JP4555974B2 - Construction method of foundation pile to improve ground around pile head - Google Patents

Construction method of foundation pile to improve ground around pile head Download PDF

Info

Publication number
JP4555974B2
JP4555974B2 JP2000293705A JP2000293705A JP4555974B2 JP 4555974 B2 JP4555974 B2 JP 4555974B2 JP 2000293705 A JP2000293705 A JP 2000293705A JP 2000293705 A JP2000293705 A JP 2000293705A JP 4555974 B2 JP4555974 B2 JP 4555974B2
Authority
JP
Japan
Prior art keywords
pile
pile hole
head
foundation
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000293705A
Other languages
Japanese (ja)
Other versions
JP2002097636A (en
Inventor
好伸 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2000293705A priority Critical patent/JP4555974B2/en
Publication of JP2002097636A publication Critical patent/JP2002097636A/en
Application granted granted Critical
Publication of JP4555974B2 publication Critical patent/JP4555974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、基礎杭の杭頭部を拡大掘削して拡頭部を形成して周辺地盤を改良して、耐水平力の強化を図った基礎杭の構築方法に関する。
【0002】
【従来の技術】
一般に、基礎杭を構築した場合、基礎杭に対する地上構造物の負荷(垂直荷重)は基礎杭が鉛直の姿勢で構築されていれば、全長さに亘り、各断面における圧縮応力は略一様な分布となる。これは、いわゆる場所打ち杭による基礎杭の場合や、各種既製杭(コンクリート杭(PHC杭、PRC杭、節杭等)や鋼管杭等)を直接又は杭孔の穿孔と共に構築して基礎杭を形成した場合であっても同様である。
【0003】
また、地震等によって作用する水平力は、基礎杭の長さ方向によって異なる応力分布となる。すなわち、基礎杭の長さ方向にみた水平力により生じる応力の分布は、上端側をピークに下端側に向けて減衰していくことが一般に知られている。
【0004】
また、各種基礎杭工法において、掘削効率を高めるため、掘削補助手段として水等を使用しながら地盤を掘削していた。
【0005】
【発明が解決しようとする課題】
この場合、従来のコンクリート杭は、鉄筋を配筋していてもコンクリート主体の構造物であることから、圧縮強度(鉛直荷重)には比較的大きな強度を持つものの、鋼管杭に比べて弾性に乏しく、鋼管に比べて耐水平力においてはかなり強度が低下することになっていた。一方、鋼管杭はコンクリート杭に比較して、高価なものであり、経済性が悪い問題点があった。
【0006】
これらを解決するために、拡頭部を有するコンクリート杭や上部に連結する杭を下杭よりも大径に連結して基礎杭構造を構築する方法が知られているが、施工上、連結できる上杭の外径が限られてしまうことから、負担できる水平力の大幅な向上は望めない。
【0007】
また、前記のような掘削補助手段として水等を使用した基礎杭工法において、掘削中あるいは杭埋設中に、地上に大量の泥水が溢れ出し、残土・泥水を産業廃棄物として、構築現場外へ排出しなければならなかった。よって、この残土処理の費用が施工コストに影響を与えると共に、環境上好ましくない事態が生じていた。
【0008】
また、杭穴拡底部を有する杭穴内に、突起付きの既製杭(例えば、いわゆる節杭)を埋設した場合、下端部の突起の少なくとも1つを拡底部内に形成したソイルセメント層に定着させて、基礎杭を形成することもできる(図4(b)の下部参照)。この基礎杭によれば、従来の基礎杭に対して、2倍以上の鉛直支持力を保有できるが、同じ既製杭の杭径であれば相対的に曲げモーメント即ち水平支持力が不足していた。
【0009】
つまり、通常高い水平支持力を必要とする部分は、杭頭より10m程度までの部分であるが、前記基礎杭の杭穴拡底部に埋設される突起付きの既製杭の軸部径はその根固め部での所望支持力を発揮するためには、従来に比して小径の既製杭で充分であるので、その突起付き既製杭の上部に配置される既製杭も突起付きの既製杭の軸径に対応した外径の円筒杭が使用されていた。従って、発揮される高先端支持力に比較して、相対的に曲げモーメントが不足することになっていた。
【0010】
上端部での曲げモーメント強化のために、上部の既製杭に高曲げモーメントを有する杭材(例えば、いわゆるSC杭や鋼管杭等)を採用したり、あるいは杭頭部に配置される部分の軸径を大きくする等の工夫が必要であった。この場合、高曲げモーメントを有する杭材は高価であり、また異なる軸径の杭を連結する際には特殊連結具が必要であり、また連結部分で強度低下を招くおそれがあった。更に、一般に既製杭の外径は最大で1m程度のものしか製造されていないので、下端部に配置される既製杭の軸径が大径化すると要求に見合った上端部用の既製杭を調達することは困難となっていた。
【0011】
【課題を解決するための手段】
然るにこの発明では、杭穴掘削で生じる掘削泥水に水硬性材料を混練して形成した改良土を杭穴拡頭部に埋め戻して地盤改良体を形成するので前記問題点を解決した。
【0012】
即ち、この発明は、掘削予定の杭穴周辺にビットを形成し、所定の杭穴を掘削して、発生する掘削泥水を地上の前記ビットで回収し、前記ビットから汲み上げた前記掘削泥水に水硬化性材料を混練して改良土を形成し、前記杭穴内に基礎構造体を挿入すると共に、該基礎構造体毎に前記杭穴の杭頭周辺部を拡大掘削して所定深度の杭穴拡頭部を形成し、該杭穴拡頭部内に前記改良土を埋め戻して、前記杭穴拡頭部内に改良地盤体を形成する基礎杭の構築方法であって、前記基礎杭は根固め部を有する先端支持杭であり、かつ前記改良土の形成は「杭穴掘削の際に地上に溢れ出る掘削泥水を回収したビットから汲み上げた掘削泥水を振動振るい機等により泥塊を除去し、前記掘削泥水を貯留槽に貯めて、前記掘削泥水を前記貯留槽から撹拌槽に移して撹拌して、その後水硬化性材料を混練して」おこなうことを特徴とした基礎杭の構築方法である。
【0013】
また、他の発明は、掘削予定の杭穴周辺にビットを形成し、杭穴拡頭部を有する所定深度の杭穴を掘削して、発生する掘削泥水を地上の前記ビットで回収し、前記ビットから汲み上げた前記掘削泥水に水硬化性材料を混練して改良土を形成し、前記杭穴内に基礎構造体を挿入し、該基礎構造体毎に前記杭穴拡頭部に、前記改良土を埋め戻して、前記杭穴拡頭部に改良地盤体を形成する基礎杭の構築方法であって、前記基礎杭は根固め部を有する先端支持杭であり、かつ前記改良土の形成は「杭穴掘削の際に地上に溢れ出る掘削泥水を回収したビットから汲み上げた掘削泥水を振動振るい機等により泥塊を除去し、前記掘削泥水を貯留槽に貯めて、前記掘削泥水を前記貯留槽から撹拌槽に移して撹拌して、その後水硬化性材料を混練して」おこなうことを特徴とした基礎杭の構築方法である。
