JPS63318768A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63318768A
JPS63318768A JP62154665A JP15466587A JPS63318768A JP S63318768 A JPS63318768 A JP S63318768A JP 62154665 A JP62154665 A JP 62154665A JP 15466587 A JP15466587 A JP 15466587A JP S63318768 A JPS63318768 A JP S63318768A
Authority
JP
Japan
Prior art keywords
nitride film
groove
film
oxidized
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154665A
Other languages
Japanese (ja)
Inventor
Koji Naito
康志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62154665A priority Critical patent/JPS63318768A/en
Publication of JPS63318768A publication Critical patent/JPS63318768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make it possible to apply a three-layered film to an isolation structure by a simple process and to prevent breakdown of a thin insulating film at the bottom of a groove inviting a fault of all bits by a method wherein the inside of the groove of a silicon substrate is oxidized, thereon a nitride film is piled, the nitride film at the bottom of the groove is removed leaving a groove side wall, and the surface of the nitride film as well as the part from which the nitride film is removed are oxidized. CONSTITUTION:A sidewall of a groove and the bottom of a silicon substrate 1 having the excavated groove are oxidized, thereon a nitride film 3 is piled, the nitride film 3 of the groove bottom is removed leaving the nitride film 3 on the sidewall, the surface of the nitride film 3 and the part removed from the nitriding film 3 are oxidized 2, 5 so as to form the storage capacity part of dynamic RAM. For instance, the Si substrate 1, wherein the groove 10 is excavated, a storage node n<+> region 7 and a P<+> region 8 for isolation are formed, is thermally oxidized to form an oxide film 4, and thereon the silicon nitride film 3 is piled by a CVD method followed by partly removing the nitride film 3 on the groove bottom by anisotropic etching. Next, oxidation is performed to form the thin oxide film 2 on the surface of the nitride film 3 and the relatively thick oxide film 5 at the groove bottom followed by forming a polysilicon plate 6 on the groove 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溝底でセルを分離する構造のダイナミックR
AM(ランダム アクセス メモリ)に関連する半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dynamic R of a structure that separates cells at the groove bottom.
The present invention relates to a method of manufacturing a semiconductor device related to AM (Random Access Memory).

従来の技術 溝底に、高濃度P層を設けて、特別に分離用の厚い絶縁
膜を形成することなく、セル間の分離をおこなう方式の
DRAMが提案されている(第3図)。
Conventional Technology A DRAM has been proposed in which a high concentration P layer is provided at the bottom of the groove to isolate cells without forming a special thick insulating film for isolation (FIG. 3).

第3図において、2oはシリコン半導体基板、21は基
板に形成された溝の内壁及び底部に形成された酸化膜、
22は溝の底部下の基板内に形成された分離用戸領域、
23は溝内に形成されたポリシリコンプレート、24は
溝の内壁に形成されたストレージ用n 領域である。領
域24とプレート23間で蓄積容量が形成されている。
In FIG. 3, 2o is a silicon semiconductor substrate, 21 is an oxide film formed on the inner wall and bottom of a groove formed in the substrate,
22 is a separation door area formed in the substrate under the bottom of the groove;
23 is a polysilicon plate formed in the trench, and 24 is a storage n-region formed on the inner wall of the trench. A storage capacitor is formed between the region 24 and the plate 23.

26は表面の厚い絶縁膜、27は書込み、読出し用のM
OS)ランジスタのドレイン領域で領域13とつながっ
ている。26はMOS)ランジスタのポリシリコンゲー
トである。又、溝容量の耐圧向上のため、薄い酸化膜の
上に窒化膜を堆積し、さらにこの窒化膜の上層を酸化し
た3層構造が用いられる。
26 is a thick insulating film on the surface, 27 is M for writing and reading.
OS) is connected to region 13 at the drain region of the transistor. 26 is a polysilicon gate of a MOS transistor. Further, in order to improve the withstand voltage of the trench capacitance, a three-layer structure is used in which a nitride film is deposited on a thin oxide film, and the upper layer of this nitride film is further oxidized.

発明が解決しようとする問題点 しかし、前記の分離構造を持つDRAMに、前記の3層
膜を使用した場合、この3層膜の持つ、電圧ストレス下
でのフラットバンドシフトが大きいという特性が、セル
分離を悪化させてしまう。
Problems to be Solved by the Invention However, when the above-mentioned three-layer film is used in a DRAM having the above-mentioned separation structure, the property of this three-layer film that the flat band shift is large under voltage stress is This will worsen cell separation.

