JPS63315724A - Execution work of cast-in-place concrete pile with high yield strength - Google Patents

Execution work of cast-in-place concrete pile with high yield strength

Info

Publication number
JPS63315724A
JPS63315724A JP14982387A JP14982387A JPS63315724A JP S63315724 A JPS63315724 A JP S63315724A JP 14982387 A JP14982387 A JP 14982387A JP 14982387 A JP14982387 A JP 14982387A JP S63315724 A JPS63315724 A JP S63315724A
Authority
JP
Japan
Prior art keywords
ground
pile
cast
place concrete
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14982387A
Other languages
Japanese (ja)
Other versions
JPH0458848B2 (en
Inventor
Yuko Ikuta
幾田 悠康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP14982387A priority Critical patent/JPS63315724A/en
Publication of JPS63315724A publication Critical patent/JPS63315724A/en
Publication of JPH0458848B2 publication Critical patent/JPH0458848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To obtain the high holding force by executing the works to make the required ground into the improved ground until a specific depth and placing concrete after excavating a pile hole within range of the improved ground. CONSTITUTION:The ground 1 is stirred until a specific depth, but, at the same time, the cement slurry is impregnated into the stirred ground and is stirred to form the improved ground 4. Then, after excavating a pile hole 2 within range of the improved ground, concrete 5 is placed into the pile hole 2 to form a concrete pile having about 1/2 diameter of that of the improved ground.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、現場で築造される場所打ちコンクリート杭
の施工法に係り、さらにいえば、杭が築造される地盤を
予め改良施工して掘削に伴う緩みの弊害を解消し大きな
杭支持力を生じさせるように工夫した、高耐力場所打ち
コンクリート杭の施工法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a construction method for cast-in-place concrete piles that are constructed on-site, and more particularly, the ground on which the piles are to be constructed is improved in advance to accommodate excavation. This article relates to a construction method for high-strength cast-in-place concrete piles that has been devised to eliminate the adverse effects of loosening and generate large pile bearing capacity.

従来の技術 (1)  場所打ちコンクリート杭の施工法に関しては
、これまでスライムの除去法やコンクリート打設技術、
掘削泥水の管理などに数多くの改善、工夫がなされ、大
きく進歩して信頼性の高いものになってきている。
Conventional technology (1) Regarding the construction method of cast-in-place concrete piles, so far there have been no slime removal methods, concrete placement techniques,
Numerous improvements and innovations have been made to the management of drilling mud, making great progress and making it highly reliable.

しかし、削孔に伴なう地盤の緩みに伴なう杭支持力の低
下防止の技術に関しては、依然として泥水によりボイリ
ングを防止する程度のことに止まっている。ちなみに第
4図のように地1111に杭孔2を掘削した場合、その
周辺は点線で指示した領域の地盤が緩むのである。図中
3は泥水である。
However, the technology for preventing the decline in pile bearing capacity due to the loosening of the ground due to drilling is still limited to preventing boiling caused by muddy water. By the way, when a pile hole 2 is excavated in the ground 1111 as shown in Fig. 4, the ground around it in the area indicated by the dotted line becomes loose. 3 in the figure is muddy water.

(2) 上述した地盤の緩みに対する改善策として、特
公昭55−50132号、特公昭58−4885号、特
公昭60−58335号公報にそれぞれ記載された杭先
端処理法は、削孔した杭孔中へ、先端にシューブロック
を付設した既製管状体を挿入し、まず前記シューブロッ
クを押し込んで掘削孔底の先端j1!itを締固め、し
かる後にシューブロックの上に凝固材料を打設して杭支
持力を増強させるようにした点が注目される。
(2) As an improvement measure for the above-mentioned loosening of the ground, the pile tip treatment method described in Japanese Patent Publication No. 55-50132, Japanese Patent Publication No. 58-4885, and Japanese Patent Publication No. 60-58335 is to A ready-made tubular body with a shoe block attached to the tip is inserted into it, and the shoe block is first pushed into the tip j1 of the bottom of the excavation hole! It is noteworthy that the pile was compacted and solidified material was then placed on top of the shoe block to increase the pile supporting capacity.

