JPS63318152A - Dynamic random access memory - Google Patents
Dynamic random access memoryInfo
- Publication number
- JPS63318152A JPS63318152A JP62154011A JP15401187A JPS63318152A JP S63318152 A JPS63318152 A JP S63318152A JP 62154011 A JP62154011 A JP 62154011A JP 15401187 A JP15401187 A JP 15401187A JP S63318152 A JPS63318152 A JP S63318152A
- Authority
- JP
- Japan
- Prior art keywords
- charge storage
- conductor layer
- dram
- electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 claims abstract description 53
- 239000004020 conductor Substances 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 20
- 238000000206 photolithography Methods 0.000 abstract description 12
- 238000000059 patterning Methods 0.000 abstract description 8
- 238000001020 plasma etching Methods 0.000 abstract description 7
- 230000010354 integration Effects 0.000 abstract description 6
- 230000003416 augmentation Effects 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 63
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000005360 phosphosilicate glass Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000005260 alpha ray Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- LKJPSUCKSLORMF-UHFFFAOYSA-N Monolinuron Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C=C1 LKJPSUCKSLORMF-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
電荷蓄積容量の増大を図ったスタックドキャパシタの構
造に関し、電荷蓄積電極の大きさを、フォトリソグラフ
ィにおける解像限界であるパターン間隔によって制限さ
れる大きさよりも拡大して電荷蓄積電極の増大を図るこ
とを目的とし、半導体基板に形成された不純物拡散領域
上からワード線上に延在しほぼ垂直な端面を有する第1
の導電体層パターンと、該第1の導電体層パターンの端
面に選択的に被着され該第1の導電体層パターンとオー
ミックに接続するサイドウオール状の第2の導電体層と
よりなる電荷蓄積電極と、該電荷蓄積電極の全表面上に
形成された誘電体膜と、該電荷蓄積電極上を該誘電体膜
を介して覆う対向電極とを有してなるスタック構造の蓄
積キャパシタを具備せしめて構成する。[Detailed Description of the Invention] [Summary] Regarding the structure of a stacked capacitor that aims to increase the charge storage capacity, the size of the charge storage electrode is made smaller than the size limited by the pattern spacing, which is the resolution limit in photolithography. In order to increase the number of charge storage electrodes by expanding the number of charge storage electrodes, a first electrode extending from the impurity diffusion region formed in the semiconductor substrate to the word line and having a substantially vertical end surface is used.
a conductor layer pattern, and a sidewall-shaped second conductor layer selectively deposited on the end face of the first conductor layer pattern and ohmically connected to the first conductor layer pattern. A storage capacitor having a stacked structure comprising a charge storage electrode, a dielectric film formed on the entire surface of the charge storage electrode, and a counter electrode covering the charge storage electrode with the dielectric film interposed therebetween. Equip and configure.
本発明はスタックドキャパシタを有するダイナミックラ
ンダムアクセスメモリ (DRAM)に係リ、特に電荷
蓄積容量の増大を図ったスタックドキャパシタの構造に
関する。The present invention relates to a dynamic random access memory (DRAM) having a stacked capacitor, and more particularly to a structure of a stacked capacitor that increases charge storage capacity.
DRAMにおいては、隣接するワード線の上部にキャパ
シタを延在させ、ワード線によって形成される凹凸の段
差部を含めてキャパシタの実効面積を増大し、これによ
って蓄積容量を増して読出し精度、及びα線ソフトエラ
ー耐性を向上して蓄積情報の信頼度を高めたスタック構
造の蓄積キャパシタが用いられる。In a DRAM, a capacitor is extended above adjacent word lines to increase the effective area of the capacitor including the uneven step portion formed by the word line, thereby increasing storage capacitance and improving read accuracy and α. A storage capacitor with a stacked structure is used, which improves line soft error resistance and increases the reliability of stored information.
かかるスタックドキャパシタ構造のDRAMにおいて、
高集積化が進み、セル面積が更に縮小される際には、キ
ャパシタの実効面積が減少するのを極力抑えて読出し精
度及びα線ソフトエラー耐性の劣化を防止することが特
に必要になるが、セル面積が縮小され該セルが高密度に
配設される高集積度の該DRAMにおいては、フォトリ
ソグラフィにおけるパターンの解像限界から必要になる
パターン間隔に制限されてキャパシタ電極の大きさが充
分に拡大できず、そのため満足する蓄積容量が得られな
いという問題があって、その改善が望まれている。In such a stacked capacitor structured DRAM,
As higher integration progresses and the cell area is further reduced, it will be especially necessary to suppress the reduction in the effective area of the capacitor as much as possible to prevent deterioration in readout accuracy and α-ray soft error resistance. In highly integrated DRAMs where the cell area is reduced and the cells are arranged at high density, the size of the capacitor electrode is limited to the required pattern spacing due to the pattern resolution limit in photolithography. There is a problem in that it cannot be expanded and therefore a satisfactory storage capacity cannot be obtained, and an improvement is desired.