さらに、前記分離構造は、薄い絶縁膜が溝底で破壊して
いる場合、全ビア)不良を招く。本発明は、このような
従来の問題を解決し、極めて簡単な工程で、前記分離構
造に、前記3層膜を適用可能とし、さらに、全ビット不
良を招く溝底での薄い絶縁膜の破壊を防ぐものである。
Furthermore, the isolation structure may lead to failure of all vias if the thin insulating film is destroyed at the bottom of the trench. The present invention solves these conventional problems, makes it possible to apply the three-layer film to the isolation structure with an extremely simple process, and furthermore prevents the destruction of the thin insulating film at the bottom of the groove, which would lead to all bit defects. This is to prevent

問題点を解決するための手段 本発明の半導体装置の製造方法は、溝の堀られたシリコ
ン基板を熱酸化する工程と、その後窒化膜を堆積する工
程と、たとえば異方性のエツチングにより溝側壁を残し
て、水平部(底部)の前記窒化膜を除去する工程と、前
記窒化膜表面を酸化しかつ前記窒化膜を除去した部分の
基板を同時に酸化する工程を備えたものであり、このよ
うにしてできた側壁の3層膜をDRAMのストレージ容
量の絶縁膜として用いるもので、側壁には耐圧特性のよ
い3層絶縁膜を作り、同時に溝底には、厚い酸化膜を形
成することを特徴とする。
Means for Solving the Problems The method of manufacturing a semiconductor device of the present invention includes a step of thermally oxidizing a silicon substrate in which a trench has been dug, a step of depositing a nitride film after that, and etching the trench sidewalls by, for example, anisotropic etching. The method includes a step of removing the nitride film in the horizontal part (bottom) while leaving the nitride film, and a step of simultaneously oxidizing the surface of the nitride film and the part of the substrate from which the nitride film has been removed. The three-layer film on the sidewalls formed by the process is used as an insulating film for the storage capacity of DRAM.A three-layer insulating film with good voltage resistance characteristics is formed on the sidewalls, and at the same time, a thick oxide film is formed at the bottom of the trench. Features.

作   用 本発明は上記構成により、次のような作用が発揮される
Effects The present invention exhibits the following effects due to the above configuration.

■ DRAMのストレージ容量となる側壁部には、耐圧
特性が良い、充分薄い3層(酸化膜/窒化膜/酸化膜)
膜が形成される。
■ The sidewalls, which serve as the storage capacity of DRAM, have three sufficiently thin layers (oxide film/nitride film/oxide film) with good voltage resistance characteristics.
A film is formed.

■ 溝底には、比較的厚い酸化膜が形成され、全ビット
不良の原因となる溝底での薄い絶縁膜の耐圧不良を防ぐ
■ A relatively thick oxide film is formed at the bottom of the trench to prevent breakdown voltage failure of the thin insulating film at the bottom of the trench, which causes all bit failures.

■ ■、■がマスク工程なしで、異方性エツチングする
だけで同時に形成さ−れる。
2) 2) and 2) can be formed simultaneously by just anisotropic etching without a mask process.

■ 溝底に高濃度P層を設けて、溝底でセルを分離する
方式のDRAMのセルの溝底分離部の寄生トランジスタ
のV7を高くする。
(2) A high-concentration P layer is provided at the trench bottom to increase the V7 of the parasitic transistor in the trench bottom isolation portion of a DRAM cell that isolates cells at the trench bottom.

■、■の分離構造で、3層膜の使用を可能にする。The separation structure of ■ and ■ enables the use of three-layer membranes.

実施例 第2図に本発明の一実施例方法により形成されたDRA
M容量部および分離部の構造を示す。1はSt(シリコ
ン)半導体基板、2,4.5は酸化膜で、酸化膜2は窒
化膜3の表面に形成されたもので、4は基板の溝の側壁
に形成され、5は基板の溝底部に形成されたものである
。6は溝内に埋込まれたポリシリコンプレートである。
Embodiment FIG. 2 shows a DRA formed by an embodiment method of the present invention.
The structure of the M capacitor section and separation section is shown. 1 is an St (silicon) semiconductor substrate, 2 and 4.5 are oxide films, the oxide film 2 is formed on the surface of the nitride film 3, 4 is formed on the side wall of the groove of the substrate, and 5 is the oxide film formed on the surface of the nitride film 3. It is formed at the bottom of the groove. 6 is a polysilicon plate embedded in the groove.