本発明が解決しようとする問題点 (I)  場所打ちコンクリート杭の支持力性能に関し
ては、削孔に伴なって緩んだ地盤の性状が評価され、も
ともとその地盤が有していた強度を損ねた状態で低く見
積られている。
Problem to be solved by the present invention (I) Regarding the bearing capacity performance of cast-in-place concrete piles, the properties of the ground that has loosened due to drilling are evaluated, and the strength that the ground originally had was lost. Underestimated due to condition.

例えば東京礫層の場合は、現行の規範にしたがえば、見
掛けの極限支持力は750ton/m2 と評価されて
いるが、この地盤の真の極限支持力は4000ton 
7m2 を下らないものと推定されている。というのも
載荷試験によっては未だ極限値が正確には認識されてい
ない状況にあるためである。
For example, in the case of the Tokyo gravel layer, according to current standards, the apparent ultimate bearing capacity is estimated to be 750 tons/m2, but the true ultimate bearing capacity of this ground is 4000 tons.
It is estimated that the area will not be less than 7m2. This is because, depending on the loading test, the ultimate value is still not accurately recognized.

(IT)  ところで、従来の場所打ちコンクリート杭
では、杭周面摩擦力の剛性に比して杭先端地盤の剛性は
小さいものであった。このため周面摩擦力に期待するか
、杭先端支持力に期待するか、あるいは両者をどのよう
に評価すべきか、明解にされていないのが実情である。
(IT) By the way, in conventional cast-in-place concrete piles, the rigidity of the ground at the tip of the pile is smaller than the rigidity of the friction force on the circumferential surface of the pile. For this reason, the reality is that it is not clear whether to expect the peripheral surface friction force, the pile tip support force, or how to evaluate both.

(III)  次に、現行の場所打ちコンクリート杭の
設計支持力と実際の支持力とに落差を生ずる主な原因、
理由としては、およそ次の事項が挙げられている。
(III) Next, the main causes of the head difference between the design bearing capacity and the actual bearing capacity of current cast-in-place concrete piles,
The reasons include the following:

(1)スライムの影響。(1) Effects of slime.

(2)掘削に伴なう土被り重量の除荷による地盤の緩み
(2) Loosening of the ground due to the unloading of the overburden weight associated with excavation.

(3)杭の周面摩擦と、杭先端地盤の支持力それぞれに
おける剛性の相違。
(3) Differences in rigidity in the circumferential friction of the pile and the bearing capacity of the ground at the tip of the pile.

総じて言えば、従来の場所打ちコンクリート杭は、自然
に用意されている地盤条件をわざわざ劣悪な状態にして
利用していることになり、理にかなったものになってい
ない。
Generally speaking, conventional cast-in-place concrete piles make use of the naturally available ground conditions in poor conditions, which makes them unreasonable.

(IV)  この点、上述した特公昭55−50132
号公報等に記載された杭先端処理法は、掘削により一旦
緩んだ杭先端地盤をシューブロックの押し込みにより再
び締固めるので、理にかなっており、杭支持力を増強す
ることに効果を奏するものといえる。
(IV) In this regard, the above-mentioned Special Publication No. 55-50132
The pile tip treatment method described in the publication is logical and effective in increasing the pile bearing capacity because the pile tip ground, which has been loosened by excavation, is compacted again by pushing in shoe blocks. It can be said.

しかし、場所打ちコンクリート杭の直径は小さいもので
もφ1000位はある。大きいものになるとφ3000
位のものも少なくない。しかるに、前記杭先端処理法が
不可決の要件とする既製の管状体をそんなに大きな直径
のものを製作することは至難であるし、仮にそれを製作
出来たとしてもそれほど大きな直径のシューブロックを
地盤の締固め効果が得られるように十分に押し込む手段
は未だ見当らないから、実施の可能性に問題点がある。
However, even small cast-in-place concrete piles have a diameter of about 1000 mm. φ3000 for large ones
There are quite a few of them. However, it would be extremely difficult to manufacture a ready-made tubular body with such a large diameter, which is an unmet requirement of the pile tip treatment method, and even if it were possible to manufacture it, it would be impossible to use a shoe block with such a large diameter in the ground. There is a problem with the possibility of implementation, as there is still no means to push the material sufficiently to obtain the compaction effect.

