, high-stress member, for example.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

尚、実施例、比較例に示す係は全て重量幅を表わす。Note that all the numbers shown in Examples and Comparative Examples represent weight ranges.

実施例1 第1図に示す炉を用いてダクト2より空気を燃焼バーナ
ー3より熱風用燃料としてのプロパンをそれぞれ]、 
00 Nm/i(r 、 3 N m’/I−1rの流
量で装入し、炭素化合物としてへ重油を珪素化合物とし
て8iCl+を、予め重量比で1,5 : 1,0の割
合に混合したものを25k17/■4の流量でノズル4
より炉内へ装入した。燃焼帯は約1200°Cの温度に
保った。
Example 1 Using the furnace shown in FIG. 1, air was supplied from the duct 2 and propane was used as a hot air fuel from the combustion burner 3.]
The mixture was charged at a flow rate of 00 Nm/i (r, 3 N m'/I-1r), and heavy oil as a carbon compound and 8iCl+ as a silicon compound were mixed in advance at a weight ratio of 1.5:1.0. Nozzle 4 with a flow rate of 25k17/■4
It was then charged into the furnace. The combustion zone was maintained at a temperature of approximately 1200°C.

炉内に生成したエローゾルは冷却後バグフィルタ−で捕
集して含炭素組成物8.9kg/Hを得た。含炭素組成
物には二酸化ケイ素39.4 炭素60.9%が含まれ
ていた。
The aerosol produced in the furnace was cooled and collected with a bag filter to obtain a carbon-containing composition of 8.9 kg/h. The carbon-containing composition contained 39.4% silicon dioxide and 60.9% carbon.

バグフィルタ−より取り出した本発明の含炭素組成物の
嵩密度は0.09 g/cc であった。
The bulk density of the carbon-containing composition of the present invention taken out from the bag filter was 0.09 g/cc.

緊縮するためこの30りを円筒容器に入れ一軸圧縮し0
.38 g/Ccの嵩密度とした後、高周波炉を用いN
2雰囲気で1400°C8時間加熱し、さらに空気中7
00℃に加熱して残存した単体炭素を燃焼除去して9.
Oqの粉末を得た。得られた粉末はX線回折の結果α−
8i3N4tであることが確認された。電子顕微鏡像解
析の結果その平均粒径は0.15μI11で粒子形状は
均一な粒度分布をもった球形であった。
To tighten the material, put this 30 liters in a cylindrical container and compress it uniaxially.
.. After achieving a bulk density of 38 g/Cc, N was heated using a high frequency furnace.
Heated at 1400°C for 8 hours in 2 atmospheres, then heated in air for 7 hours.
9. Heat to 00°C and burn off remaining elemental carbon.
A powder of Oq was obtained. As a result of X-ray diffraction, the obtained powder was α-
It was confirmed that it was 8i3N4t. As a result of electron microscopic image analysis, the average particle size was 0.15 μI11, and the particle shape was spherical with a uniform particle size distribution.

実施例2〜4 熱風用燃料としてプロパンの他にメタン、水素を用い、
珪素化合物、炭素化合物として第1表に示すものをそれ
ぞれ用いて実施例1と同様な方法で第2表に示す組成の
含炭素組成物を得た。得られた含炭素組成物を実施例1
と全く同様にして圧縮して緊縮した後、含窒素化合物と
してNの他にN H3ガスも用いてそれぞれ第1表に示
す温度、時間の加熱を行い粉末を得た。得られた粉末は
X線回折の結果いずれもα−8i3%であることが確認
された。電子顕微鏡像解析の結果、その平均粒径は第2
表に示す値で粒子形状はいずれも均一な粒度分布をもっ
た球状であった。
Examples 2 to 4 Using methane and hydrogen in addition to propane as hot air fuel,
Carbon-containing compositions having the compositions shown in Table 2 were obtained in the same manner as in Example 1 using the silicon compounds and carbon compounds shown in Table 1, respectively. The obtained carbon-containing composition was prepared in Example 1.
After compressing and tightening in exactly the same manner as above, heating was performed using NH3 gas in addition to N as the nitrogen-containing compound at the temperatures and times shown in Table 1 to obtain powder. As a result of X-ray diffraction, it was confirmed that all of the obtained powders contained 3% α-8i. As a result of electron microscope image analysis, the average particle size was
The particle shapes were all spherical with uniform particle size distribution according to the values shown in the table.

比較例1 実施例1で得られた含炭素組成物6りを嵩密度が0.0
977cc のままで加熱するμ外は、実施例1と全く
同様にしてN2.雰囲気中で1400°C8時間加熱し
、さらに空気中700℃に加熱して残存した単体炭素を
燃焼除去して1.7!7の粉末を得た。得られた粉末は
X線回折の結果α−8i3N9であることが確認された
Comparative Example 1 The carbon-containing composition 6 obtained in Example 1 had a bulk density of 0.0.
Except for heating with 977cc as it is, the same procedure as in Example 1 was carried out with N2. The mixture was heated in an atmosphere at 1400°C for 8 hours, and further heated in air at 700°C to burn off the remaining elemental carbon to obtain a powder of 1.7!7. The obtained powder was confirmed to be α-8i3N9 as a result of X-ray diffraction.

