JPS633513A - Logic circuit - Google Patents

Logic circuit

Info

Publication number
JPS633513A
JPS633513A JP61147507A JP14750786A JPS633513A JP S633513 A JPS633513 A JP S633513A JP 61147507 A JP61147507 A JP 61147507A JP 14750786 A JP14750786 A JP 14750786A JP S633513 A JPS633513 A JP S633513A
Authority
JP
Japan
Prior art keywords
fet
mos
logic circuit
threshold voltage
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61147507A
Other languages
Japanese (ja)
Inventor
Hiroyuki Obata
弘之 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61147507A priority Critical patent/JPS633513A/en
Publication of JPS633513A publication Critical patent/JPS633513A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To eliminate the power voltage dependance of a threshold value by interposing one conduction type depletion MOS-FET of having a large ON- resistance whose gate is connected to an output terminal in series between the said output terminal and the other conduction type MOS-FET constituting a CMOS logic circuit. CONSTITUTION:Since the on-resistance of a P-channel enhancement MOSFETQ1 of a CMOS inverter is sufficiently smaller than the on-resistance of an N-channel depletion MOSFETQ3 to be inserted, the threshold voltage depends on the threshold voltage of the N-channel depletion MOSFETQ3 and the N-channel enhancement MOSFETQ2, but the threshold voltage of the depletion MOSFETQ3 is independent of the power voltage, then the logical threshold voltage is independent of the power voltage. Further, the power consumption is less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体回路に関し、特に相補型MO3−FET
″′C−構成された論理回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor circuits, and particularly to complementary MO3-FETs.
″′C-Relating to constructed logic circuits.

〔従来の技術〕[Conventional technology]

従来の相補型MO3−FETで構成された論理回路は、
第3図にその一例を示したように、Pチャンネル エン
ハンスメント型MO3−FETQ11とNチャンネル・
エンハンスメント型M OS −FETQ、□で構成さ
れている。
A logic circuit composed of conventional complementary MO3-FETs is
As an example is shown in Fig. 3, P-channel enhancement type MO3-FETQ11 and N-channel enhancement type MO3-FETQ11
It is composed of enhancement type MOS-FETQ, □.

第3図の論理回路は、入力INの2値信号に応答してオ
ンオフし、入力INと逆極性の出力OUTを発生するイ
ンバータである。
The logic circuit shown in FIG. 3 is an inverter that turns on and off in response to a binary signal at the input IN and generates an output OUT having a polarity opposite to that of the input IN.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の相補型MOS−FETて構成された論理
回路は、第4図のB(破線)で示したように、論理しき
い値電圧が電源電圧■ccに依存する為、広い電源電圧
の範囲で論理回路の論理しきい値電圧を狭い入力レベル
の範囲内に設定することができないという問題点がある
。  ゛〔問題点を解決するための手段〕 本発明の回路は、−導電チャンネル・エンハンスメント
型の第1のM OS  F E Tと、該第1のMO8
−FETと逆導電チャンネル・エンハンスメント型の第
2のMO3−FETで構成された論理回路において、前
記第1のMO3−FETと該論理回路の出力との間に第
1のMO3−FETのON抵抗より充分高いON抵抗を
有する逆導電チャンネル・ディプリーション型の第3の
MO3−FETを直列接続すると共に該第3のMO3−
FETのゲート電極を該論理回路の出力に接続したこと
を特徴とする。
The logic circuit configured with the conventional complementary MOS-FET described above has a logic threshold voltage that depends on the power supply voltage ■cc, as shown by B (broken line) in FIG. There is a problem in that the logic threshold voltage of the logic circuit cannot be set within a narrow input level range. [Means for Solving the Problems] The circuit of the present invention includes: - a first MOSFET of conductive channel enhancement type;
- In a logic circuit configured with a FET and a second MO3-FET of a reverse conduction channel enhancement type, an ON resistance of the first MO3-FET is provided between the first MO3-FET and the output of the logic circuit. A reverse conduction channel depletion type third MO3-FET having a sufficiently higher ON resistance is connected in series, and the third MO3-FET is connected in series.
It is characterized in that the gate electrode of the FET is connected to the output of the logic circuit.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明による第1の実施例を示す回路図であり
、Pチャンネル・エンハンスメント型MOS −F E
TQ、とNチャンネル・エンハンスメント型M OS 
 F E T Q 2で構成されたインバータ回路であ
って、Pチャンネル・エンハンスメント型M OS −
F E T Q 1 とインバータの出力OUTとの間
にNチャンネル・ディプリーション型MO3−FETQ
3を直列接続すると共にNチャンネル・ディプリーショ
ン型M OS −F E T Q 3のゲート電極をイ
ンバータ回路の出力OUTに接続している。
FIG. 1 is a circuit diagram showing a first embodiment according to the present invention, in which a P-channel enhancement type MOS-FE
TQ, and N-channel enhancement type MOS
An inverter circuit composed of FETQ2, which is a P-channel enhancement type MOS-
An N-channel depletion type MO3-FETQ is connected between FETQ1 and the inverter output OUT.
3 are connected in series, and the gate electrode of the N-channel depletion type MOS-FET Q 3 is connected to the output OUT of the inverter circuit.