従来上記DRAMにおける蓄積キャパシタは以下に第3
図(a)〜(C)を参照して示す方法により形成されて
いた。Conventionally, the storage capacitor in the above DRAM is as follows:
It was formed by the method shown with reference to Figures (a) to (C).
第3図fal参照
即ち、先ず例えばp型シリコン(St)M板1上にゲー
ト絶縁膜3を形成し、該ゲート絶縁膜3上に例えば第1
のn9型多結晶シリコン(ポリSi)層よりなり、眉間
絶縁膜となる第1の二酸化シリコン(SiO□)膜6八
を上部に有するワード線(ゲート電極)4八、4B、4
C140等を形成し、該ワード線をマスクにして基板面
に不純物をイオン注入してキャパシタの蓄積電極に接続
される第1、第3のn“型S/D領域5A、5C及びビ
ット線に接続される第2のn゛型S/D 領域5B等を
形成し、次いで該基板上に層間絶縁膜となる例えば第2
の5t(h膜を気相成長し、リアクティブイオンエツチ
ング(RIE)処理を用いる通常の平面エツチング手段
により該第2のSiO□膜を選択的にエツチング除去し
てワード線4八、4B、 4G、4D等の側面に第2の
SiO□膜よりなるSi0gサイドウオール6Bを形成
する。なおここで紙面に対して前後の方向を分離する図
示しないフィールド絶縁膜と上記5i02サイドウオー
ル6Bとによって、絶縁膜の開孔51A 、51C及び
51Bが形成される。Refer to FIG. 3. First, a gate insulating film 3 is formed on a p-type silicon (St) M plate 1, and a first
The word line (gate electrode) 48, 4B, 4 is made of an n9 type polycrystalline silicon (poly-Si) layer, and has a first silicon dioxide (SiO□) film 68, which serves as an insulating film between the eyebrows, on the upper part.
C140, etc., and using the word line as a mask, impurity ions are implanted into the substrate surface to form the first and third n" type S/D regions 5A, 5C connected to the storage electrode of the capacitor and the bit line. A second n-type S/D region 5B etc. to be connected is formed, and then, for example, a second
A 5T (h film) is grown in a vapor phase, and the second SiO□ film is selectively etched away using a conventional planar etching method using reactive ion etching (RIE) to form word lines 48, 4B, and 4G. , 4D, etc., are formed with Si0g sidewalls 6B made of a second SiO□ film.Here, the field insulating film (not shown) that separates the front and back directions with respect to the plane of the paper and the 5i02 sidewalls 6B provide insulation. Membrane openings 51A, 51C and 51B are formed.
第3図(bl参照
次いで該基板上にn°型の第2のポリSt層を形成し、
エツチング手段にRIB処理を用いる通常のフォトリソ
グラフィによりパターニングを行って、開孔51A及び
51C上に上記第2のn+型ポリStよりなる電荷蓄積
電極52A及び52Bを、開孔51B上にビット線接続
用電極53をそれぞれ形成する。FIG. 3 (see bl) Next, an n° type second polySt layer is formed on the substrate,
Patterning is performed by ordinary photolithography using RIB processing as an etching means, and charge storage electrodes 52A and 52B made of the second n+ type polySt are connected to the openings 51A and 51C, and the bit line is connected to the opening 51B. electrodes 53 are formed respectively.
第4図はこの工程完了時の平面図で、各対象物は同一符
号で示しである。FIG. 4 is a plan view when this process is completed, and each object is indicated by the same reference numeral.
なお上記パターニングに際して各電極間の最短間隔D1
は、フォトリングラフィにおけるアライナ−の解像の限
界により、通常1.5μm程度以上の値に制限される。In addition, during the above patterning, the shortest distance D1 between each electrode
is usually limited to a value of about 1.5 μm or more due to the resolution limit of the aligner in photolithography.