問題点を解決するための手段 上記従来技術の問題点を解決するための手段として、こ
の発明に係る高耐力場所打ちコンクリート杭の施工法は
、図面の第1図〜第3図に好適な実施例を示したとおり
、 対象地盤1を例えば土中にセメント系材料によるセメン
トスラリーを注入し土と混練して固める深層混合処理工
法により所定深さまで改良地盤4に施工し、該改良地盤
4の範囲内に所定深さの杭孔2(又は連続地中壁用の溝
)を掘削し、コンクリート5を打設する工程から成るも
のとした。
Means for Solving the Problems As a means for solving the problems of the above-mentioned prior art, the method for constructing high strength cast-in-place concrete piles according to the present invention is implemented as shown in FIGS. 1 to 3 of the drawings. As shown in the example, the target ground 1 is constructed into improved ground 4 to a predetermined depth using a deep mixing method in which cement slurry made of cement-based material is injected into the soil, mixed with the soil, and solidified, and the area of the improved ground 4 is The process consisted of excavating a pile hole 2 (or a trench for a continuous underground wall) of a predetermined depth inside the pile and pouring concrete 5.

作     用 施工された改良地盤4は、止水性が良い−にに強度、剛
性は地盤本来のものよりも高められる。例えば粘性土に
おける一軸圧縮強度q、は30〜40 kgf / c
m2  ぐらい、砂、砂礫では300 kgf/cI1
2以上にはなる。
The improved ground 4 that has been constructed has good water-stopping properties, and its strength and rigidity are higher than those of the original ground. For example, the unconfined compressive strength q in clayey soil is 30-40 kgf/c
m2, sand, gravel 300 kgf/cI1
It will be more than 2.

これを後の杭孔掘削に際して支障のない強度に適宜調整
することは容易であり、勿論、原に盤より良化すること
により掘削による緩みの問題は未然に防止することがで
きる。
It is easy to adjust the strength appropriately so that it does not interfere with later excavation of the pile hole, and of course, by improving the strength from the original plate, the problem of loosening due to excavation can be prevented.

したがって、改良地盤4の範囲内に掘削した杭孔2にコ
ンクリート5を打設して築造された場所打ちコンクリー
ト杭は、周面摩擦力の剛性及び先端地盤の剛性がそれぞ
れ大きいので、許容杭支持力は現行の250ton/m
2の2倍以上を軽く達成することができるのである。
Therefore, a cast-in-place concrete pile constructed by pouring concrete 5 into a pile hole 2 excavated within the improved ground 4 has a large rigidity of circumferential friction force and a large rigidity of the tip ground, so the permissible pile support is Power is current 250ton/m
It is possible to easily achieve more than twice that of 2.

しかも杭孔2は改良地盤域内の掘削であるため、従来は
水中掘削、水中コンクリートであったのに比して、ドラ
イ掘削が可能であるから、コンクリート打設も容易で且
つ許容応力度を従来の1 / 4 F cから1 / 
3 F cと有利にすることが可能である。
Moreover, since pile hole 2 is excavated within the improved ground area, dry excavation is possible compared to conventional methods of underwater excavation and underwater concrete, making concrete placement easier and allowing for lower stress levels than before. 1/4 of F c to 1/4
3 F c can be advantageously achieved.

実  施  例 次に、図面に示した実施例を説明する。Example Next, the embodiment shown in the drawings will be explained.

まず第1図は、場所打ちコンクリート杭を築造するべき
対象地@lについて、所定深さまで改良地盤4に施工し
た段階を示している。
First, Fig. 1 shows a stage in which cast-in-place concrete piles have been constructed on the improved ground 4 to a predetermined depth for the target site @l where cast-in-place concrete piles are to be constructed.

改良地盤4の施工は、地上に設置した混練機6で回転駆
動される軸7の先端部に攪拌児8を設け、これにより地
i1を所定深さまで攪拌すると共にセメント系材料によ
るセメント系スラリーを攪拌土中に注入し士と良く混練
して固める所謂深層混合処理工法(但し、この工法の限
りではない)により、所謂ソイル柱列が少しずつラップ
して1個の塊状固体となるように形成される。
In the construction of the improved soil 4, a stirring element 8 is installed at the tip of a shaft 7 that is rotatably driven by a kneader 6 installed on the ground, and this stirs the soil i1 to a predetermined depth and forms a cement-based slurry made of cement-based material. By using the so-called deep mixing method (however, this is not limited to this method), in which soil is poured into stirred soil and thoroughly kneaded and hardened, so-called soil columns are gradually wrapped to form a single lumpy solid. be done.