【0017】
前記において、この発明は、杭穴内にセメントミルク等の杭穴充填物を満たして、基礎杭を構築する工法であれば、いわゆる各種場所打ち杭、既製杭を使用する工法のいずれも適用できる。従って、前記における基礎構造体とは、場所打ち杭工法の場合には鉄筋かごを指し、既製杭を埋設する工法では、鉄筋コンクリート系、鋼管系あるいはこれらを複合した各種の既製杭を指す。また、既製杭は、単杭又は複数杭を上下に連結した連結杭を使用することもできる。
【0018】
また、前記における杭穴充填物とは、既製杭を使用する工法であれば、いわゆる杭周固定液や根固め液等であり、杭穴内にセメントミルク等の水硬性材料を充填して、掘削泥土と撹拌混合してソイルセメント層としたもの、あるいは杭穴内にセメントミルク等の水硬性材料を充填して、掘削泥土と置換してセメントミルク層としたもの、更にこれらを組み合わせ、例えば根固め部をセメントミルク層、上方をソイルセメント層としたもの、などを含む。更に、いわゆる場所打ち杭工法では、所定の粗骨材を混入したコンクリートをも指す。
【0019】
【発明の実施の形態】
(1)所定の杭穴を掘削して、この際に発生する掘削泥水で地上に溢れ出た掘削泥水25を取り出す。回収した掘削泥水25は、地上で、振動振るい機21等により泥塊を除去し、均一に攪拌されたものに各種セメント等の水硬化性材料23を混練して、改良土29を形成する(図1(e))。
【0020】
(2)いわゆる場所打ち工法では、杭穴内に基礎構造体たる鉄筋かごを挿入し、その前後に、杭穴充填物たるコンクリートなどを杭穴内に充填する。
【0021】
また、既製杭17を使用する工法では、杭穴10内に杭穴充填物たるソイルセメントが充填された杭穴10内に、基礎構造体たる既製コンクリート杭17等を挿入する(図1〜図4)。
【0022】
(3)杭穴10の杭頭部に形成された拡頭部30内に、前記改良土29を埋め戻して、該部に改良地盤体31を形成し、改良地盤体31及び杭穴充填物15が固化した後、改良地盤体31が一体となった基礎杭18を構築する(図1(f)、図2(c)、図3(d))。
【0023】
(4)前記における拡頭部30の形成は、基礎構造体を挿入した後に形成する場合(図1(c)(d))、または基礎構造体を挿入前に杭穴掘削時に同時に形成する場合、のいずれでも可能である。後者の場合には、一の方法では、掘削ロッド1の上端部に拡頭部径に応じた拡大掘削ができかつ穴壁を練付できる拡大練付部9(拡大掘削練付機構)を有する掘削ロッド1を使用して、杭穴拡頭部30を形成する(図2(a))。また、他の方法では、拡縮掘削可能な掘削ロッド1を使用して、拡大掘削して杭穴拡頭部30を形成する(図3(a)(b))。
【0024】
(5)前記における改良土29の形成は、主に掘削時に生じる掘削泥水を使用して、改良土29を形成する場合の他、杭穴内に充填したソイルセメントやセメントミルク等の杭穴充填物が地上に溢れた場合に、この杭穴充填物を前記掘削泥水と共に、あるいは掘削泥水とは別の処理系列で処理して、改良土を製造することもできる。
【0025】
(6)また、前記における杭穴掘削時の杭穴拡頭部30の掘削では、杭穴拡頭部壁に掘削土を練り付けて杭穴壁を均すことが望ましい。練付を行わないことも可能であるが、拡頭部に掘削土が杭穴内に残留することを防止し、所定径の確保及び均質な改良地盤体を形成する上では、練付工程を取る方が良い。
【0026】
(7)また、既製杭を使用して基礎杭を構築する場合、前記のように使用する既製杭の杭材は任意であるが、突起付きの既製杭を使用して、拡底部を有する杭穴内に埋設した場合にとりわけ有効である。即ち、拡底部及び拡頭部を有する杭穴を掘削すると共に、拡底部内に根固め液(杭穴充填液)、杭穴軸部に杭周固定液(杭穴充填液)が充填されている(図4(a))。杭穴10内に下杭(既製杭。節杭等)17Aとして、環状突起35、35を有する杭を埋設し、環状突起35の少なくとも1つが拡底部12内に位置されると共に下杭17Aの下端と杭穴底とに所定間隙が形成されている。また、前記下杭17Aに同じ軸杭でストレート状(環状突起35が無い)の上杭(既製杭。PHC杭、PRC杭等)17Bを連結して、既製杭17を構成する。拡頭部30内に前記方法により形成した改良土を埋め戻して改良地盤体31を構成して、基礎杭18を構成する(図4(b))。尚、上杭17Bも環状突起を形成した既製杭を使用することもできる。また、拡頭部30の形成方法は、既製杭17の埋設の前後を問わず、前述のような各方法を採用することができる。
【0027】
この方法により構築された基礎杭18では、根固め液が充填された杭穴拡底部12内での既製杭17の下端面及び環状突起35の支圧効果による杭先端支持力の強化だけでなく、杭穴拡頭部30の改良地盤体によって水平支持力が強化され、基礎杭18全体として、バランスの取れた支持力を得ることができる。ここで、杭穴拡頭部の改良地盤体31の大きさとしては、杭穴拡底部の寸法(通常杭径の1.2〜2.5倍)程度であるが、求める支持力により適宜選択して設定する。
【0028】
(8)また、この発明では、改良地盤体によって、水平支持力を強化できるので、基礎構造体として既製杭を使用した基礎杭の場合、通常より比較的曲げモーメントの強い既製杭を用いることなく、同程度以上の基礎杭を構築できる。
【0029】
例えば、PHC杭C種→PHC杭B種、
SC杭(外殻鋼管巻きコンクリート杭)→PRC杭(プレストレス鉄筋コンクリート杭)
等、曲げモーメントの強い杭から1ランクあるいは数ランク下の強度の杭を使用することができる。
【0030】
【実施例1】
図1に基づき、この発明を、既製杭を使用したプレボーリング工法に適用した実施例について説明する。ここでは、プレボーリング工法による手順で説明するが、中掘工法等種々の工法に適用することもできる。
【0031】
(1) この発明の実施に使用する掘削ロッド1は、先端に掘削ヘッド2が取付けられ、所定間隔ごとに練付けドラム4、4、撹拌バー7、7を有する。また、掘削ヘッドには、拡大掘削用の拡大刃3、3を取りつけてある。
【0032】
前記掘削ロッド1を使用して、掘削ヘッド2の先端から水を吐出しながら杭穴10を掘削する。杭穴10内の掘削土は撹拌バー7、7で撹拌し、泥土化され、この掘削泥土を練付けドラム4、4によって杭穴壁に練付ける(図1(a))。
所定深さの軸部11に続き、拡大刃3、3で所定深さの拡底部12を掘削して、杭穴10の掘削を完了する。
【0033】
(2) この際、予め地上13の杭穴周辺(なるべく杭芯付近)に、適宜深さ大きさの穴を掘り、ピット14を形成しておく。前記のように掘進するに伴い、掘削泥水が増加し、地上に溢れ出てくる。この溢れ出た掘削泥水を前記ピット14内に溜め置く(図1(a))。
【0034】
杭穴掘削完了後又は杭穴掘削中に、ピット14内の掘削泥水25を汲み上げ、振動ふるい機21にかけて泥塊26を除いて、所定粒土の掘削土(ソイルセメントの形成した際に強度低下に影響を与えない)を含んだ掘削泥水27を形成し、貯留槽20に貯める(図1(e))。
【0035】
(3) 杭穴掘削が完了したなら、杭穴10内に、前記掘削ロッド1を引き上げる際に掘削ロッド1から又はトレミー管等の他の手段からセメントミルク等の杭穴充填物15を吐出してこれを杭穴10内に充填して、杭穴10の形成を完了する(図1(b))。
【0036】
(4) 続いて、杭穴充填物15が充填された杭穴10内に既製杭17を挿入する(図1(d))。
【0037】