第3図(C)参照
次いで例えば化学気相成長(CVD)法により上記電極
52A 、52B 、 53の表面を含む該基板上に例
えば窒化シリコン(SiJ、)誘電体膜10を形成した
後、該基板上に第3のn゛型ポリSt層を形成し、通常
の方法によりパターニングを行って、第3のポリSt層
よりなり前記電荷蓄積電極52A 、52B等の上部を
誘電体膜IOを介して選択的に覆う一体の対向電極部ら
セルプレート54を形成する。Referring to FIG. 3(C), a silicon nitride (SiJ) dielectric film 10 is then formed on the substrate including the surfaces of the electrodes 52A, 52B, and 53 by, for example, chemical vapor deposition (CVD). A third n-type poly-St layer is formed on the substrate and patterned using a conventional method, and the upper portions of the charge storage electrodes 52A, 52B, etc. made of the third poly-St layer are formed through a dielectric film IO. A cell plate 54 is formed from an integrated opposing electrode portion that is selectively covered.
以上のように従来のスタックドキャパシタ構造のDRA
Mにおける電荷蓄積電極52A 、52B等は、RIE
処理を用いるフォトリソグラフィによりパターニング形
成されており、そのために同層の導電体層(第2のポリ
St層)からパターニング形成される隣接パターン例え
ばビット線接続用電極53との間隔が、前述したように
少なくともりソグラフィにおけるアライナ−の解像限界
である1、5μm程度以上に形成されていた。As mentioned above, the conventional stacked capacitor structure DRA
The charge storage electrodes 52A, 52B, etc. in M are RIE
The pattern is formed by photolithography using processing, and therefore the distance between the adjacent pattern, for example, the bit line connection electrode 53, which is patterned from the same conductor layer (second polySt layer) is as described above. At least, it was formed to have a thickness of about 1.5 μm or more, which is the resolution limit of an aligner in lithography.
そのため従来のスタックドキャパシタ構造のDRAMに
おいては、高集積化が進んでセル面積が縮小された際に
、上記パターニングに際しての解像限界から必要なパタ
ーン間隔に拘束されて電荷蓄積電極の大きさが小さく制
限されてキャパシタの蓄積容量が大幅に減少し、このた
めにα線ソフトエラー耐性及び情報読出し精度が劣化し
て該DRAM情報の信頼度が低下するという問題を生じ
ていた。For this reason, in conventional stacked capacitor structured DRAMs, when the cell area is reduced due to higher integration, the size of the charge storage electrode is restricted by the required pattern spacing due to the resolution limit in patterning. As a result, the storage capacity of the capacitor is significantly reduced, resulting in a problem that alpha ray soft error resistance and information read accuracy deteriorate, resulting in a decrease in the reliability of the DRAM information.
本発明が解決しようとするのは、上記のように従来のス
タックドキャパシタ構造のDRAMにおいては、高集積
化が進んだ時にキャパシタの蓄積容量が極端に減少して
該DRAM情報の信頼度が低下するという問題を生じて
いた点である。The problem to be solved by the present invention is that, as described above, in the conventional stacked capacitor structured DRAM, as the degree of integration increases, the storage capacity of the capacitor decreases extremely, and the reliability of the DRAM information decreases. This is a problem that has arisen.
上記問題点は、半導体基板に形成された不純物拡散領域
上からワード線上に延在しほぼ垂直な端面を有する第1
の導電体層パターンと、該第1の導電体層パターンの端
面に選択的に被着され該第1の導電体層とオーミックに
接続するサイドウオール状の第2の導電体層パターンと
よりなる電荷蓄積電極と、該電荷蓄積電極の全表面上に
形成された誘電体膜と、該電荷蓄積電極上を該誘電体膜
を介して覆う対向電極とを有してなるスタック構造の蓄
積キャパシタを具備した本発明によるDRAMによって
解決される。The above-mentioned problem is caused by the first impurity diffusion region formed in the semiconductor substrate extending from above the word line and having a substantially vertical end surface.
a conductor layer pattern, and a sidewall-shaped second conductor layer pattern that is selectively deposited on the end face of the first conductor layer pattern and ohmically connected to the first conductor layer. A storage capacitor having a stacked structure comprising a charge storage electrode, a dielectric film formed on the entire surface of the charge storage electrode, and a counter electrode covering the charge storage electrode with the dielectric film interposed therebetween. The problem is solved by a DRAM according to the present invention.
即ち本発明に係るスタックドキャパシタ構造のDRAM
においては、キャパシタを構成する電荷蓄積電極を、フ
ォトリソグラフィにおけるパターンの解像限界から必要
になる最低のパターン間隔によって制限される大きさの
フォトリングラフィ形成になる第1の導電体層パターン
と、その全周の端面にサイドウオール状に被着形成した
第2の導電体層とによって構成して、電荷蓄積電極の大
きさを、前記パターン間隔の解像限界寸法によって制限
される大きさよりも拡大する。That is, the stacked capacitor structure DRAM according to the present invention
In this method, a charge storage electrode constituting a capacitor is formed by a first conductor layer pattern formed by photolithography with a size limited by the minimum pattern spacing required due to the pattern resolution limit in photolithography; A second conductive layer is formed on the end face of the entire circumference in the form of a sidewall, and the size of the charge storage electrode is expanded beyond the size limited by the resolution limit dimension of the pattern spacing. do.