改良地盤4は、第2図のように掘削される杭孔2の直径
D(つまり場所打ちコンクリート杭の外径)の2倍ぐら
いの直径I)+1に形成される。また、改良地@4の深
さくH+h)は、第2図のように杭孔2の深さHに、同
杭孔2の直径りの1.0〜1.5倍程度の余長りを加え
た深さに形成される。掘削に伴なう地gilの緩みの弊
害をできるだけ防ぐためである。
The improved ground 4 is formed to have a diameter I)+1 that is approximately twice the diameter D of the pile hole 2 to be excavated (that is, the outer diameter of the cast-in-place concrete pile) as shown in FIG. In addition, the depth (H + h) of the improved land @ 4 is determined by adding an extra length of about 1.0 to 1.5 times the diameter of the pile hole 2 to the depth H of the pile hole 2, as shown in Figure 2. formed to the added depth. This is to prevent as much as possible the adverse effects of loosening of the ground gills due to excavation.

なお、支持杭としての性質上当然のことながら、改良地
盤4の下端部(支持層部分)については、注入するセメ
ント系スラリーの濃度を濃くする等々の方法で例えば3
0〜50 kg/c+s2の大きい強度を発現するもの
となし、それより上方の杭周面摩擦部分についての強度
は例えば4〜5 kg7cm2程度に低い状態に改良施
工し、もって杭先端の支持力が大で、しかも後の杭孔掘
削を容易になさしめるものとされる。
In addition, as a matter of course due to its nature as a support pile, the lower end (supporting layer part) of the improved ground 4 is treated with a method such as increasing the concentration of the cement slurry to be injected, for example.
It is assumed that the pile exhibits a high strength of 0 to 50 kg/c+s2, and the strength of the friction portion of the pile circumference above this is improved to be as low as, for example, 4 to 5 kg/7 cm2, thereby increasing the bearing capacity of the pile tip. It is said to be large and to facilitate later pile hole excavation.

第2図は、上述のように施工した改良地盤4が固まって
強度を発現した後に、同改良地盤4の範囲内(中心部)
に従前の場所打ちコンクリート杭の施工法と同様に杭孔
2を掘削した段階を示す。
Figure 2 shows the area (center area) of the improved ground 4 constructed as described above after it hardens and develops strength.
Figure 2 shows the stage in which pile hole 2 was excavated in the same manner as in the previous construction method for cast-in-place concrete piles.

杭孔2の掘削は、改良地盤4が止水性のものであるため
、ドライ掘削を行なうことができる。
The pile hole 2 can be excavated by dry excavation because the improved ground 4 is watertight.

第3図は、上述のようにして掘削された杭孔2内にコン
クリート5を打設して場所打ちコンクリ−1杭の築造を
完成した段階を示している。なお、前述のようにドライ
掘削を行なった場合には水中コンクリートを使用する必
要はないからコンクリート打設が容易である。鉄筋渣な
どの図示は省略した。
FIG. 3 shows the stage at which concrete 5 is poured into the pile hole 2 excavated as described above to complete construction of the cast-in-place concrete 1 pile. Note that when dry excavation is performed as described above, concrete placement is easy because there is no need to use underwater concrete. Illustrations of reinforcing bar scraps, etc. are omitted.

この場所打ちコンクリート杭の場合、改良地盤4の領域
内に築造されるので、杭孔2の掘削に伴なう地盤の緩み
の問題が全くない。のみならず、改良地盤4の剛性、強
度は地盤本来のものよりも数等大さく改良されているの
で、築造された場所打ちコンクリート杭の許容支持力は
従来のものよりも2倍以上の大きな支持力を期待できる
のである。
In the case of this cast-in-place concrete pile, since it is constructed within the area of the improved ground 4, there is no problem of loosening of the ground due to excavation of the pile hole 2. In addition, the rigidity and strength of the improved ground 4 have been improved by several orders of magnitude compared to the original ground, so the allowable bearing capacity of the constructed cast-in-place concrete piles is more than twice that of conventional ones. It can be expected to provide support.