(5) 次に、所定粒度の掘削土を含んだ掘削泥水27を貯留槽20から撹拌槽22に移して、撹拌槽22内で撹拌し、所定粒土の掘削土を分散させて均一な掘削泥水28とする(図1(e))。その後、均一に撹拌された掘削泥水28をプラントに移し、セメント等の改良土用の水硬性材料23を加え、混練して改良土29を形成する。改良土29の強度としては、例えば、固化強度0.5N/mm程度とする。ただし、杭種、周辺地盤、構造物等の様々な要素から任意に設定できる。
【0038】
(6) 杭埋設完了後に、杭穴10の頭部の周辺を地上13から根切りを行って(例えば、油圧ショベルカー等を使用する)、所定形状・寸法の杭穴拡頭部30を形成する。前記杭穴拡頭部30は、中央に既製杭17が貫通したブロック状(例えば、2.5m×2.5m×深さ1.0m程度)に形成するが、杭穴拡頭部30の形状や大きさは、既製杭17の杭径、杭長等の既製杭の性状、隣接する杭同志の間隔、地盤の性状、求める改良地盤体の強度等により種々選択して形成する。
【0039】
(7) 続いて、前記のようにして形成された改良土29を、前記杭穴拡頭部30内に埋め戻し、改良地盤体31を形成して地盤を改良し、基礎杭18を構築する(図1(e))。
【0040】
また、ここで、杭穴拡頭部30の形成については、各既製杭17毎に杭穴拡頭部30を独立に設け
【0041】
(8)他の実施例
前記実施例において、杭穴の拡頭部30の形成は、既製杭17の埋設後にしたが既製杭17を埋設する前に形成することもできる。
【0043】
また、前記実施例において、基礎杭18の上方に、建造物のフーチング33を形成する場合には、既製杭17にフーチング33の構造鉄筋を接合して、改良地盤体31の上面31aにフーチング33を形成する(図1(f))。
【0044】
また、前記実施例において、その他の杭穴拡頭部の地盤改良方法としては、予め所定形状・寸法に形成された拡頭部を有する杭穴を形成し、杭穴底部からセメントミルクを注入して掘削土と撹拌・混合したソイルセメントを充填し、あるいは掘削土と置換されたセメントミルクを充填し、該杭穴拡頭部にも略杭口付近まで十分に満たし、その後杭穴内に杭を沈設する。例えば、根固め液として固化強度20N/mm程度のセメントミルクを注入し、掘削土と撹拌・混合してソイルセメント(固化強度20N/mm以上)を形成し、杭周固定液としては固化強度10N/mm程度のセメントミルクを注入し、掘削土と撹拌・混合してソイルセメント(固化強度0.5N/mm程度)を充填する。尚、ここで、セメントミルクの固化強度は一例で、適宜選択して使用することができる。また、この方法によれば、根切りを行って杭穴拡頭部を形成する必要がなく、基礎杭の施工と同時に杭頭周辺部の地盤改良を行うことができる。
【0045】
【実験例】
この発明の方法により構築した基礎杭について、3次元有限要素法による弾性解析を行い、杭頭水平荷重による杭の生じる応力を求めた。
【0046】
(1)実験内容
解析モデルは、対称性を考慮した1/2として、周辺地盤を10m×20m×13m(奥行×幅×深さ)の立方体要素、杭を11m(施工長10.5m)の線要素とした。杭頭に水平力(地盤面に載荷)約200kNを加えて杭頭拘束条件を自由と回転固定、モデルの対称面以外の側面を固定として解析を行った。
【0047】
杭頭に水平方向の外力が加わると杭の曲げモーメントは、杭頭部付近で最も発生し、杭先端ではほとんど発生しない。
【0048】
解析では、曲げモーメントが最も発生する杭頭部付近の挙動を詳しく調べるために、深さ方向の要素間隔を、
GL〜3.0mを 0.1m 間隔で、
3.0m〜6.0mを 0.25m間隔、
6.0m〜11.0mを 0.5m 間隔、
11.0m〜13.0mを 1.0m 間隔
とした。
【0049】
改良地盤体のヤング係数を10,30,60,90,120,300N/mmとし、改良範囲は1つの改良地盤体のヤング係数につき、9ケースの改良地盤範囲で解析を行った。そして、改良地盤体がないもの(周辺地盤と杭のみの解析)を合わせると、55ケースとなり、杭頭拘束自由と杭頭拘束回転固定を合わせると110ケースの解析を行った。
【0050】
また、周辺地盤のヤング係数は、実験施設内(茨城県猿島郡境町)の標準貫入試験及び一軸圧縮試験結果をもとに、実施した。
【0051】
杭の曲げモーメントは、水平力を地盤面に加えたため、
GLで0(ゼロ)、
0.9mで最大の32279N・m、
6.5mから深くなるとほとんど発生していない。
【0052】
そして、深さ0.9mのモーメント32279N・mで杭が壊れたとし、この部分を杭の最大曲げモーメントとする。
【0053】
(2)実験結果
以下、に杭頭拘束条件が自由と回転固定の場合の最大曲げモーメントにおける結果を示す(図5、図6)。
【0054】
(a) 杭頭拘束条件が自由の場合、最大曲げモーメントは、各改良地盤体のヤング係数において、3×3×0.6(改良地盤範囲:縦×横×深さ(m))と、改良地盤範囲4×4×0.6がほぼ同じで最も小さく、改良地盤範囲2×2×1.5が最も大きかった。全体的にみると改良地盤体のヤング係数が大きくなるほど小さくなり、改良地盤体の深さが浅いほど小さかった。改良地盤体の平面積の相違による最大曲げモーメントの変化はほとんどみられず、改良地盤体の深さと改良地盤体のヤング係数による影響が大きかった。
【0055】
(b) 杭頭拘束条件が回転固定の場合、杭頭自由と同様に、改良地盤体のヤング係数が大きくなるほど最大曲げモーメントが小さくなった。改良地盤体のヤング係数が30〜300N/mmとでは、4×4×0.6が最も小さく、2×2×1.5が最も大きい値を示した。改良範囲で比較すると、改良地盤体の平面積が大きく、改良地盤体の深さが浅いほど最大曲げモーメントが小さかった。
【0056】
(c) 改良地盤体がないもの(周辺地盤と杭のみの解析)と改良地盤体のヤング係数が30N/mmの間で最大曲げモーメントの低下が著しく、120N/mm以降ではさほど変化が見られなかった。
【0057】
(d) 上記解析結果を基に、実際に杭の水平載荷試験を行ったところ、杭頭付近に改良地盤体を作製することにより改良地盤体を作製しない場合と比べて、杭の最大曲げモーメントは20%〜35%、杭頭水平変位は47%〜60%減少することが分かった。また、杭頭付近に改良地盤体を作製することで、杭の最大曲げモーメントの発生範囲は杭頭自由・杭頭固定とも上部に限定され、せん断力には大差はなかった。
【0058】
【実施例2】
図2に基づき、杭穴拡頭部30を形成する他の方法を以下に示す。前記実施例1においては、杭穴掘削とは別途に根切りを行って杭穴拡底部を形成し、改良体を埋め戻したが、本実施例は、杭穴掘削と一体に行う実施例である。
【0059】
[A]掘削ロッドの構成
この実施例に使用する掘削ロッド1は、先端に掘削ヘッド2を有し、所定間隔ごとに杭穴壁に泥土を練付けるための練付けドラム4、4、撹拌バー7、7が配置されている。また、最上に位置する練付けドラムを大径練付ドラム5とし、所望の径の杭穴拡頭部30を形成できるように、対応する径(他の練付けドラムより大径)に形成してあり、かつ掘削ヘッド2が最下端に位置した状態で、所望の杭穴拡頭部30を形成できるような位置に取りつけてある。また、大径練付けドラム5の下端面には掘削刃6、6が取付けられており、杭穴拡頭部30の掘削を行うことができる(図2(a))。尚、他の練付ドラム4、4は、杭穴軸部11の径に対応させた外径に形成されている。これによって、通常の杭穴掘削と同時に杭穴拡頭部を形成できる。
【0060】
[B]地盤改良した基礎杭の構築方法
(1)即ち、実施例1と同様に、掘削ロッド1の掘削ヘッド2で、杭穴10の軸部11及び拡底部12を掘削すると同時に、撹拌バー7、7で掘削泥土を撹拌して、杭穴壁に練り付ける。杭穴の底部付近を掘削する際に、大径練付ドラムの掘削刃6、6が地面13に当たり、同時に杭穴杭頭部を拡大して掘削して杭穴拡頭部30を形成する(図2(a))。
【0061】