これによって高集積化された際にも電荷蓄積容量の増大
が図られ、該DRAM情報の信頼度が向上する。As a result, the charge storage capacity can be increased even when the device is highly integrated, and the reliability of the DRAM information can be improved.
以下本発明を、図を参照し、実施例により具体的に説明
する。The present invention will be specifically described below with reference to the drawings and examples.
第1図は本発明に係るDRAMの一実施例を模式的に示
す透視平面図(a)及びA−A断面図(b)、第2図t
a>〜(e)はその製造方法を示す工程断面図である。FIG. 1 is a perspective plan view (a) and an A-A sectional view (b) schematically showing an embodiment of a DRAM according to the present invention, and FIG.
a> to (e) are process cross-sectional views showing the manufacturing method.
全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.
第1図(a)、(b)において、1はp型シリコン(S
t)基板、2はフィールド絶縁膜、3はゲート絶縁膜、
4^、4B、 4C,4Dは第1のn0型ポリ5i(P
oly^)層よりなるワード線(ゲート電極) 、5A
、 5B、 5Cは第1、第2、第3の n”型ソース
/ドレイン(S/D)領域、6^、6Bは第1の層間絶
縁膜となるSin。In FIGS. 1(a) and (b), 1 is p-type silicon (S
t) Substrate, 2 is a field insulating film, 3 is a gate insulating film,
4^, 4B, 4C, 4D are the first n0 type poly 5i (P
Word line (gate electrode) consisting of oly^) layer, 5A
, 5B, and 5C are first, second, and third n'' type source/drain (S/D) regions, and 6^ and 6B are Sin serving as the first interlayer insulating film.
膜、7A、7Bは厚さ2000〜3000人程度の第2
のn。Membranes 7A and 7B are the second layer with a thickness of about 2,000 to 3,000 people.
n.
型ポリSi (PolyB)層からバターニング形成さ
れた電荷蓄積電極の一部になる第1の導電体層パターン
、8は同じ< PolyB層からバターニング形成され
たビット線接続用電極、9は厚さ2000〜3000人
程度の第3のn9型ポリSt (PolyC)層よりな
り第1の導電体層パターン及びビ・7ト線接続用電極の
端面にサイドウオール状に被着形成された第2の導電体
層、10は少なくとも第1の導電体層パターンと第2の
導電体層の表出面上に形成された例えば厚さ200人程
第0Si3N、膜よりなる誘電体膜、11は第4のn゛
型ポリ5t(PolyD)層よりなる対向電極(セルプ
レート)、12は対向電極の開孔、13は燐珪酸ガラス
(PSG)よりなる第2の眉間絶縁膜、14はアルミニ
ウム等よりなるビット線を示している。A first conductor layer pattern that becomes a part of a charge storage electrode patterned from a polySi (PolyB) layer, 8 is the same bit line connection electrode patterned from a PolyB layer, 9 is a thickness A third N9 type polySt (PolyC) layer of approximately 2,000 to 3,000 layers is formed in the form of a sidewall and is adhered to the first conductor layer pattern and the end face of the VI-7T wire connection electrode. 10 is a dielectric film formed on the exposed surface of at least the first conductor layer pattern and the second conductor layer, and 11 is a dielectric film made of a Si3N film having a thickness of about 200 layers. A counter electrode (cell plate) made of an n-type poly 5T (PolyD) layer, 12 a hole in the counter electrode, 13 a second glabella insulating film made of phosphosilicate glass (PSG), 14 made of aluminum, etc. Shows bit lines.