異なる実施例 (その1) 上記実施例は杭直径が均等な直状に関する
ものであるが、杭先端部の直径を拡大した拡底杭につい
てもも全く同様に実施される。
Different Embodiments (Part 1) The above embodiments relate to straight piles with uniform diameters, but the same applies to expanded-bottomed piles in which the diameter of the tip of the pile is enlarged.

(その2) 場所打ちコンクリート杭のみならず、連続
地中壁の施工にも応用実施できる。即ち、連続地中壁の
施工地盤にまず改良地盤4を施工し、それが強度を発現
した後に改良地盤域内に地中壁用溝を掘削する手順で実
施可能である。
(Part 2) It can be applied not only to cast-in-place concrete piles, but also to the construction of continuous underground walls. That is, it can be carried out by first constructing the improved soil 4 on the ground where the continuous underground wall is to be constructed, and after the improved soil develops strength, excavating a trench for the underground wall within the improved soil area.

本発明が奏する効果 以上に実施例と併せて詳述したとおりであって、この発
明に係る高耐力場所打ちコンクリート杭の施工法は、従
前の施工手順に、前処理として改良地盤4の施工を付加
しただけであるから、従前同様の成熟した技術レベルで
容易に実施可能である。
As described in detail in conjunction with the examples above and beyond the effects of the present invention, the method for constructing high-strength cast-in-place concrete piles according to the present invention includes the construction of improved soil 4 as a pretreatment in addition to the conventional construction procedure. Since it is just an addition, it can be easily implemented using the same mature technology level as before.

そして、掘削に伴なう地盤の緩みの問題は一切起こらず
、改良地盤4の強度、剛性は地盤本来のものよりも数等
大きく改良されているので、杭先端部分及び杭周面摩擦
部分の増大化された強度、剛性の故に、両者の総合効果
として現行の2倍以上の許容杭支持力を期待できる高耐
力場所打ちコンクリート杭を提供できるのである。
Furthermore, there is no problem of loosening of the ground due to excavation, and the strength and rigidity of the improved ground 4 has been greatly improved compared to the original ground, so the pile tip and the friction area on the pile circumferential surface are Because of the increased strength and rigidity, the combined effect of both makes it possible to provide high-strength cast-in-place concrete piles that can be expected to have an allowable pile bearing capacity that is more than twice that of the current pile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明に係る高耐力場所打ちコンク
リート杭施工法の枢要な工程を示した断面図、第4図は
従来の施工法で杭孔を掘削した段階の断面図である。 第3111A 第4図
Figures 1 to 3 are cross-sectional views showing the important steps of the high-strength cast-in-place concrete pile construction method according to the present invention, and Figure 4 is a cross-sectional view at the stage where a pile hole is excavated using the conventional construction method. . 3111A Figure 4

Claims (1)

【特許請求の範囲】 【1】対象地盤(1)を所定深さまで改良地盤(4)に
施工し、該改良地盤(4)の範囲内に所定深さの杭孔(
2)を掘削し、コンクリート(5)を打設することを特
徴とする高耐力場所打ちコンクリート杭の施工法。 【2】特許請求の範囲第1項に記載した改良地盤(4)
は、土中にセメント系材料によるセメントスラリーを注
入し土と混練して固める深層混合処理工法で改良施工し
て1個の塊状固体たる改良地盤に形成すると共に支持層
部分の強度を大に形成することを特徴とする、高耐力場
所打ちコンクリート杭の施工法。
[Scope of Claims] [1] The target ground (1) is constructed on improved ground (4) to a predetermined depth, and pile holes (
A method for constructing high-strength cast-in-place concrete piles, characterized by excavating 2) and pouring concrete (5). [2] Improved ground (4) described in claim 1
The improved construction method uses a deep mixing method in which cement slurry made from cement-based materials is injected into the soil and mixed with the soil to harden it, forming an improved ground in the form of a lumpy solid, and increasing the strength of the support layer. A construction method for high-strength cast-in-place concrete piles that is characterized by:
JP14982387A 1987-06-16 1987-06-16 Execution work of cast-in-place concrete pile with high yield strength Granted JPS63315724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14982387A JPS63315724A (en) 1987-06-16 1987-06-16 Execution work of cast-in-place concrete pile with high yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14982387A JPS63315724A (en) 1987-06-16 1987-06-16 Execution work of cast-in-place concrete pile with high yield strength