(2) また、杭穴掘削の際に地上に溢れる掘削泥水を実施例1と同様な処理で、改良土29を生成する(図1(e))。また、この際、必要ならば、実施例1と同様に、杭穴周辺に、ピット14を形成して、一旦掘削泥水を貯め置くこともできる(図2(a)鎖線図示14)。
【0062】
(3) 続いて、掘削ロッド1を引き上げながら、又は引き上げ後に、杭穴充填物15を杭穴10内に充填して、軸部11、拡底部12、拡頭部30を有する杭穴10が形成される(図2(b))。
【0063】
(4) 続いて、杭穴10内に、既製杭17を挿入し、拡頭部30内の略中央に既製杭17が位置するように配置する。続いて、杭穴の拡頭部30内の杭穴充填物15を除去し(汲み上げ)、空になった拡頭部30内に、前記のように生成した改良土29を埋め戻し、固化後、改良土地盤体31を形成する。以上のようにして基礎杭18を形成する(図2(c))。
【0064】
また、ここで、杭穴の拡頭部30内の杭穴充填物15を除去せず、そのまま改良地盤体の水硬性材料23として利用することもできる。
【0065】
[C]他の実施例
前記実施例において、杭穴の拡頭部30内の杭穴充填物15を除去した後に改良土29を埋め戻したが、拡頭部30内に杭穴充填物15が充填されている状態で、拡頭部30内に改良土29を埋め戻すこともできる(図示していない)。この場合には、埋め戻した改良土29により、地上13に溢れた杭穴充填物15を廃棄処理し、あるいは改良土29と杭穴充填物とを撹拌混合することもできる。
【0066】
前記実施例において、拡大掘削練付手段として、下面に掘削刃6、6を有する大径練付ドラム5を使用したが、拡頭部径に応じた掘削刃と練付手段(板状、棒状など)を有する構造であれば、任意である(図示していない)。
【0067】
【実施例3】
図3に基づき、他の杭穴拡頭部の形成方法を説明する。
【0068】
[A]掘削ロッド1の構成
この実施例で使用する掘削ロッド1は、先端部に掘削ヘッド2を有し、掘削ヘッド2は、揺動する掘削腕8、8が取りつけてあり、掘削腕8は掘削ロッド1の正回転で通常掘削状態として杭穴軸部径で掘削ができ、逆回転で拡大掘削できるように構成されている。また、掘削腕8には、拡大掘削時に杭穴壁を均すことができる拡大練付部(棒状の練付手段)9を有する。また、掘削ロッド1には、実施例1、2と同様な練付ドラム4、4、撹拌バー7、7が取りつけてある(図3(a)(b))。
【0069】
[B]基礎杭の構築方法
次に施工方法について説明する。
【0070】
(1) 地上13から所定深度まで掘削ロッド1を逆回転させながら、掘削ヘッド2を拡大掘削状態に固定して杭穴の拡頭部30を掘削する(図3(a))。この際、杭穴の拡頭部30の穴壁は、拡大練付部9、9で均される。
【0071】
(2)所定の深さ・径の拡頭部30が形成された後に、掘削ロッド1を正回転に戻して掘削ヘッド2を通常掘削状態にし、通常の杭穴軸部11を築造する(図3(b))。この際に、掘削泥土は、撹拌バー7、7で撹拌され、練付ドラム4、4で穴壁が均される。所定の杭穴軸部を形成後、掘削ロッド1を逆回転させ、掘削ヘッド2を拡大掘削状態にし、杭穴拡底部12を形成する。杭穴拡底部の穴壁も拡大練付部9、9で均される。
【0072】
(3)実施例1、2と同様に、掘削時に生じた掘削泥水を、所定の処理をして、改良土を生成する(図1(e))。
【0073】
(4)実施例2と同様に、杭穴充填物15を杭穴10内に充填して、軸部11、拡底部12、拡頭部30を有する杭穴10が形成される(図3(c))。続いて、実施例2と同様に、杭穴10内に、既製杭17を挿入し、拡頭部30内に、前記のように生成した改良土29を埋め戻し、固化後、改良地盤体31を形成すし、基礎杭18を形成する(図3(d))。
【0074】
[C]他の実施例
前記実施例において、まず杭穴拡頭部30を掘削した後に杭穴軸部11を掘削したが他の方法とすることもできる。例えば、杭穴の軸部11、拡底部12を掘削した後に、掘削ロッド1を杭穴10から引き上げる際に、掘削ヘッド2が杭穴10の上端部(拡頭部形成位置)に至ったならば、掘削ロッド1を逆回転して、杭穴径を拡げるように掘削腕8、8で地盤を掘削して、拡頭部30を形成することもできる(図示していない)。
【0075】
【発明の効果】
杭穴拡頭部内に、掘削泥水に水硬性材料を混ぜて処理した改良土を埋め戻して改良地盤体を形成するので、改良地盤体は基礎杭と一体に形成され、杭頭付近に比較的大きく作用する水平力に対し、杭と改良地盤部分との全体でより大きな水平力に耐え得ることができる。また、逆に同一の耐水平力が要求される基礎杭であれば、杭が負担する水平力を減少できるので、杭穴の掘削径や既製杭の口径を小さくできる効果がある。
【0076】
また、主に掘削補助手段として水等を使用した基礎杭工法において、掘削により生じる大量の掘削泥水を地上で処理して改良土を形成するので、掘削泥水が有効利用できるため、処理する残土量が減少し、環境によい効果がある。
【0077】
所望の杭穴拡頭部が形成できるように、掘削ロッドの上端部に拡大掘削練付機構を取付けた掘削ロッドを使用する場合、あるいは、拡縮掘削可能な掘削ヘッドを有する掘削ヘッドを使用する場合には、通常の杭穴掘削工程で、まとめて杭穴拡頭部の掘削ができるので、杭穴掘削の工程の中で連続して杭穴拡頭部を形成でき、施工能率を高めることができる効果がある。更に、拡大掘削練付機構を取付けた掘削ロッドを使用する場合には、杭穴の底部の掘削と同時に杭穴拡頭部の掘削ができるので、更に施工能率を高めることができる。
【0078】
また、杭穴拡底部に、下部に少なくとも1個以上の突起部を設けた既製杭の該突起部を埋設した基礎杭であっても、杭穴拡頭部に改良地盤体を形成すれば、杭穴拡底部内における高先端支持力に見合った水平支持力を得ることができる。従って、鉛直支持力と水平支持力のバランスの良い基礎杭を構築できる効果がある。
【図面の簡単な説明】
【図1】(a)〜(f)はこの発明の基礎杭の構築方法を説明する縦断面図で、(e)は埋め戻し用のソイルセメントの形成過程を説明する図である。
【図2】(a)〜(c)は、他の杭穴の掘削方法を説明する縦断面図である。
【図3】(a)〜(d)は、同じく他の杭穴の掘削方法を説明する縦断面図である。
【図4】(a)(b)は、突起付きの既製杭を使用した実施例の構築方法を説明する縦断面図である。
【図5】実験結果で、各地盤範囲における杭頭自由での最大曲げモーメントと改良地盤ヤング係数との関係を表すグラフである。
【図6】同じく実験結果で、各地盤範囲における杭頭回転拘束での最大曲げモーメントと改良地盤ヤング係数との関係を表すグラフである。
【符号の説明】
1 掘削ロッド
2 掘削ヘッド
3 拡大刃
4 練付ドラム
5 大径練付ドラム(拡大掘削練付機構)
6 掘削刃(拡大掘削練付機構)
7 撹拌バー
8 掘削腕
9 拡大練付部
10 杭穴
11 杭穴の軸部
12 杭穴の拡底部
13 地上
14 ピット
15 杭穴充填物
17 既製杭
18 基礎杭
20 貯留槽
21 振動ふるい機
22 撹拌層
23 改良土用水硬性材料
25 掘削泥水
26 泥塊
27 掘削泥水(所定粒土の掘削土を含む処理後)
28 掘削泥水(均一に撹拌処理された)
30 杭穴の拡頭部
31 改良地盤体
[0001]
BACKGROUND OF THE INVENTION
This invention is a method of constructing a foundation pile that has expanded the pile head of the foundation pile to form an expanded head and improved the surrounding ground to enhance the horizontal strength. To the law Related.