即ち本発明に係るDRAMセルは例えば同図に示される
ように、RIE処理を用いるフォトリングラフィによっ
てバターニング形成されほぼ垂直な端面を有する第1の
導電体層パターン7A、7B等のPolyB層パターン
の全周端面に、後に説明する方法によって第1の導電体
層パターン7A、7B等にそれぞれオーミックに接続す
るサイドウオール状の第2の導電体層9が被着形成され
、これによって電荷蓄積電極SR−1,5E−2等の外
形寸法が拡大される。この拡大寸法はサイドウオール状
の第2の導電体層9を形成する際のPolyC層の厚さ
によって制御されるが、当実施例においてPolyB層
からパターニング形成された従来の大きさに相当する第
1の導電体層パターン7A、7bの外形寸法を3μm角
即ち9μm2の面積に形成し、サイドウオールを形成す
るPolyC層の厚さを0.2μmとした場合、該電荷
蓄積電極5E−1,5E−2等の拡大面積は 2゜5
6μm2程度になり、蓄積電■の増加率は約 28%程
度となる。That is, the DRAM cell according to the present invention has PolyB layer patterns such as first conductive layer patterns 7A and 7B, which are patterned by photolithography using RIE processing and have substantially vertical end faces, as shown in the figure, for example. A second conductive layer 9 in the form of a sidewall is deposited on the entire circumferential end surface of the electrode by a method to be described later, and is ohmically connected to the first conductive layer patterns 7A, 7B, etc., thereby forming a charge storage electrode. The external dimensions of SR-1, 5E-2, etc. will be expanded. This enlarged size is controlled by the thickness of the PolyC layer when forming the sidewall-shaped second conductor layer 9, but in this example, the enlarged size corresponds to the conventional size formed by patterning from the PolyB layer. When the outer dimensions of the conductor layer patterns 7A and 7b of No. 1 are 3 μm square, that is, an area of 9 μm2, and the thickness of the PolyC layer forming the sidewall is 0.2 μm, the charge storage electrodes 5E-1 and 5E -2nd magnification area is 2゜5
It becomes about 6 μm2, and the increase rate of the accumulated charge is about 28%.
以下に上記実施例に示すDRAMセルを形成する方法を
図を参照して説明する。A method of forming the DRAM cell shown in the above embodiment will be explained below with reference to the drawings.
第2図(al参照
即ちp型Si基板1上に従来同様の方法によりゲート絶
縁膜3を形成し、該ゲート絶縁膜3上に従来同様の方法
により、厚さ4000人、幅(ゲート長)1.5μm程
度のn゛型のpolyA Rよりなり上部に厚さ300
0人程度0第1のSiO□膜6A全6Aるワード線4A
、4B、4C14D等を形成し、次いで該ワード線4A
、4B、4C14D等をマスクにし基板面に砒素(^s
+ )をイオン注入して電荷蓄積電極に接続される第1
1第3のソース/ドレイン(S/D)領域5A、5Cと
ピント線に接続される第2のS/D領域5Bを形成する
。FIG. 2 (see al) In other words, a gate insulating film 3 is formed on a p-type Si substrate 1 by a method similar to the conventional method. It is made of n-type polyA R of about 1.5 μm and has a thickness of 300 mm on the top.
Approximately 0 people 0 First SiO□ film 6A Total 6A word line 4A
, 4B, 4C14D, etc., and then the word line 4A
, 4B, 4C14D, etc. as a mask and apply arsenic (^s
+) is ion-implanted to connect the first electrode to the charge storage electrode.
1. Form a second S/D region 5B connected to the third source/drain (S/D) regions 5A and 5C and the pinto line.
そして従来と同様に該基板上にCVD法により層間絶縁
膜となる例えば厚さ3000人程度0第2のSiO□膜
を形成し、RIE処理を用いる平面エツチング手段によ
り該第2の330g膜を選択的にエツチング除去(iソ
チバンク)し、ワード線4A、4B、4C140等の側
面にサイドウオール状の第2のSiO□膜6B全6B形
成する。Then, as in the conventional method, a second SiO□ film with a thickness of about 3000 g, for example, is formed as an interlayer insulating film on the substrate by the CVD method, and the second 330 g film is selected by plane etching means using RIE processing. Then, a second SiO□ film 6B in the form of a sidewall is formed on the side surfaces of the word lines 4A, 4B, 4C140, etc.
そして更に従来と同様に該基板上にCVD法により厚さ
2000〜3000人程度のPolyB層を形成し、イ
オン注入法等により該Po1yB Jiをn+型にした
後、従来同様のRIE処理を用いるフォトリソグラフィ
によりパターニングして、該n゛現型PoyB層よりな
り上記フォj・リソグラフィにおけるパターンの解像限
界寸法である例えば1.5μm程度の隣接パターンとの
パターン間隔を有して、第1、第3のS/D領域5A、
5Cにそれぞれ接する第1の導電体層パターン7^、
7B及び第2のS/Diil域5Bに接するビット線接
続電極8を形成する。Then, a PolyB layer with a thickness of about 2,000 to 3,000 layers is formed on the substrate by the CVD method as in the conventional method, and the PolyB layer is made into an n+ type by an ion implantation method. By patterning by lithography, the first and second layers are formed of the current PoyB layer and have a pattern interval between adjacent patterns of, for example, about 1.5 μm, which is the resolution limit dimension of the pattern in the photolithography. 3 S/D area 5A,
first conductor layer patterns 7^, each in contact with 5C;
7B and the bit line connection electrode 8 in contact with the second S/Diil region 5B is formed.
第2図(b)参照
次いで本発明の方法においては、上記基板上にCVO法
により厚さ2000〜3000人程度のPolyC層を
形成し、次いでイオン注入法等により該Polyc層を
n゛型にした後、RIE処理により平面エツチング(エ
ンチパック)して該Polyc層を選択的に除去し、第
1の導電体層パターン7A、7B及びビット線接続電極
8パターンの全周端面にPolyC層よりなるサイドウ
オール状の第2の導電体層9を残留形成せしめる。Refer to FIG. 2(b) Next, in the method of the present invention, a PolyC layer with a thickness of about 2,000 to 3,000 layers is formed on the substrate by CVO method, and then the PolyC layer is made into an n-type by ion implantation method or the like. After that, the Polyc layer is selectively removed by planar etching (etch pack) using RIE processing, and side surfaces made of the PolyC layer are formed on the entire peripheral end surfaces of the first conductor layer patterns 7A, 7B and the bit line connection electrode 8 pattern. A wall-shaped second conductor layer 9 is left to form.
なおここで前述したように、パターニング形成された従
来の大きさに相当する第1の導電体層パターン7A、7
Bよりもサイドウオール状の第2の導電体N9の分だけ
0.4μm程度外形寸法の大きい電荷蓄積電極SE〜1
及び5E−2が形成される。Note that, as described above, the first conductor layer patterns 7A, 7 corresponding to the conventional size are formed by patterning.
The charge storage electrode SE~1 has an outer dimension larger by about 0.4 μm than B by the sidewall-like second conductor N9.
and 5E-2 are formed.
第2図(C1参照
次いで従来同様、CVD法により電荷蓄積電極S[!−
1,5E−2の表面を含む上記基板上に例えば厚さ20
0人程PoSi3N、膜よりなる誘電体膜lOを形成し
、次いで該基板上にCVO法により厚さ2000〜30
00人程度のPo1yD 眉を形成し、次いでイオン注
入等により該PolyD層をn゛型にした後、従来と同
様なフォトリングラフィ技術により該PolyD層のパ
ターニングを行って、前記ビット線接続電極8の全面を
余裕を持って表出する開孔12を有し、且つ少なくとも
電荷蓄積電極SB−1及び5E−2の上部を誘電体膜1
0を介して覆う一体のポリSi対向電極(セルプレー)
)11を形成する。FIG. 2 (see C1) Next, as in the conventional case, the charge storage electrode S[!-
For example, a thickness of 20
A dielectric film 10 made of PoSi3N is formed on the substrate to a thickness of 2000 to 300 nm by CVO method.
After forming approximately 00 PolyD eyebrows and making the PolyD layer into an n-type by ion implantation or the like, the PolyD layer is patterned using the same conventional photolithography technique to form the bit line connection electrode 8. The dielectric film 1 has an opening 12 that exposes the entire surface with a margin, and at least the upper part of the charge storage electrodes SB-1 and 5E-2 is covered with the dielectric film 1.
Integral poly-Si counter electrode (cell play) covering through 0
) 11 is formed.
第1図参照
次いで通常の方法により、該基板上にPSG層間絶縁膜
13を形成し、該層間絶縁膜13にコンタクト窓を形成
し、該コンタクト窓部において前記ビット線接続用電極
8に接して該PSG層間絶縁膜13上にワード線に直角
な方向に延在するビット線■4を形成し、以後図示しな
いカバー絶縁膜の形成等がなされ本発明に係るDRAM
セルが完成する。Refer to FIG. 1. Next, a PSG interlayer insulating film 13 is formed on the substrate by a conventional method, a contact window is formed in the interlayer insulating film 13, and the contact window is in contact with the bit line connecting electrode 8. A bit line (4) extending in a direction perpendicular to the word line is formed on the PSG interlayer insulating film 13, and a cover insulating film (not shown) is then formed, thereby completing the DRAM according to the present invention.
The cell is completed.
以上の説明から明らかなように本発明によれば、DRA
Mが具備するスタック構造の情報蓄積キャパシタの電荷
蓄積電極と、同層のポリSi層を用いて形成される導電
性パターンとの間隔を、リソグラフィ工程におけるアナ
ライザーの解像限界から制限される最小パターン間隔よ
り更に近づけることができる。従って同一集積度におい
てその分、前述したように電荷蓄積電極の表面積が増し
、蓄積容量の増加が図れる。なおこの蓄積容量の増加率
は、前記サイドウオール状の第2の導電体層の厚さを変
えることによって成る程度調節することが可能である。As is clear from the above description, according to the present invention, DRA
The distance between the charge storage electrode of the stacked information storage capacitor of M and the conductive pattern formed using the same poly-Si layer is the minimum pattern that is limited by the resolution limit of the analyzer in the lithography process. It is possible to make the distance closer than the interval. Therefore, at the same degree of integration, the surface area of the charge storage electrode increases as described above, and the storage capacity can be increased. Note that the rate of increase in storage capacity can be adjusted to a certain degree by changing the thickness of the sidewall-shaped second conductor layer.