第1図において、入力INに論理しきい値電圧近傍の電
圧が印加された場合のPチャンネル・エンハンスメント
型M OS  F E T Q 1のON抵抗がNチャ
ンネル・ディプリーション型MO3FETQ、の○N抵
抗に比べて十分小さければ、論理しきい値電圧はNチャ
ンネル・ディプリーションM OS −F E T Q
 3及びNチャンネル・エンハンスメント型M OS 
 F E T Q 2のしきい値電圧だけで決定される
が、−般にデイプリージョンMO3−FETの論理しき
い値電圧は電源電圧に依存しない為、第4図のA(実線
)で示したように論理しきい値電圧は電源電圧に依存し
ない。
In Fig. 1, when a voltage near the logic threshold voltage is applied to the input IN, the ON resistance of P-channel enhancement type MOSFET Q1 is equal to ○N of N-channel depletion type MO3FETQ. If it is sufficiently small compared to the resistance, the logic threshold voltage will be N-channel depletion MOS -FETQ
3 and N channel enhancement type MOS
Although it is determined only by the threshold voltage of FETQ2, in general, the logical threshold voltage of a depletion MO3-FET does not depend on the power supply voltage, so it is shown by A (solid line) in Fig. 4. As mentioned above, the logic threshold voltage does not depend on the power supply voltage.

又、入力INに電源電圧VCCに等しい電圧のHigh
レベルが印加された場合、Pチャンネル・エンハンスメ
ント型M OS −F E T Q 1がOFFする為
、インバータ回路を貫通してり、C,的に電流が流れず
消費電力が非常に小さくなる。
In addition, a high voltage equal to the power supply voltage VCC is applied to the input IN.
When a level is applied, the P-channel enhancement type MOS-FET Q1 is turned off, so that no current flows through the inverter circuit, and the power consumption becomes extremely small.

上述した第1の実施例はインバータ回路であるが、本発
明によればNop、回路若しくはN AN D回路も構
成できることは明らかであり、本発明による第2の実施
例としてNOR回路を第2図に示す。
Although the first embodiment described above is an inverter circuit, it is clear that according to the present invention, a NOR circuit or a NAND circuit can also be configured. Shown below.

第2図において、直列接続されたPチャンネル・エンハ
ンスメント型M OS −F E T Q 4及ヒQ5
と並列接続されたNチャンネル・エンハンスメント型M
 OS  F E T Q 6及びQ7でNORが構成
されまた、Pチャンネル・エンハンスメント型MO3−
FETQ、とNORの出力OUTとの間にNチャン′ネ
ル・デイプリージョン型MO3−FETQ3を直列接続
すると共にNチャンネル・ディプリーション型〜10S
−FETQ3のゲート電極がNORの出力に接続されて
いる。このNOR回路の動作は上述したインバータ回路
と同様であるので、動作の説明は省略する。
In FIG. 2, P-channel enhancement type MOS-FET Q4 and HQ5 are connected in series.
N-channel enhancement type M connected in parallel with
A NOR is configured with OS FET Q6 and Q7, and a P channel enhancement type MO3-
N-channel depletion type MO3-FETQ3 is connected in series between FETQ and NOR output OUT, and N-channel depletion type ~10S
- The gate electrode of FETQ3 is connected to the output of NOR. Since the operation of this NOR circuit is similar to that of the inverter circuit described above, a description of the operation will be omitted.

[、発明の効果〕 以上説明したように本発明は、−導電チャンネル・エン
ハンスメント型の第1のMOS −F E Tと、第1
のMOS−FETと逆導電チャンネル・エンハンスメン
ト型の第2のMOS−FETで構成された論理回路にお
いて、第1のMO3FETと論理回路の出力との間に第
1のMO3−FETのON抵抗より充分高いON抵抗を
有する逆導電チャンネル・ディプリーション型の第3の
MO5−FETを直列接続すると共に第3のMO3−F
 E Tのゲート電極を論理回路の出力に接続すること
により、電源電圧を依存しない論理しきい値電圧が得ら
れるという効果がある。
[Effects of the Invention] As explained above, the present invention provides a conductive channel enhancement type first MOS FET;
In a logic circuit composed of a MOS-FET and a second MOS-FET of reverse conduction channel enhancement type, the distance between the first MO3-FET and the output of the logic circuit is more than the ON resistance of the first MO3-FET. A reverse conduction channel depletion type third MO5-FET having high ON resistance is connected in series, and a third MO3-F
By connecting the gate electrode of ET to the output of the logic circuit, there is an effect that a logic threshold voltage that is independent of the power supply voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による第1及び第2の実施
例を示す回路図、第3図は従来例を示す回路図および第
4図は論理回路の特性を示した図である。 ■cc・・・・・・電源、IN・・・・・・入力、OU
T・・・・・・出力、1・・・・・・信号端子、Ql、
Q4.Qs 、Qll・・・・・・Pチャンネル・エン
ハンスメント型M OS −F E ′r、Qs ・・
・・・Nチャンネル・ディプリーション型MOS −F
 ET、 Q2 、 Q6 、 Q7 、 Q10・・
・・・・Nチャンネル・エンハンスメント型MOS−F
ET。 Y1固         $zダ 嚇 第3別 Y+図
1 and 2 are circuit diagrams showing first and second embodiments according to the present invention, FIG. 3 is a circuit diagram showing a conventional example, and FIG. 4 is a diagram showing characteristics of a logic circuit. ■cc...Power supply, IN...Input, OU
T...Output, 1...Signal terminal, Ql,
Q4. Qs, Qll...P channel enhancement type MOS-FE'r, Qs...
...N-channel depletion type MOS -F
ET, Q2, Q6, Q7, Q10...
...N-channel enhancement type MOS-F
E.T. Y1 solid $z da threat 3rd separate Y+ figure

Claims (1)

【特許請求の範囲】[Claims] 一導電チャンネル・エンハンスメント型の第1のMOS
−FETと、該第1のMOS−FETと逆導電チャンネ
ル・エンハンスメント型の第2のMOS−FETで構成
された論理回路において、前記第1のMOS−FETと
該論理回路の出力との間に第1のMOS−FETのON
抵抗より充分高いON抵抗を有する逆導電チャンネル・
ディプリーション型の第3のMOS−FETを直列接続
すると共に該第3のMOS−FETのゲート電極を該論
理回路の出力に接続したことを特徴とする論理回路。
One conductive channel enhancement type first MOS
-FET, and a logic circuit configured of the first MOS-FET and a second MOS-FET of a reverse conduction channel enhancement type, between the first MOS-FET and the output of the logic circuit. Turning on the first MOS-FET
Reverse conducting channel with ON resistance sufficiently higher than the resistance
A logic circuit comprising a depletion type third MOS-FET connected in series and a gate electrode of the third MOS-FET connected to an output of the logic circuit.
JP61147507A 1986-06-23 1986-06-23 Logic circuit Pending JPS633513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147507A JPS633513A (en) 1986-06-23 1986-06-23 Logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147507A JPS633513A (en) 1986-06-23 1986-06-23 Logic circuit

Publications (1)

Publication Number Publication Date
JPS633513A true JPS633513A (en) 1988-01-08

Family

ID=15431924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147507A Pending JPS633513A (en) 1986-06-23 1986-06-23 Logic circuit

Country Status (1)

Country Link
JP (1) JPS633513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677850B2 (en) 2006-06-01 2010-03-16 Newfrey Llc Clip comprising a pin and a bush
US7862272B2 (en) 2004-05-31 2011-01-04 Piolax Inc. Clip
JP2022083085A (en) * 2020-11-24 2022-06-03 株式会社東芝 Semiconductor integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548683A (en) * 1978-09-29 1980-04-07 Mitetsuku Moderune Ind Tech Gm Method of measuring time with high accuracy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548683A (en) * 1978-09-29 1980-04-07 Mitetsuku Moderune Ind Tech Gm Method of measuring time with high accuracy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862272B2 (en) 2004-05-31 2011-01-04 Piolax Inc. Clip
US7677850B2 (en) 2006-06-01 2010-03-16 Newfrey Llc Clip comprising a pin and a bush
JP2022083085A (en) * 2020-11-24 2022-06-03 株式会社東芝 Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPH0380373B2 (en)
US4488067A (en) Tristate driver circuit with low standby power consumption
JPS633513A (en) Logic circuit
JP2548700B2 (en) Semiconductor integrated circuit
JPS61157115A (en) Cmos including 'chute through' current suppression means
JPH03132115A (en) Semiconductor integrated circuit
JPH04269011A (en) Level shift circuit
JPH02179121A (en) Inverter circuit
JPH01154620A (en) Semiconductor integrated circuit
JP2734531B2 (en) Logic circuit
JPS6012352Y2 (en) Push-pull gate circuit
JPH0385918A (en) Large current/high speed driver circuit
JPS61214817A (en) Cmos integrated circuit
JPH02268516A (en) Semiconductor device
JPS62135013A (en) Output circuit
JPS6352512A (en) Fliip-flop circuit
JPS63132527A (en) Cmos logic circuit
JPS6290031A (en) Semiconductor integrated circuit
JPH07131329A (en) Output buffer
JPS6284618A (en) Voltage level conversion circuit device
JPS62222713A (en) Cmos inverter circuit for delay
JPS61113319A (en) Holding circuit
JPS6130347B2 (en)
JPS58196727A (en) Logical circuit
JPH04104515A (en) Output circuit