[0002]
[Prior art]
In general, when a foundation pile is constructed, the load (vertical load) of the ground structure on the foundation pile is approximately uniform over the entire length of the compressive stress over the entire length if the foundation pile is constructed in a vertical posture. Distribution. This can be done in the case of foundation piles by so-called cast-in-place piles, or by constructing various ready-made piles (concrete piles (PHC piles, PRC piles, joint piles, etc.) and steel pipe piles) directly or with drilling of pile holes. The same applies even if formed.
[0003]
Moreover, the horizontal force which acts by an earthquake etc. becomes stress distribution which changes with the length direction of a foundation pile. That is, it is generally known that the distribution of the stress caused by the horizontal force seen in the length direction of the foundation pile is attenuated with the upper end side being the peak and the lower end side.
[0004]
Moreover, in various foundation pile construction methods, the ground was excavated using water or the like as an auxiliary means for excavation in order to increase excavation efficiency.
[0005]
[Problems to be solved by the invention]
In this case, the conventional concrete pile is a structure mainly composed of concrete even if reinforcing bars are laid, so although it has a relatively large compressive strength (vertical load), it is more elastic than a steel pipe pile. As a result, the strength in terms of horizontal strength was considerably reduced compared to steel pipes. On the other hand, steel pipe piles are more expensive than concrete piles, and have a problem of poor economic efficiency.
[0006]
In order to solve these problems, there are known methods for constructing a foundation pile structure by connecting a concrete pile with an enlarged head and a pile connected to the upper part to a larger diameter than the lower pile. Since the outer diameter of the pile is limited, a significant improvement in the horizontal force that can be borne cannot be expected.
[0007]
In addition, in the foundation pile construction method using water as an auxiliary means for excavation as described above, a large amount of muddy water overflows on the ground during excavation or pile laying, and the remaining soil and muddy water are taken as industrial waste to the outside of the construction site. Had to drain. Therefore, the cost of the remaining soil treatment has an influence on the construction cost, and an unfavorable situation has occurred in the environment.
[0008]
In addition, when a ready-made pile with protrusions (for example, a so-called joint pile) is embedded in a pile hole having an expanded bottom portion of the pile hole, at least one of the protrusions at the lower end is fixed to the soil cement layer formed in the expanded bottom portion. A foundation pile can also be formed (see the lower part of FIG. 4 (b)). According to this foundation pile, the vertical support force can be more than twice that of the conventional foundation pile, but if the pile diameter of the same ready-made pile, the bending moment, that is, the horizontal support force was relatively insufficient. .
[0009]
In other words, the portion that normally requires a high horizontal support force is a portion up to about 10 m from the pile head, but the shaft diameter of the ready-made pile with protrusions embedded in the pile hole widening portion of the foundation pile is its root. In order to exert the desired bearing capacity at the compacted portion, a ready-made pile with a small diameter is sufficient as compared with the conventional case. Cylindrical piles with an outer diameter corresponding to the diameter were used. Therefore, the bending moment is relatively insufficient as compared with the high tip supporting force that is exhibited.
[0010]
In order to strengthen the bending moment at the upper end, a pile material having a high bending moment (for example, so-called SC pile or steel pipe pile) is used for the upper ready-made pile, or the axis of the part placed on the pile head It was necessary to devise such as increasing the diameter. In this case, the pile material having a high bending moment is expensive, and when connecting piles having different shaft diameters, a special connecting tool is necessary, and there is a possibility that strength is reduced at the connecting portion. Furthermore, since the outer diameter of ready-made piles is generally only about 1 m, the ready-made piles for the upper end that meet the requirements are procured when the shaft diameter of the ready-made piles arranged at the lower end increases. It was difficult to do.
[0011]
[Means for Solving the Problems]
However, according to the present invention, since the improved soil formed by kneading the hydraulic material into the drilling mud generated by the excavation of the pile hole is backfilled in the enlarged head of the pile hole, the above ground problem is solved.
[0012]
That is, according to the present invention, a bit is formed around a pile hole to be excavated, a predetermined pile hole is excavated, and the generated mud is generated. Ground Recovered with the bit, kneaded a water-curable material into the drilling mud pumped from the bit to form an improved soil, and insert a foundation structure into the pile hole, For each foundation structure The pile hole periphery of the pile hole is enlarged and excavated to form a pile hole head enlargement at a predetermined depth, the improved soil is backfilled in the pile hole enlargement head, and an improved ground body is formed in the pile hole enlargement head A construction method of a foundation pile, The foundation pile is a tip support pile having a root consolidation part; and The formation of the improved soil is “ The excavated mud that overflowed to the ground during the drilling of pile holes was collected. Remove the mud mass from the drilling mud pumped up from the bit using a vibration shaker, etc., store the drilling mud in a storage tank, transfer the drilling mud from the storage tank to the stirring tank, and then stir, and then use a water-curable material. It is a construction method of a foundation pile characterized by “kneading”.
[0013]
In another aspect of the present invention, a bit is formed around a pile hole to be excavated, a pile hole having a predetermined depth with a pile hole expanded head is excavated, and generated drilling mud is collected by the bit on the ground, and the bit Kneading a water-curable material into the drilling mud pumped up from to form an improved soil, inserting a foundation structure into the pile hole, For each foundation structure In the pile hole expansion head, it is a construction method of a foundation pile that backfills the improved soil and forms an improved ground body in the pile hole expansion head, The foundation pile is a tip support pile having a root consolidation part; and The formation of the improved soil is “ The excavated mud that overflowed to the ground during the drilling of pile holes was collected. Remove the mud mass from the drilling mud pumped up from the bit using a vibration shaker, etc., store the drilling mud in a storage tank, transfer the drilling mud from the storage tank to the stirring tank, and then stir, and then use a water-curable material. It is a construction method of a foundation pile characterized by “kneading”.
[0017]
In the above description, the present invention can be applied to any of the so-called various cast-in-place piles and prefabricated piles as long as the pile hole is filled with a pile hole filling material such as cement milk and a foundation pile is constructed. Therefore, the foundation structure in the above refers to a reinforced cage in the case of the cast-in-place pile method, and refers to a reinforced concrete system, a steel pipe system, or various ready-made piles in which these are combined in the method of burying the ready-made pile. Moreover, the ready-made pile can also use the connection pile which connected the single pile or multiple piles up and down.
[0018]
In addition, the pile hole filling in the above is a so-called pile circumference fixing liquid or a root hardening liquid if it is a construction method using a ready-made pile, and the pile hole is filled with a hydraulic material such as cement milk and excavated. Mixing with mud to make a soil cement layer, or filling a pile material with hydraulic material such as cement milk to replace excavation mud to make a cement milk layer, and combining these, for example, rooting The part includes a cement milk layer and a soil cement layer above. Furthermore, the so-called cast-in-place pile method also refers to concrete mixed with a predetermined coarse aggregate.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(1) A predetermined pile hole is excavated, and the excavated mud water 25 overflowing from the excavated mud water generated at this time is taken out. The recovered excavated mud 25 is removed from the ground with a vibration shaker 21 or the like, and a water-curable material 23 such as various cements is kneaded with the uniformly stirred material to form an improved soil 29 ( FIG. 1 (e)).
[0020]
(2) In the so-called cast-in-place method, a reinforcing steel cage as a foundation structure is inserted into a pile hole, and concrete or the like as a pile hole filler is filled in the pile hole before and after that.
[0021]
Moreover, in the construction method using the ready-made pile 17, the ready-made concrete pile 17 etc. which are foundation structures are inserted in the pile hole 10 with which the pile hole 10 was filled with the soil cement which is a pile-hole filling (FIGS. 1-FIG. 1). 4).
[0022]
(3) The improved soil 29 is backfilled in the expanded head 30 formed at the pile head of the pile hole 10 to form the improved ground body 31 in the portion, and the improved ground body 31 and the pile hole filling 15 After solidifying, the foundation pile 18 in which the improved ground body 31 is integrated is constructed (FIG. 1 (f), FIG. 2 (c), FIG. 3 (d)).
[0023]
(4) In the case of forming the expanded head 30 in the above, after forming the foundation structure (FIGS. 1 (c) (d)), or when forming the foundation structure at the same time when excavating the pile hole before insertion, Either of these is possible. In the latter case, in one method, excavation having an enlarged kneading portion 9 (enlarged excavation kneading mechanism) capable of performing an enlarged excavation according to the head expanding diameter and kneading the hole wall at the upper end portion of the excavating rod 1. The rod 1 is used to form a pile hole head 30 (FIG. 2A). In another method, the excavation rod 1 capable of expansion / contraction excavation is used to expand the excavation to form a pile hole head portion 30 (FIGS. 3A and 3B).
[0024]
(5) The formation of the improved soil 29 in the above is not limited to the case where the improved soil 29 is formed by using the drilling mud generated mainly during excavation, and the pile hole filling material such as soil cement or cement milk filled in the pile hole. When the soil overflows on the ground, this pile hole filling can be processed together with the drilling mud or in a different processing sequence from the drilling mud to produce improved soil.
[0025]
(6) Moreover, in the excavation of the pile hole expansion head 30 at the time of excavation of a pile hole in the above, it is desirable to knead excavation soil to the pile hole expansion head wall and level the pile hole wall. Although it is possible not to perform kneading, it is possible to prevent the excavated soil from remaining in the pile hole at the expanded head, to secure a predetermined diameter and to form a homogeneous improved ground body, a method of taking a kneading process Is good.
[0026]
(7) Moreover, when building a foundation pile using a ready-made pile, the pile material of the ready-made pile used as mentioned above is arbitrary, but the pile which has an expanded bottom part using the ready-made pile with a protrusion This is particularly effective when embedded in a hole. That is, a pile hole having an expanded bottom portion and an expanded head portion is excavated, and a solidified liquid (pile hole filling liquid) is filled in the expanded bottom portion, and a pile periphery fixing liquid (pile hole filling liquid) is filled in the pile hole shaft portion ( FIG. 4 (a)). A pile having annular protrusions 35, 35 is embedded as a lower pile (ready-made pile, joint pile, etc.) 17 </ b> A in the pile hole 10, and at least one of the annular protrusions 35 is positioned in the bottom expanded portion 12 and the lower pile 17 </ b> A A predetermined gap is formed between the lower end and the pile hole bottom. Moreover, the ready-made pile 17 is comprised by connecting the upper pile (ready-made pile. PHC pile, PRC pile, etc.) 17B of straight shape (the annular projection 35 is not provided) 17B with the same shaft pile to the lower pile 17A. The improved soil formed by the above method is backfilled in the expanded head 30 to form the improved ground body 31 to form the foundation pile 18 (FIG. 4B). In addition, the upper pile 17B can also use the ready-made pile which formed the cyclic | annular protrusion. Moreover, the above-mentioned each method can be employ | adopted for the formation method of the head-expansion 30 irrespective of before and after embedding of the ready-made pile 17. FIG.
[0027]
In the foundation pile 18 constructed by this method, not only strengthening of the pile tip support force by the bearing effect of the lower end surface of the ready-made pile 17 and the annular protrusion 35 in the pile hole widening portion 12 filled with the root-solidifying liquid is achieved. The horizontal support force is strengthened by the improved ground body of the pile hole expansion head 30, and a balanced support force can be obtained as the foundation pile 18 as a whole. Here, the size of the improved ground body 31 of the pile hole expansion head is about the size of the pile hole bottom expansion part (usually 1.2 to 2.5 times the pile diameter), but is appropriately selected depending on the required supporting force. To set.
[0028]
(8) Moreover, in this invention, since a horizontal supporting force can be strengthened with the improved ground body, in the case of the foundation pile which uses the ready-made pile as a foundation structure, without using the ready-made pile whose bending moment is comparatively stronger than usual. A foundation pile of the same level or higher can be constructed.
[0029]
For example, PHC pile C type → PHC pile B type,
SC pile (outer shell tube-wound concrete pile) → PRC pile (prestressed reinforced concrete pile)
For example, a pile having one rank or a few ranks lower than a pile having a strong bending moment can be used.
[0030]
[Example 1]
Based on FIG. 1, the Example which applied this invention to the pre-boring method using a ready-made pile is demonstrated. Here, although it demonstrates by the procedure by a pre-boring method, it can also apply to various construction methods, such as a medium digging construction method.
[0031]
(1) The excavation rod 1 used for carrying out the present invention has an excavation head 2 attached to the tip, and has kneading drums 4 and 4 and stirring bars 7 and 7 at predetermined intervals. The excavation head is provided with expansion blades 3 and 3 for expansion excavation.
[0032]
Using the excavation rod 1, the pile hole 10 is excavated while discharging water from the tip of the excavation head 2. The excavated soil in the pile hole 10 is agitated by the agitation bars 7 and 7 to be mud, and this excavated mud is kneaded to the pile hole wall by the kneading drums 4 and 4 (FIG. 1A).
Following the shaft portion 11 having a predetermined depth, the bottom-extended portion 12 having a predetermined depth is excavated with the expanding blades 3, 3 to complete excavation of the pile hole 10.
[0033]
(2) At this time, a pit 14 is formed in advance by appropriately digging a hole having a depth size around the pile hole on the ground 13 (as close to the pile core as possible). As excavated as described above, the drilling mud increases and overflows on the ground. This overflowed excavated mud is stored in the pit 14 (FIG. 1A).
[0034]
After completion of excavation or during excavation, the excavated mud water 25 in the pit 14 is pumped up and applied to the vibration sieve 21 to remove the mud mass 26, and the excavated soil of a predetermined grain soil (the strength decreases when soil cement is formed) The drilling mud 27 is formed and stored in the storage tank 20 (FIG. 1 (e)).
[0035]
(3) When the pile hole excavation is completed, when the excavation rod 1 is pulled up, the pile hole filling 15 such as cement milk is discharged from the excavation rod 1 or other means such as a tremy tube into the pile hole 10. This is filled in the pile hole 10 to complete the formation of the pile hole 10 (FIG. 1B).
[0036]
(4) Subsequently, the ready-made pile 17 is inserted into the pile hole 10 filled with the pile hole filling 15 (FIG. 1D).
[0037]
(5) Next, the excavated mud 27 containing the excavated soil of a predetermined particle size is transferred from the storage tank 20 to the agitation tank 22 and stirred in the agitation tank 22 to disperse the excavated soil of the predetermined granular soil and perform uniform excavation. The muddy water 28 is assumed (FIG. 1 (e)). Thereafter, the excavated mud water 28 uniformly stirred is transferred to the plant, and the hydraulic material 23 for improved soil such as cement is added and kneaded to form the improved soil 29. The strength of the improved soil 29 is, for example, a solidification strength of 0.5 N / mm 2 To the extent. However, it can be arbitrarily set from various elements such as pile types, surrounding ground, and structures.
[0038]
(6) After the pile burying is completed, the periphery of the head of the pile hole 10 is rooted from the ground 13 (for example, using a hydraulic excavator or the like) to form the pile hole enlarged head 30 having a predetermined shape and size. . The pile hole expansion head 30 is formed in a block shape (for example, about 2.5 m × 2.5 m × depth of about 1.0 m) through which the ready-made pile 17 penetrates in the center. The length is selected and formed in accordance with the properties of the ready-made piles such as the pile diameter and the pile length of the ready-made pile 17, the interval between adjacent piles, the properties of the ground, the strength of the improved ground body to be obtained, and the like.
[0039]
(7) Subsequently, the improved soil 29 formed as described above is backfilled in the pile hole expansion head 30 to form an improved ground body 31 to improve the ground, and the foundation pile 18 is constructed ( FIG. 1 (e)).
[0040]
Moreover, about formation of the pile-hole expansion head 30, here, the pile-hole expansion head 30 is provided independently for every ready-made pile 17. Ru .
[0041]
(8) Other embodiments
In the said Example, although formation of the enlarged head 30 of a pile hole was performed after embedding the ready-made pile 17, it can also be formed before embedding the ready-made pile 17. FIG.
[0043]
Moreover, in the said Example, when forming the footing 33 of a structure above the foundation pile 18, the structural reinforcement of the footing 33 is joined to the ready-made pile 17, and the footing 33 to the upper surface 31a of the improved ground 31 is carried out. Is formed (FIG. 1 (f)).
[0044]
Moreover, in the said Example, as another ground improvement method of a pile-hole head expansion, a pile hole which has a head-expansion previously formed in the predetermined shape and dimension is formed, and cement milk is inject | poured from a pile-hole bottom part, and it excavates. Filled with soil cement agitated and mixed with soil, or filled with cement milk replaced with excavated soil, the pile hole expansion head is sufficiently filled to the vicinity of the vicinity of the pile mouth, and the pile is then set in the pile hole. For example, solidification strength 20N / mm as root hardening liquid 2 Cement milk is poured into the soil and stirred and mixed with the excavated soil to form a soil cement (solidification strength 20 N / mm 2 The solidification strength is 10 N / mm as the pile circumference fixing liquid. 2 Cement milk is poured into the soil, stirred and mixed with the excavated soil, and soil cement (solidification strength 0.5 N / mm) 2 Filling). Here, the solidification strength of the cement milk is an example, and can be appropriately selected and used. Moreover, according to this method, it is not necessary to perform root cutting to form a pile hole head expansion, and the ground improvement in the periphery of the pile head can be performed simultaneously with the construction of the foundation pile.
[0045]
[Experimental example]
The foundation pile constructed by the method of the present invention was subjected to an elastic analysis by a three-dimensional finite element method to obtain the stress generated by the pile due to the pile head horizontal load.
[0046]
(1) Experiment contents
The analysis model was 1/2 considering symmetry, and the surrounding ground was a cubic element of 10 m × 20 m × 13 m (depth × width × depth), and the pile was a line element of 11 m (construction length 10.5 m). The analysis was performed by applying a horizontal force (loading on the ground surface) of about 200kN to the pile head and setting the pile head restraint condition as free and rotationally fixed, and fixing the side other than the symmetry plane of the model.
[0047]
When a horizontal external force is applied to the pile head, the bending moment of the pile occurs most near the pile head and hardly occurs at the pile tip.
[0048]
In the analysis, in order to investigate in detail the behavior near the pile head where the bending moment occurs most,
GL ~ 3.0m at 0.1m interval,
3.0m to 6.0m at intervals of 0.25m,
6.0m to 11.0m at intervals of 0.5m,
11.0m to 13.0m with 1.0m interval
It was.
[0049]
The Young's modulus of the improved ground is 10, 30, 60, 90, 120, 300 N / mm 2 As for the improvement range, the analysis was conducted with the improved ground range of 9 cases per Young's modulus of one improved ground body. And, when there was no improved ground body (analysis of only the surrounding ground and piles), 55 cases were obtained, and 110 cases were analyzed when pile head restraint freedom and pile head restraint rotation fixation were combined.
[0050]
The Young's modulus of the surrounding ground was determined based on the standard penetration test and uniaxial compression test results in the experimental facility (Sakaimachi, Ibaraki Prefecture).
[0051]
Because the bending moment of the pile applied horizontal force to the ground surface,
0 for GL,
The maximum is 32279 N · m at 0.9 m,
It hardly occurs when it gets deeper from 6.5m.
[0052]
Then, it is assumed that the pile is broken at a moment of 32279 N · m at a depth of 0.9 m, and this portion is defined as the maximum bending moment of the pile.
[0053]
(2) Experimental results
Below, the result in the maximum bending moment in case a pile head restraint condition is freedom and rotation fixation is shown (FIG. 5, FIG. 6).
[0054]
(a) When the pile head restraint condition is free, the maximum bending moment is 3 × 3 × 0.6 (improved ground range: vertical x horizontal x depth (m)) in Young's modulus of each improved ground body, The improved ground range 4 × 4 × 0.6 was almost the same and the smallest, and the improved ground range 2 × 2 × 1.5 was the largest. Overall, the smaller the Young's modulus of the improved ground body, the smaller, and the smaller the depth of the improved ground body, the smaller. There was almost no change in the maximum bending moment due to the difference in the flat area of the improved ground body, and the influence of the depth of the improved ground body and the Young's modulus of the improved ground body was large.
[0055]
(b) When the pile head restraint condition is rotation fixed, the maximum bending moment decreased as the Young's modulus of the improved ground body increased, as with the pile head freedom. The Young's modulus of the improved ground is 30 to 300 N / mm 2 And 4 × 4 × 0.6 was the smallest, and 2 × 2 × 1.5 was the largest. When compared in the improved range, the maximum bending moment was smaller as the flat area of the improved ground body was larger and the depth of the improved ground body was shallower.
[0056]
(c) The Young's modulus of the ground without the improved ground (analysis of only the surrounding ground and piles) and the improved ground is 30 N / mm 2 The maximum bending moment is significantly reduced between 120 N / mm 2 After that, there was not much change.
[0057]
(d) Based on the above analysis results, the horizontal load test of the pile was actually performed, and the maximum bending moment of the pile was compared with the case where the improved ground body was not prepared by preparing the improved ground body near the pile head. Was found to decrease by 20% to 35% and the pile head horizontal displacement by 47% to 60%. In addition, by creating an improved ground near the pile head, the range of generation of the maximum bending moment of the pile was limited to the upper part for both free and fixed pile heads, and there was no significant difference in shear force.
[0058]
[Example 2]
Based on FIG. 2, another method for forming the pile hole enlarged head 30 will be described below. In the first embodiment, root cutting was performed separately from the pile hole excavation to form a pile hole widened portion, and the improved body was backfilled. However, this embodiment is an embodiment that is integrated with the pile hole excavation. is there.