電子顕微鏡観察の結果粒子形状はウィスカ状であつプこ
As a result of electron microscopic observation, the particle shape was whisker-like and thick.

比較例2 実施例1で得られた含炭素組成物と同一組成となる様に
比表面積2oom/9のエコジル39.19−ト比表面
積120m/gのカーボンブラック60,99をボール
ミルを用いて24時間混合した。この30りを円筒容器
に入れ一軸圧縮し0.38VCcの嵩密度とした後、実
施例1と全く同じ条件で加熱及び単体炭素の除去を行い
8.8gの粉末を得た。得られた粉末はX線回折の結果
α−8i、3N埜であることが確認された。しかし電子
顕微鏡像解析の結果、その平均粒子径は0.77μmで
1μm以上の粗大粒子が多く観察され粒度は広い分布を
もっていた。
Comparative Example 2 Ecosil 39.19 with a specific surface area of 2 oom/9 and carbon black 60.99 with a specific surface area of 120 m/g were mixed using a ball mill to have the same composition as the carbon-containing composition obtained in Example 1. Mixed for an hour. This 30 pieces were placed in a cylindrical container and uniaxially compressed to give a bulk density of 0.38 VCc, and then heated and elemental carbon was removed under exactly the same conditions as in Example 1 to obtain 8.8 g of powder. As a result of X-ray diffraction, the obtained powder was confirmed to be α-8i, 3N. However, as a result of electron microscopic image analysis, the average particle diameter was 0.77 μm, and many coarse particles of 1 μm or more were observed, and the particle size had a wide distribution.

第1表 刊 1Table 1 Published 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に使用する炉の1例を示す断面
図である。 図面において 1・・・炉 材 2・・・ダクト 3・・燃焼バーす 4・・・ノズル 5・・・ダクト を示す。 特許出願人 三井東圧化学株式会社
FIG. 1 is a cross-sectional view showing one example of a furnace used in carrying out the present invention. In the drawing, 1...furnace material 2...duct 3...combustion bar 4...nozzle 5...duct is shown. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)水蒸気を含む熱ガス中に分解性珪素化合物及び分
解性炭素化合物を装入して珪素酸化物及び単体炭素を含
む混合エーロゾルを生成させ、この分散質を捕集して得
た含炭素組成物を、嵩密度0 、2q、/Cc 以上に
緊縮せしめた状態で含窒素化合物ガス雰囲気下で加熱す
ることを特徴とする窒化珪素粉末の製造方法。
(1) A carbon-containing mixture obtained by charging a decomposable silicon compound and a decomposable carbon compound into hot gas containing water vapor to generate a mixed aerosol containing silicon oxide and elemental carbon, and collecting this dispersoid. A method for producing silicon nitride powder, which comprises heating the composition in a nitrogen-containing compound gas atmosphere while compressing the composition to a bulk density of 0,2q,/Cc or higher.
JP7488484A 1984-04-16 1984-04-16 Production of silicon nitride powder Granted JPS60221310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7488484A JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7488484A JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS60221310A true JPS60221310A (en) 1985-11-06
JPS6335564B2 JPS6335564B2 (en) 1988-07-15

Family

ID=13560233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7488484A Granted JPS60221310A (en) 1984-04-16 1984-04-16 Production of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS60221310A (en)

Also Published As

Publication number Publication date
JPS6335564B2 (en) 1988-07-15

Similar Documents

Publication Publication Date Title
JP2604493B2 (en) Carbide compound and method for producing the same
US4122152A (en) Process for preparing silicon nitride powder having a high α-phase content
JPS60118615A (en) Production of novel carbon-containing composition and novel sialon
US4719095A (en) Production of silicon ceramic powders
JPS60221310A (en) Production of silicon nitride powder
JPS6225605B2 (en)
JPS60200811A (en) Novel production of boron nitride
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JPS5983922A (en) Preparation of silicon carbide powder
JP2929815B2 (en) Method for producing carbide powder
JP2916303B2 (en) Carbon containing composition
US6395245B1 (en) Method for preparing carbon-containing composition
KR910001302B1 (en) Process for production of silicon carbide
JPH0339988B2 (en)
JPH06115919A (en) Production of silicon carbide powder
EP0587888B1 (en) Process for producing a carbonaceous composition
JPS59102871A (en) Novel carbon-containing mixture, novel composite carbide andmanufacture of composite carbide sintered body
JPH0450272B2 (en)
JPS6345111A (en) Production of novel boron carbide
CN114174217A (en) Method and apparatus for preparing silicon-containing materials
JPH0481544B2 (en)
JPS63225508A (en) Production of sialon powder
JPS59121198A (en) Preparation of silicon carbide whisker
JPS60151206A (en) Manufacture of novel composition containing carbon and novel boron carbide
JPS6250402B2 (en)