7は基板の溝側壁に形成されたストレージノードn+領
域、8は分離用のP+領域である。
Reference numeral 7 indicates a storage node n+ region formed on the trench sidewall of the substrate, and reference numeral 8 indicates a P+ region for isolation.

第1図に本発明の製造方法を実施したDRAM容量の分
離部の製造工程を示す。まず、溝1oの堀られたシリコ
ン半導体基板1を熱酸化し10nm以下の酸化膜4を得
るaoこのとき戸領域8は形成されている。7は溝10
0基板内壁に形成されたストレージノードn+領域であ
る。さらにb図に示すようにシリコン窒化膜3を20n
m以下CVD法にて堆積する。次に異方性エッチで、水
平部分、すなわち溝底部の窒化膜3の一部を除去し、C
に示すような状態にする。なお、領域8はa等の他の工
程で形成してもよい。この状態から窒化膜3の上層表面
を酸化を行うと、窒化膜3が酸化されるよりも、はるか
に速いレート、で基板が酸化されるので、dのように窒
化膜3の表面に薄い酸化膜2と比較的厚い酸化膜6が溝
底に形成され、信頼性の高い確実な分離が可能となる。
FIG. 1 shows the manufacturing process of a DRAM capacity separation section using the manufacturing method of the present invention. First, a silicon semiconductor substrate 1 in which a groove 1o has been dug is thermally oxidized to obtain an oxide film 4 having a thickness of 10 nm or less.At this time, a door region 8 is formed. 7 is groove 10
This is a storage node n+ region formed on the inner wall of the 0 substrate. Furthermore, as shown in figure b, a silicon nitride film 3 of 20nm was added.
The thickness is deposited using the CVD method. Next, a part of the nitride film 3 at the horizontal part, that is, at the bottom of the groove is removed by anisotropic etching.
Make the condition as shown. Note that the region 8 may be formed in other steps such as a. If the upper surface of the nitride film 3 is oxidized from this state, the substrate will be oxidized at a much faster rate than the nitride film 3. A film 2 and a relatively thick oxide film 6 are formed at the bottom of the trench, allowing reliable and reliable isolation.

なお、酸化膜4は10nm以下、窒化膜3は200nm
   a以下とすることが、DRAMの蓄積容量の点か
らは望ましい。こうしたのち、溝10にポリシリコンプ
レート6、表面の絶縁膜、MOS)ランジスタを形成し
て第2図の構造を得る。
Note that the oxide film 4 has a thickness of 10 nm or less, and the nitride film 3 has a thickness of 200 nm.
From the viewpoint of the storage capacity of the DRAM, it is desirable that the value be equal to or less than a. After this, a polysilicon plate 6, an insulating film on the surface, and a MOS transistor are formed in the trench 10 to obtain the structure shown in FIG.

発明の効果 本発明に基づいて製造されるDRAMのストレージ容量
部分は、従来に比べ、 ■ 全ビット不良を招く、溝底での絶縁不良が解消され
る。
Effects of the Invention Compared to the conventional storage capacity portion of a DRAM manufactured according to the present invention, (1) Insulation defects at the bottom of the trench, which lead to all bit defects, are eliminated.

■ 0NO(酸化膜−窒化膜一酸化膜)三層絶縁膜のも
つ、良い耐圧/経時破壊特性が、第3図の構造につけ加
わる。本発明がなければ、ONO膜はストレス下でのフ
ラットバンドシフトが大きく、第3図の構造でのセル分
離の信頼性が得られない。
(2) The structure shown in FIG. 3 is further enhanced by the excellent breakdown voltage/time-dependent breakdown characteristics of the 0NO (oxide film, nitride film, and monoxide film) three-layer insulating film. Without the present invention, the ONO membrane would have a large flat band shift under stress, and the reliability of cell isolation in the structure of FIG. 3 would not be achieved.

の点で優れたものとなる。そして、本発明はマスク工程
のない簡単な工程で上記構造を実現でき、超高密度なり
RAMの実現に大きく寄与するものである。
It is excellent in terms of. The present invention can realize the above structure through a simple process without a mask process, and greatly contributes to the realization of ultra-high density RAM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法におけるDRAM容量・
分離の製造工程を示す断面図、第2図は本実施例方法に
て形成された同容量・分離部の断面図、第3図は従来の
容量・分離部、の断面図である。 1・・・・・・81  基板、2,4,5・・・・・・
酸化膜、3・・・・・・窒化膜、10・・・・・・溝。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図       10−溝 ωJ (b) 第1図  (C) lθ (O乙ン 1−−−SL基板 Z、4. S−−一酸化膜 3−変化膜 6−°ボリンリボンプレート 7− ストレージ ノードn?領域 δ−分離量P+領域 嬉2図
FIG. 1 shows the DRAM capacity and
FIG. 2 is a cross-sectional view of the same capacitor/separator formed by the method of this embodiment, and FIG. 3 is a cross-sectional view of a conventional capacitor/separator. 1...81 Board, 2, 4, 5...
Oxide film, 3... Nitride film, 10... Groove. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 10 - Groove ωJ (b) Figure 1 (C) lθ (O 1 - SL substrate Z, 4. S - Monoxide film 3 - Variable film 6 - ° Borin ribbon plate 7 - Storage node n ?Area δ - Separation amount P + Area happiness 2 figure

Claims (1)

【特許請求の範囲】[Claims]  溝の埋められたシリコン基板の、前記溝側壁及び底部
を酸化し、その上に窒化膜を堆積した後、前記側壁の窒
化膜を残したまま前記溝底の窒化膜を除去し、前記窒化
膜表面ならびに前記窒化膜を除去した部分を酸化するこ
とにより、ダイナミックRAMのストレージ容量部分を
形成する半導体装置の製造方法。
After oxidizing the trench sidewalls and bottom of the trench-filled silicon substrate and depositing a nitride film thereon, the nitride film at the trench bottom is removed while leaving the nitride film on the sidewalls, and the nitride film is removed. A method of manufacturing a semiconductor device in which a storage capacitor portion of a dynamic RAM is formed by oxidizing the surface and the portion from which the nitride film has been removed.
JP62154665A 1987-06-22 1987-06-22 Manufacture of semiconductor device Pending JPS63318768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154665A JPS63318768A (en) 1987-06-22 1987-06-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154665A JPS63318768A (en) 1987-06-22 1987-06-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63318768A true JPS63318768A (en) 1988-12-27

Family

ID=15589214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154665A Pending JPS63318768A (en) 1987-06-22 1987-06-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63318768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
US7354829B2 (en) 2000-01-14 2008-04-08 Denso Corporation Trench-gate transistor with ono gate dielectric and fabrication process therefor
DE10101568B4 (en) * 2000-01-14 2011-04-07 DENSO CORPORATION, Kariya-shi Semiconductor device and method of making the same
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device

Similar Documents

Publication Publication Date Title
JP2886280B2 (en) Method for manufacturing semiconductor memory device
JPH0425169A (en) Semiconductor memory device and manufacture thereof
JPH0294554A (en) Semiconductor storage device and manufacture thereof
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JPS62286270A (en) Semiconductor memory
US5156993A (en) Fabricating a memory cell with an improved capacitor
US5945703A (en) Semiconductor memory device and manufacturing method therefor
JPH03165552A (en) Stacked capacitor type dram and manufacture thereof
JPS63318768A (en) Manufacture of semiconductor device
JPH09331038A (en) Semiconductor memory and its fabrication
JPH0321062A (en) Semiconductor storage device
JPH0423467A (en) Manufacture of semiconductor memory
JP3120462B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH073860B2 (en) Method of manufacturing semiconductor memory device
JPH0382155A (en) Semiconductor memory cell and manufacture thereof
JPH03148860A (en) Semiconductor memory and manufacture thereof
JPH01290256A (en) Dynamic type semiconductor memory and manufacture thereof
JPH02246260A (en) Manufacture of semiconductor memory device
JPH03183162A (en) Manufacture of semiconductor memory
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
JPH04267558A (en) Semiconductor device
JPH0322475A (en) Manufacture of semiconductor device
JPH03165558A (en) Semiconductor memory device and manufacture thereof
JPH0824180B2 (en) How to configure the electrode extraction part
JP2544401B2 (en) Dynamic memory cell