また本発明によれば、製造工程から第1の導電体層パタ
ーンと同層のポリSi層からパターニング形成されるビ
ット線接続電極等の他の電極パターンも第1の導電体層
パターン即ち電荷蓄積電極と同様に拡大されるので、そ
れらの電極への配線接続窓形成時の位置合わせ余裕が増
し、製造工程が容易になると共に製造歩留りも向上する
。Further, according to the present invention, other electrode patterns such as bit line connection electrodes formed by patterning from a poly-Si layer of the same layer as the first conductor layer pattern from the manufacturing process also have the same pattern as the first conductor layer pattern, that is, charge storage. Since they are enlarged in the same way as the electrodes, there is more margin for alignment when forming wiring connection windows to those electrodes, which simplifies the manufacturing process and improves the manufacturing yield.
なお又、本発明において第1、第2の導電体層及びワー
ド線には、実施例に示すポリSi層以外に高融点金属或
いは高融点金属シリサイド等も用いられる。Furthermore, in the present invention, a high melting point metal, a high melting point metal silicide, or the like may be used for the first and second conductor layers and the word line in addition to the poly-Si layer shown in the embodiment.
以上説明のように本発明によれば、DRAMセルを構成
するスタック構造の蓄積キャパシタの電荷蓄積電極の面
積を、フォトリソグラフィ工程におけるアナライザーの
解像限界に制限されずに更にパターン間隔を縮小して、
更に拡大させることができる。As described above, according to the present invention, the area of the charge storage electrode of the stacked storage capacitor constituting the DRAM cell can be further reduced by the pattern spacing without being limited by the resolution limit of the analyzer in the photolithography process. ,
It can be further expanded.
従って本発明によれば高集積化されるDRAMセルの電
荷蓄積容量の増大が図られるので、DRAMセルの読出
し精度及びα線ソフトエラー耐性が向上し、その情報の
信頼度が向上する。Therefore, according to the present invention, since the charge storage capacity of a highly integrated DRAM cell is increased, the read accuracy and α-ray soft error resistance of the DRAM cell are improved, and the reliability of the information is improved.
第1図は本発明の一実施例の平面(al及びA−A断面
(b)を示す模式図、
第2図(a)〜(C1は上記実施例に示すD RA M
セルの製造方法の一例を示す工程断面図、
第3図(al〜(C1は従来の製造方法の工程断面図、
第4図は同従来の製造方法の工程平面図である。
図において、
1はp型Si基板、
2はフィールド絶縁膜、
3はゲート絶縁膜、
4A、 4[1,4C,4Dはワード線、九、5B、5
Cは第11第2、第3のS/D領域、6A、6BはSi
n、膜、
7A、7Bは第1の導電体層パターン、8はビット線接
続電極、
9はサイドウオール状の第2の導電体層、10は5i3
Na誘電体膜、
11は対向電極(セルプレート)、
12はビット線接続電極を完全に表出する対向電極の開
花、
13はPSG層間絶縁膜、
14はビット線
を示す。
(b)A−A吋肋図
ントミ冷明6リー4;ミ′池イ列6勺ノ43デ((5ケ
獣 4 ρFIG. 1 is a schematic diagram showing a plane (al and A-A cross section (b)) of an embodiment of the present invention, and FIGS. 2(a) to (C1 are DRAMs shown in the above embodiment)
A process cross-sectional view showing an example of a cell manufacturing method, FIG.
FIG. 4 is a process plan view of the conventional manufacturing method. In the figure, 1 is a p-type Si substrate, 2 is a field insulating film, 3 is a gate insulating film, 4A, 4 [1, 4C, 4D are word lines, 9, 5B, 5
C is the 11th second and third S/D regions, 6A and 6B are Si
7A, 7B are first conductor layer patterns, 8 is a bit line connection electrode, 9 is a sidewall-shaped second conductor layer, 10 is 5i3
11 is a counter electrode (cell plate); 12 is a flowering of the counter electrode that completely exposes a bit line connection electrode; 13 is a PSG interlayer insulating film; and 14 is a bit line. (b) A-A back rib diagram 6 ri 4;
Claims (1)
線上に延在しほぼ垂直な端面を有する第1の導電体層パ
ターンと、該第1の導電体層パターンの端面に選択的に
被着され該第1の導電体層パターンとオーミックに接続
するサイドウォール状の第2の導電体層とよりなる電荷
蓄積電極と、該電荷蓄積電極の全表面上に形成された誘
電体膜と、 該電荷蓄積電極上を該誘電体膜を介して覆う対向電極と
を有してなるスタック構造の蓄積キャパシタを具備した
ことを特徴とするダイナミックランダムアクセスメモリ
。[Scope of Claims] A first conductor layer pattern extending from an impurity diffusion region formed in a semiconductor substrate onto a word line and having a substantially vertical end surface; a charge storage electrode consisting of a sidewall-shaped second conductor layer that is deposited on the substrate and ohmically connected to the first conductor layer pattern; and a dielectric formed on the entire surface of the charge storage electrode. 1. A dynamic random access memory comprising a storage capacitor having a stacked structure, the storage capacitor having a stacked structure having a film and a counter electrode covering the charge storage electrode with the dielectric film interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154011A JPS63318152A (en) | 1987-06-19 | 1987-06-19 | Dynamic random access memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154011A JPS63318152A (en) | 1987-06-19 | 1987-06-19 | Dynamic random access memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63318152A true JPS63318152A (en) | 1988-12-27 |
Family
ID=15574955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62154011A Pending JPS63318152A (en) | 1987-06-19 | 1987-06-19 | Dynamic random access memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63318152A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04196481A (en) * | 1990-11-28 | 1992-07-16 | Nec Corp | Semiconductor storage device |
US5591998A (en) * | 1988-01-08 | 1997-01-07 | Hitachi, Ltd. | Semiconductor memory device |
US6878586B2 (en) | 1988-01-08 | 2005-04-12 | Renesas Technology Corp. | Semiconductor memory device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61183952A (en) * | 1985-02-09 | 1986-08-16 | Fujitsu Ltd | Semiconductor memory device and manufacture thereof |
JPS6248062A (en) * | 1985-08-28 | 1987-03-02 | Sony Corp | Memory cell |
-
1987
- 1987-06-19 JP JP62154011A patent/JPS63318152A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61183952A (en) * | 1985-02-09 | 1986-08-16 | Fujitsu Ltd | Semiconductor memory device and manufacture thereof |
JPS6248062A (en) * | 1985-08-28 | 1987-03-02 | Sony Corp | Memory cell |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591998A (en) * | 1988-01-08 | 1997-01-07 | Hitachi, Ltd. | Semiconductor memory device |
US6878586B2 (en) | 1988-01-08 | 2005-04-12 | Renesas Technology Corp. | Semiconductor memory device |
JPH04196481A (en) * | 1990-11-28 | 1992-07-16 | Nec Corp | Semiconductor storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3320794B2 (en) | Method for forming a corrugated element contact capacitor | |
JP2875588B2 (en) | Method for manufacturing semiconductor device | |
JPH0294471A (en) | Semiconductor storage device and manufacture thereof | |
JP3615788B2 (en) | Capacitor manufacturing method for semiconductor memory device | |
JPH01125858A (en) | Semiconductor device and manufacture thereof | |
JPH02312269A (en) | Semiconductor memory device and manufacture thereof | |
JP2785766B2 (en) | Method for manufacturing semiconductor device | |
JPH01243573A (en) | Semiconductor memory device and its manufacture | |
US20040266101A1 (en) | Storage node contact forming method and structure for use in semiconductor memory | |
US20060199332A1 (en) | Method of forming storage node of capacitor in semiconductor memory, and structure therefor | |
JP2930110B2 (en) | Semiconductor memory device and method of manufacturing the same | |
KR970000718B1 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH0496272A (en) | High integrated semiconductor memory device and manufacture thereof | |
JP3594213B2 (en) | Method of forming connection portion and semiconductor chip | |
US6597033B1 (en) | Semiconductor memory device and manufacturing method thereof | |
JPS63318152A (en) | Dynamic random access memory | |
JPH05343636A (en) | Manufacture of semiconductor storage device | |
JP3305932B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2503661B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH05291528A (en) | Semiconductor memory device and manufacture thereof | |
KR100242470B1 (en) | Semiconductor memory device and its fabricating method | |
JP3203776B2 (en) | Method for manufacturing semiconductor device | |
JP3204215B2 (en) | Semiconductor device and method of manufacturing the same | |
JP3285093B2 (en) | Semiconductor memory and manufacturing method thereof | |
JP3355613B2 (en) | Semiconductor memory device and method of manufacturing the same |