Publications (2)

Publication Number Publication Date
JPS63315724A true JPS63315724A (en) 1988-12-23
JPH0458848B2 JPH0458848B2 (en) 1992-09-18

Family

ID=15483473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14982387A Granted JPS63315724A (en) 1987-06-16 1987-06-16 Execution work of cast-in-place concrete pile with high yield strength

Country Status (1)

Country Link
JP (1) JPS63315724A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106543A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Construction method for cast-in-place pile
JP2010106542A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Construction method for cast-in-place pile, and cast-in-place pile
JP2010106546A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Method of constructing foundation in structure, and foundation structure
CN105002889A (en) * 2015-07-02 2015-10-28 盘锦红海实业集团有限公司 Preloading harsh concrete pile construction method and control system
JP2019183497A (en) * 2018-04-09 2019-10-24 清水建設株式会社 Cast-in-place concrete pile construction method and cast-in-place concrete pile
JP2019183494A (en) * 2018-04-09 2019-10-24 清水建設株式会社 Cast-in-place concrete pile construction method and cast-in-place concrete pile
JP2022051915A (en) * 2018-04-09 2022-04-01 清水建設株式会社 Construction method of cast-in-place concrete pile and cast-in-place concrete pile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195925A (en) * 1983-04-20 1984-11-07 Toshio Enoki Construction of on-site concrete pile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195925A (en) * 1983-04-20 1984-11-07 Toshio Enoki Construction of on-site concrete pile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106543A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Construction method for cast-in-place pile
JP2010106542A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Construction method for cast-in-place pile, and cast-in-place pile
JP2010106546A (en) * 2008-10-30 2010-05-13 Railway Technical Res Inst Method of constructing foundation in structure, and foundation structure
CN105002889A (en) * 2015-07-02 2015-10-28 盘锦红海实业集团有限公司 Preloading harsh concrete pile construction method and control system
JP2019183497A (en) * 2018-04-09 2019-10-24 清水建設株式会社 Cast-in-place concrete pile construction method and cast-in-place concrete pile
JP2019183494A (en) * 2018-04-09 2019-10-24 清水建設株式会社 Cast-in-place concrete pile construction method and cast-in-place concrete pile
JP2022051915A (en) * 2018-04-09 2022-04-01 清水建設株式会社 Construction method of cast-in-place concrete pile and cast-in-place concrete pile

Also Published As

Publication number Publication date
JPH0458848B2 (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US3815368A (en) Method for installing concrete anchor piles in situ
JP2014224456A (en) Shaft construction method and shaft structure on sloped ground
JPS63315724A (en) Execution work of cast-in-place concrete pile with high yield strength
JPS59192129A (en) Sheathing work
JP4555974B2 (en) Construction method of foundation pile to improve ground around pile head
KR20190043709A (en) Construction Method Soft Surface Treatment And Strength of Reinforced Soil Using Waste Aggregates
JPH06228947A (en) Construction of landslide protection wall in ground filled up with wastes
JP2001355233A (en) Forming method for cast-in-place pile by mixing and stirring
JP4092411B2 (en) Soil disposal method, foundation pile construction method to treat the soil
JPH086318B2 (en) How to bury wooden piles
JP4200237B2 (en) Construction method of foundation pile
CN108035359A (en) A kind of slope excavating method
JPS63197718A (en) Construction work of in-situ pile
JP2004124452A (en) Foundation pile structure in bearing ground and working method of foundation pile
JPH11269874A (en) Pile construction method for foundation pile
JP2006348637A (en) Construction method of cast-in-place pile and cast-in-place pile structure
JPH0629509B2 (en) Construction method of field construction pile
JPH0627405B2 (en) Ready-made pile burying method
JPH11247175A (en) Soil improvement method
JPH0325121A (en) Sinking of pile in inner drilling pile method
JPS63312419A (en) Construction of in-situ concrete pile of high bearing force
JPS63197716A (en) Construction work of in-situ pile
JPH0931972A (en) Construction of underground continuous wall
JPH0612012B2 (en) Tsukishima construction method
JPH07100822A (en) Manufacture of hydraulic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees