JPH04269011A - Level shift circuit - Google Patents

Level shift circuit

Info

Publication number
JPH04269011A
JPH04269011A JP3030397A JP3039791A JPH04269011A JP H04269011 A JPH04269011 A JP H04269011A JP 3030397 A JP3030397 A JP 3030397A JP 3039791 A JP3039791 A JP 3039791A JP H04269011 A JPH04269011 A JP H04269011A
Authority
JP
Japan
Prior art keywords
fet
mosfet
circuit
vdd2
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3030397A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hashimoto
義春 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3030397A priority Critical patent/JPH04269011A/en
Publication of JPH04269011A publication Critical patent/JPH04269011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the through-current and to improve the response speed by adding an N-channel MOSFET and a differentiating circuit to an input terminal and an output terminal of an inverter respectively. CONSTITUTION:An N-channel MOSFET Q5 and a differentiating circuit A are added to an input terminal of an inverter INV 1 of a conventional circuit and an N-channel MOSFET Q6 and a differentiating circuit B are added to an output terminal. FETs Q5, Q6 are turned on in the normal state. When a level of a signal D changes from H to L, a FET Q3 is turned from OFF to ON, a potential at a point (c) of the FET Q5 changes from VDD2 into (VDD2-VDD1) by the differentiating circuit A and the FET Q5 is turned off and no through-current is caused. A potential at a point (a) is equal to a voltage VSS2 immediately, a FET Q1 is turned off and the FET Q5 is gradually turned on. In this case, a potential at a point (d) is changed from VDD2 into (VDD2+ VDD1), but since the FET Q6 keeps the ON state, the level at the point (b) is equal to the voltage VDD2 and the FET Q6 is made stable. Since the processing of the circuit is similarly when the level of the signal D changes from L to H, no through-current is caused.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レベルシフト回路に関
し、特に、MOSFETで構成されたレベルシフト回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a level shift circuit, and more particularly to a level shift circuit composed of MOSFETs.

【0002】0002

【従来の技術】従来のレベルシフト回路は、図3に示す
ように、第1のMOSFETQ1、Q2と第2のMOS
FETQ3、Q4を有している。
2. Description of the Related Art As shown in FIG. 3, a conventional level shift circuit includes first MOSFETs Q1 and Q2 and a second MOSFET
It has FETQ3 and Q4.

【0003】次に図3に示された回路の動作について説
明する。
Next, the operation of the circuit shown in FIG. 3 will be explained.

【0004】信号Dが“H”のとき、FETQ3が“O
FF”、FETQ4が“ON”となり、b点の電位は電
源電圧VSS2 と同電位となる。これによってFET
Q1が“ON”となり、a点の電位は電源電圧VDD2
 と同電位となり、FETQ2が“OFF”して安定状
態となる。
When signal D is “H”, FET Q3 is “O”.
FF”, FETQ4 is turned “ON”, and the potential at point b becomes the same potential as the power supply voltage VSS2.
Q1 becomes “ON” and the potential at point a is the power supply voltage VDD2.
The potential becomes the same as that of FETQ2, and FETQ2 turns "OFF" and becomes stable.

【0005】信号Dが“L”のときには、FETQ3が
“ON”、FETQ4が“OFF”となり、a点の電位
は電源電圧VSS2 と同電位となる。これによってF
ETQ2が“ON”となり、b点の電位はVDD2 と
同電位となり、FETQ1が“OFF”して安定状態と
なる。
When the signal D is "L", FETQ3 is "ON", FETQ4 is "OFF", and the potential at point a becomes the same potential as power supply voltage VSS2. This allows F
ETQ2 turns "ON", the potential at point b becomes the same potential as VDD2, and FETQ1 turns "OFF", resulting in a stable state.

【0006】従って、信号Dが“H”→“L”に変化す
るときに、FETQ3が“OFF”から“ON”となる
がこのときFETQ1も“ON”となっているために貫
通電流が流れて消費電流が大きくなる。またこの貫通電
流のためにa点、b点の電位が確定するのに時間がかか
ることから応答スピードを悪くしている。同様に信号D
が“L”→“H”に変化するときにも貫通電流が流れる
Therefore, when signal D changes from "H" to "L", FETQ3 changes from "OFF" to "ON", but at this time, FETQ1 is also "ON", so a through current flows. The current consumption increases. Furthermore, because of this through current, it takes time to determine the potentials at points a and b, which impairs the response speed. Similarly, signal D
A through current also flows when the voltage changes from "L" to "H".

【0007】[0007]

【発明が解決しようとする課題】叙上の如く、この従来
のレベルシフト回路では、貫通電流が大のために、消費
電流が大きいばかりでなく、応答スピードを悪くすると
いう課題があった。
SUMMARY OF THE INVENTION As mentioned above, this conventional level shift circuit has the problem of not only large current consumption but also poor response speed due to the large through current.

【0008】本発明は従来の上記実情に鑑みてなされた
ものであり、従って本発明の目的は、従来の技術に内在
する上記課題を解決し、消費電流を小さくすると共にレ
ベルシフト動作の応答速度を向上させることを可能とし
た新規なレベルシフト回路を提供することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and therefore, an object of the present invention is to solve the above-mentioned problems inherent in the conventional technology, reduce current consumption, and improve the response speed of level shift operation. The object of the present invention is to provide a novel level shift circuit that makes it possible to improve the level shift circuit.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るレベルシフト回路は、第1のMOSF
ETの一端と第2のMOSFETの一端を接続し、前記
第2のMOSFETの他端と第3のMOSFETの一端
を接続したものを基本回路とし、この基本回路と対をな
すように2組めの基本回路を配置し、相対する基本回路
の前記第2のMOSFETのゲートと前記第2、第3の
MOSFETの接続点をたすき状にそれぞれ接続し、第
1のインバータの出力端を第1の組の基本回路の第3の
MOSFETのゲートと第1のコンデンサの一端に接続
し、前記第1のインバータの入力端を第2の組の基本回
路の前記第3のMOSFETのゲートと第2のコンデン
サの一端に接続し、前記第1のコンデンサの他端を第1
の抵抗の一端と前記第2の組の基本回路の前記第1のM
OSFETのゲートに接続し、前記第2のコンデンサの
他端を第2の抵抗と前記第1の組の前記第1のMOSF
ETのゲートに接続して構成される。
[Means for Solving the Problems] In order to achieve the above object, a level shift circuit according to the present invention includes a first MOSFET.
One end of the ET is connected to one end of the second MOSFET, and the other end of the second MOSFET is connected to one end of the third MOSFET, forming a basic circuit. A basic circuit is arranged, the gate of the second MOSFET of the opposing basic circuit and the connection point of the second and third MOSFET are respectively connected in a sash shape, and the output end of the first inverter is connected to the first group. The input terminal of the first inverter is connected to the gate of the third MOSFET of the basic circuit of the second set and one end of the first capacitor. and connect the other end of the first capacitor to one end of the first capacitor.
one end of the resistor and the first M of the second set of basic circuits.
the other end of the second capacitor is connected to the gate of the OSFET, and the other end of the second capacitor is connected to a second resistor and the first MOSFET of the first set.
It is configured by connecting to the gate of ET.

【0010】0010

【実施例】次に本発明をその好ましい各実施例について
図面を参照して具体的に説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be specifically explained with reference to the drawings.

【0011】図1は本発明による第1の実施例を示す回
路構成図である。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【0012】図1を参照するに、本発明による第1の実
施例は、P型MOSFETQ1、Q2のドレインとN型
MOSFETQ3、Q4のドレインをそれぞれ接続し、
FETQ1、Q2のゲートとFETQ4、Q3のドレイ
ンをそれぞれ接続し、ディプレーションN型MOSFE
TQ5、Q6のドレインとFETQ1、Q2のソースを
それぞれ接続し、インバータINV1の入力端をFET
Q4のゲートとコンデンサC1の一端に接続し、コンデ
ンサC1の他端を抵抗R1の一端とFETQ5のゲート
に接続し、インバータINV1の出力端をFETQ3の
ゲートとコンデンサC2の一端に接続し、コンデンサC
2の他端を抵抗R2の一端とFETQ6のゲートに接続
した構成から成る回路である。
Referring to FIG. 1, the first embodiment according to the present invention connects the drains of P-type MOSFETs Q1 and Q2 and the drains of N-type MOSFETs Q3 and Q4, respectively.
Connect the gates of FETQ1 and Q2 and the drains of FETQ4 and Q3, respectively, to create a depletion N-type MOSFE.
Connect the drains of TQ5 and Q6 to the sources of FETQ1 and Q2, respectively, and connect the input terminal of inverter INV1 to the FET
Connect the gate of Q4 to one end of capacitor C1, connect the other end of capacitor C1 to one end of resistor R1 and the gate of FET Q5, connect the output end of inverter INV1 to the gate of FET Q3 and one end of capacitor C2, and connect the other end of capacitor C1 to one end of resistor R1 and the gate of FET Q5.
This circuit has a configuration in which the other end of the resistor R2 is connected to one end of the resistor R2 and the gate of the FET Q6.

【0013】次に図1に示された本発明による第1の実
施例の動作について説明する。
Next, the operation of the first embodiment of the present invention shown in FIG. 1 will be explained.

【0014】ディプレーションN型MOSFETQ5、
Q6は定常状態では“ON”している。信号Dが“H”
→“L”のとき、FETQ3は“OFF”→“ON”と
なるが、FETQ5は、微分回路AによりC点の電位が
VDD2 →VDD2 −VDD1 となり、“OFF
”し、貫通電流がなくなる。a点の電位は直ちに電圧V
SS2 と同電位となり、FETQ1が“OFF”し、
しだいにFETQ5は“ON”となる。このとき微分回
路Bによってd点の電位はVDD2 →VDD2 +V
DD1 となっているが、FETQ6は“ON”状態を
保つためにb点の電位は電圧VDD2 と同電位となっ
て安定する。信号Dが“L”→“H”のときにも同様と
なるために貫通電流がなくなる。
[0014] Depletion N-type MOSFETQ5,
Q6 is "ON" in a steady state. Signal D is “H”
→ When FETQ3 is “L”, FETQ3 changes from “OFF” to “ON”, but FETQ5 changes to “OFF” because the potential at point C becomes VDD2 →VDD2 −VDD1 due to differentiating circuit A.
”, and the through current disappears.The potential at point a immediately becomes the voltage V
It becomes the same potential as SS2, FETQ1 turns “OFF”,
Gradually, FETQ5 becomes "ON". At this time, the potential at point d is changed by differentiating circuit B to VDD2 → VDD2 +V
DD1, but since FETQ6 maintains the "ON" state, the potential at point b becomes the same potential as voltage VDD2 and becomes stable. The same thing happens when the signal D changes from "L" to "H", so there is no through current.

【0015】図4は本発明による上記第1の実施例の動
作タイミングチャートである。
FIG. 4 is an operation timing chart of the first embodiment of the present invention.

【0016】図2は本発明による第2の実施例を説明す
るための回路構成図である。
FIG. 2 is a circuit diagram for explaining a second embodiment of the present invention.

【0017】図2に示された第2の実施例の図1に示さ
れた第1の実施例との違いは、ディプレーションN型M
OSFETQ5、Q6がディプレーションP型MOSF
ETQ7、Q8に置き換えされていることである。その
ために、配線の引き回し方が異なる。この第2の実施例
の動作は前述した第1の実施例とほぼ同様である。
The difference between the second embodiment shown in FIG. 2 and the first embodiment shown in FIG. 1 is that the depletion N type M
OSFETQ5 and Q6 are depletion P type MOSF
It has been replaced by ETQ7 and Q8. Therefore, the way the wiring is routed is different. The operation of this second embodiment is almost the same as that of the first embodiment described above.

【0018】[0018]

【発明の効果】以上説明したように、従来のレベルシフ
ト回路図3では高圧側高位電源VDD2=30V、高圧
側低位電源VSS1 =0Vのときに貫通電流が600
μAと流れるが、本発明のレベルシフト回路によれば、
30μAと1/20に減少し、また応答スピードも速く
なるという効果が得られる。
As explained above, in the conventional level shift circuit shown in FIG. 3, when the high-voltage side high-level power supply VDD2 = 30V and the high-voltage side low-level power supply VSS1 = 0V, the through current is 600V.
However, according to the level shift circuit of the present invention,
The effect is that the current is reduced to 30 μA, 1/20, and the response speed is also increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による第1の実施例を示す回路構成図で
ある。
FIG. 1 is a circuit configuration diagram showing a first embodiment according to the present invention.

【図2】本発明による第2の実施例を示す回路構成図で
ある。
FIG. 2 is a circuit configuration diagram showing a second embodiment according to the present invention.

【図3】従来におけるレベルシフト回路の回路図である
FIG. 3 is a circuit diagram of a conventional level shift circuit.

【図4】図1の各点の電位の変化を示すタイミングチャ
ートである。
FIG. 4 is a timing chart showing changes in potential at each point in FIG. 1;

【符号の説明】[Explanation of symbols]

Q1…P型(エンハンスメント)MOSFETQ2…P
型(エンハンスメント)MOSFETQ3…N型(エン
ハンスメント)MOSFETQ4…N型(エンハンスメ
ント)MOSFETQ5…N型(ディプレーション)M
OSFETQ6…N型(ディプレーション)MOSFE
TQ7…P型(ディプレーション)MOSFETQ8…
P型(ディプレーション)MOSFETR1…抵抗 R2…抵抗 C1…コンデンサ C2…コンデンサ A…微分回路 B…微分回路 INV1…インバータ D…データ信号
Q1...P type (enhancement) MOSFETQ2...P
Type (enhancement) MOSFETQ3...N type (enhancement) MOSFETQ4...N type (enhancement) MOSFETQ5...N type (depression) M
OSFETQ6...N type (depression) MOSFE
TQ7...P type (depletion) MOSFETQ8...
P-type (depression) MOSFET R1...Resistor R2...Resistor C1...Capacitor C2...Capacitor A...Differentiating circuit B...Differentiating circuit INV1...Inverter D...Data signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1のMOSFETの一端と第2のM
OSFETの一端を接続し、前記第2のMOSFETの
他端と第3のMOSFETの一端を接続したものを基本
回路とし、この基本回路と対をなすように2組めの基本
回路を配置し、相対する基本回路の前記第2のMOSF
ETのゲートと前記第2、第3のMOSFETの接続点
をたすき状にそれぞれ接続し、第1のインバータの出力
端を第1の組の基本回路の第3のMOSFETのゲート
と第1のコンデンサの一端に接続し、前記第1のインバ
ータの入力端を第2の組の基本回路の前記第3のMOS
FETのゲートと第2のコンデンサの一端に接続し、前
記第1のコンデンサの他端を第1の抵抗の一端と前記第
2の組の基本回路の前記第1のMOSFETのゲートに
接続し、前記第2のコンデンサの他端を第2の抵抗と前
記第1の組の前記第1のMOSFETのゲートに接続し
たことを特徴とするレベルシフト回路。
Claim 1: One end of the first MOSFET and the second MOSFET
One end of the OSFET is connected, and the other end of the second MOSFET and one end of the third MOSFET are connected as a basic circuit, and a second set of basic circuits is arranged to form a pair with this basic circuit. The second MOSF of the basic circuit
The gate of the ET and the connection points of the second and third MOSFETs are connected in a sash shape, and the output terminal of the first inverter is connected to the gate of the third MOSFET of the first set of basic circuits and the first capacitor. and connect the input terminal of the first inverter to one end of the third MOS of the second set of basic circuits.
connecting the gate of the FET to one end of a second capacitor, and connecting the other end of the first capacitor to one end of a first resistor and the gate of the first MOSFET of the second set of basic circuits; A level shift circuit characterized in that the other end of the second capacitor is connected to a second resistor and a gate of the first MOSFET of the first set.
【請求項2】  前記第1のMOSFETとしてディプ
レーションN型MOSFETまたはディプレーションP
型MOSFETを用いたことを更に特徴とする請求項1
に記載のレベルシフト回路。
2. The first MOSFET is a depletion N-type MOSFET or a depletion P MOSFET.
Claim 1 further characterized in that a type MOSFET is used.
The level shift circuit described in .
JP3030397A 1991-02-25 1991-02-25 Level shift circuit Pending JPH04269011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030397A JPH04269011A (en) 1991-02-25 1991-02-25 Level shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030397A JPH04269011A (en) 1991-02-25 1991-02-25 Level shift circuit

Publications (1)

Publication Number Publication Date
JPH04269011A true JPH04269011A (en) 1992-09-25

Family

ID=12302798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030397A Pending JPH04269011A (en) 1991-02-25 1991-02-25 Level shift circuit

Country Status (1)

Country Link
JP (1) JPH04269011A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844767A (en) * 1995-07-20 1998-12-01 Mitsubishi Denki Kabushiki Kaisha Level converting circuit for converting level of an input signal, internal potential generating circuit for generating internal potential, internal potential generating unit generating internal potential highly reliable semiconductor device and method of
WO2001039373A1 (en) * 1999-11-23 2001-05-31 Koninklijke Philips Electronics N.V. Improved voltage translator circuit
EP1134893A2 (en) * 2000-03-14 2001-09-19 Semiconductor Energy Laboratory Co., Ltd. Level shifter
JP2006325193A (en) * 2005-04-19 2006-11-30 Semiconductor Energy Lab Co Ltd Level shifter circuit
JP2007096452A (en) * 2005-09-27 2007-04-12 Oki Electric Ind Co Ltd Level shift circuit
EP1863179A1 (en) * 2006-05-31 2007-12-05 St Microelectronics S.A. Level-converter circuit
KR101102607B1 (en) * 2010-01-25 2012-01-03 강원대학교산학협력단 Manufacturing method of the soda-lime glass by using refused coal ore

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844767A (en) * 1995-07-20 1998-12-01 Mitsubishi Denki Kabushiki Kaisha Level converting circuit for converting level of an input signal, internal potential generating circuit for generating internal potential, internal potential generating unit generating internal potential highly reliable semiconductor device and method of
US5969984A (en) * 1995-07-20 1999-10-19 Mitsubishi Denki Kabushiki Kaisha Level converting circuit for converting level of an input signal, internal potential generating circuit for generating internal potential, internal potential generating unit generating internal potential, highly reliable semiconductor device
US6197643B1 (en) 1995-07-20 2001-03-06 Mitsubishi Denki Kabushiki Kaisha Method for making level converting circuit, internal potential generating circuit and internal potential generating unit
WO2001039373A1 (en) * 1999-11-23 2001-05-31 Koninklijke Philips Electronics N.V. Improved voltage translator circuit
EP1134893A2 (en) * 2000-03-14 2001-09-19 Semiconductor Energy Laboratory Co., Ltd. Level shifter
EP1134893A3 (en) * 2000-03-14 2006-05-24 Semiconductor Energy Laboratory Co., Ltd. Level shifter
JP2006325193A (en) * 2005-04-19 2006-11-30 Semiconductor Energy Lab Co Ltd Level shifter circuit
JP2007096452A (en) * 2005-09-27 2007-04-12 Oki Electric Ind Co Ltd Level shift circuit
JP4630782B2 (en) * 2005-09-27 2011-02-09 Okiセミコンダクタ株式会社 Level shift circuit
EP1863179A1 (en) * 2006-05-31 2007-12-05 St Microelectronics S.A. Level-converter circuit
FR2901931A1 (en) * 2006-05-31 2007-12-07 St Microelectronics Sa CIRCUIT DECALEUR LEVEL
US7466184B2 (en) 2006-05-31 2008-12-16 Stmicroelectronics S.A. Level shifter
KR101102607B1 (en) * 2010-01-25 2012-01-03 강원대학교산학협력단 Manufacturing method of the soda-lime glass by using refused coal ore

Similar Documents

Publication Publication Date Title
US4663584A (en) Intermediate potential generation circuit
US4920284A (en) CMOS level converter circuit with reduced power consumption
JPH01226218A (en) Integrated circuit for level shift
US5013937A (en) Complementary output circuit for logic circuit
KR930020850A (en) Level conversion circuit
US4742247A (en) CMOS address transition detector with temperature compensation
EP0061844A2 (en) Flip-flop circuit
JPH04269011A (en) Level shift circuit
JP2944373B2 (en) Semiconductor integrated circuit
KR960027331A (en) Buffer circuit and bias circuit
JPH03132115A (en) Semiconductor integrated circuit
KR890004495A (en) Reset signal generation circuit
KR100299050B1 (en) Complementary gate-source clock driver and flip-flop driven thereby
JPS61214817A (en) Cmos integrated circuit
JPH057151A (en) Level shift circuit
JP2550942B2 (en) CMOS type logic integrated circuit
JPH01154620A (en) Semiconductor integrated circuit
KR0177755B1 (en) 3-state buffering circuit
JPS63132527A (en) Cmos logic circuit
JPS6162230A (en) Interface circuit
JPS6119227A (en) Mos input circuit device
JPH07283717A (en) Through current preventing circuit for cmos inverter circuit
JPH066623Y2 (en) Schmitt circuit
JPS6334798A (en) Latch circuit
JPH01162414A (en) Output circuit