[0059]
[A] Configuration of drilling rod
The excavation rod 1 used in this embodiment has an excavation head 2 at the tip, and kneading drums 4 and 4 and agitation bars 7 and 7 for kneading mud on the pile hole wall at predetermined intervals. Yes. Further, the kneading drum located at the top is a large-diameter kneading drum 5 and is formed to have a corresponding diameter (larger than other kneading drums) so that a pile hole widening head 30 with a desired diameter can be formed. And with the excavation head 2 positioned at the lowermost end, the excavation head 2 is mounted at a position where a desired pile hole expansion head 30 can be formed. Excavation blades 6 and 6 are attached to the lower end surface of the large-diameter kneading drum 5, and the pile hole head 30 can be excavated (FIG. 2 (a)). The other kneading drums 4 and 4 are formed to have an outer diameter corresponding to the diameter of the pile hole shaft portion 11. Thereby, a pile hole head expansion can be formed simultaneously with normal pile hole excavation.
[0060]
[B] Construction method of foundation pile with improved ground
(1) That is, as in Example 1, the excavation head 2 of the excavation rod 1 excavates the shaft portion 11 and the expanded bottom portion 12 of the pile hole 10, and simultaneously agitates the excavation mud with the agitation bars 7 and 7, Knead to the pile hole wall. When excavating the vicinity of the bottom of the pile hole, the excavating blades 6 and 6 of the large-diameter kneading drum hit the ground 13 and simultaneously enlarge and excavate the pile hole pile head to form a pile hole enlarged head 30 (see FIG. 2 (a)).
[0061]
(2) Moreover, the improvement soil 29 is produced | generated by the process similar to Example 1 by the drilling mud overflowing on the ground in the case of a pile hole excavation (FIG.1 (e)). At this time, if necessary, as in the first embodiment, the pit 14 can be formed around the pile hole to temporarily store the drilling mud (FIG. 2 (a), the chain line shown in FIG. 14).
[0062]
(3) Subsequently, while pulling up the excavating rod 1 or after pulling up, the pile hole filler 15 is filled into the pile hole 10 to form the pile hole 10 having the shaft portion 11, the bottom expanded portion 12, and the head expanded portion 30. (FIG. 2B).
[0063]
(4) Subsequently, the ready-made pile 17 is inserted into the pile hole 10 and arranged so that the ready-made pile 17 is located at the approximate center in the head extension 30. Subsequently, the pile hole filler 15 in the expanded head 30 of the pile hole is removed (pumped), and the improved soil 29 generated as described above is backfilled in the empty expanded head 30 and solidified and then improved. A ground base 31 is formed. The foundation pile 18 is formed as described above (FIG. 2C).
[0064]
Moreover, here, the pile hole filling 15 in the expanded head 30 of the pile hole can be used as it is as the hydraulic material 23 of the improved ground body without being removed.
[0065]
[C] Other embodiments
In the above-described embodiment, the improved soil 29 is backfilled after the pile hole filler 15 in the pile head expansion 30 is removed, but the head expansion is performed in a state where the pile hole filler 15 is filled in the head expansion 30. The improved soil 29 can be backfilled in the portion 30 (not shown). In this case, the pile soil filling 15 overflowing the ground 13 can be discarded by the backfilled improved soil 29, or the improved soil 29 and the pile hole filling can be stirred and mixed.
[0066]
In the above-described embodiment, the large-diameter kneading drum 5 having the excavating blades 6 and 6 on the lower surface is used as the expanded excavating and kneading means. ) Is optional (not shown).
[0067]
[Example 3]
Based on FIG. 3, the formation method of another pile hole head expansion is demonstrated.
[0068]
[A] Configuration of drilling rod 1
The excavation rod 1 used in this embodiment has an excavation head 2 at the tip, and the excavation head 2 is mounted with swinging excavation arms 8, 8. As a normal excavation state, excavation can be performed with the diameter of the shaft portion of the pile hole, and expansion excavation can be performed by reverse rotation. Further, the excavating arm 8 has an enlarged kneading portion (rod-like kneading means) 9 that can level the pile hole wall during the enlarged excavation. Further, kneading drums 4 and 4 and stirring bars 7 and 7 similar to those in Examples 1 and 2 are attached to the excavating rod 1 (FIGS. 3A and 3B).
[0069]
[B] Foundation pile construction method
Next, the construction method will be described.
[0070]
(1) The excavation head 2 is fixed in an expanded excavation state while the excavation rod 1 is reversely rotated from the ground 13 to a predetermined depth, and the expanded head 30 of the pile hole is excavated (FIG. 3A). At this time, the hole wall of the enlarged head 30 of the pile hole is leveled by the enlarged kneading portions 9 and 9.
[0071]
(2) After the head 30 having a predetermined depth and diameter is formed, the excavation rod 1 is returned to the normal rotation to bring the excavation head 2 into the normal excavation state, and the normal pile hole shaft portion 11 is built (FIG. 3). (B)). At this time, the excavated mud is stirred by the stirring bars 7 and 7, and the hole walls are leveled by the kneading drums 4 and 4. After forming a predetermined pile hole shaft part, the excavation rod 1 is reversely rotated, the excavation head 2 is brought into an enlarged excavation state, and the pile hole expanded bottom part 12 is formed. The hole wall at the bottom of the pile hole is also leveled by the enlarged kneading parts 9 and 9.
[0072]
(3) As in Examples 1 and 2, the excavated mud produced during excavation is subjected to a predetermined treatment to generate improved soil (FIG. 1 (e)).
[0073]
(4) In the same manner as in Example 2, the pile hole filler 15 is filled into the pile hole 10 to form the pile hole 10 having the shaft portion 11, the bottom expanded portion 12, and the head expanded portion 30 (FIG. 3 (c). )). Subsequently, in the same manner as in Example 2, the ready-made pile 17 is inserted into the pile hole 10, the improved soil 29 generated as described above is backfilled in the expanded head 30, and after the solidification, the improved ground body 31 is The sushi is formed to form the foundation pile 18 (FIG. 3D).
[0074]
[C] Other embodiments
In the above embodiment, the pile hole shaft portion 11 is first excavated after excavating the pile hole widening head 30, but other methods may be used. For example, if the excavation head 2 reaches the upper end portion (head expansion forming position) of the pile hole 10 when the excavation rod 1 is pulled up from the pile hole 10 after excavating the shaft portion 11 and the bottom expanded portion 12 of the pile hole. The head 30 can be formed by excavating the ground with the excavating arms 8 and 8 so as to expand the pile hole diameter by rotating the excavating rod 1 in the reverse direction (not shown).
[0075]
【The invention's effect】
The improved ground body is formed integrally with the foundation pile and is relatively large in the vicinity of the pile head because the improved soil body is formed by backfilling the improved soil treated by mixing hydraulic material with the drilling mud in the pile hole expansion head. With respect to the acting horizontal force, the entire pile and the improved ground portion can withstand a greater horizontal force. On the contrary, if the foundation pile requires the same horizontal strength, the horizontal force borne by the pile can be reduced, so that the excavation diameter of the pile hole and the diameter of the ready-made pile can be reduced.
[0076]
In addition, in the foundation pile construction method that mainly uses water as an excavation auxiliary means, a large amount of excavated mud produced by excavation is treated on the ground to form improved soil, so the excavated mud can be used effectively, so the amount of residual soil to be treated Has a positive effect on the environment.
[0077]
When using an excavation rod with an expansion excavation kneading mechanism attached to the upper end of the excavation rod so that the desired pile hole expansion head can be formed, or when using an excavation head having an excavation head capable of expansion and contraction excavation Since the pile hole expansion head can be excavated together in the normal pile hole excavation process, the pile hole head expansion can be formed continuously in the pile hole excavation process, and the construction efficiency can be improved. is there. Furthermore, when using an excavation rod equipped with an expansion excavation and kneading mechanism, the excavation of the head of the pile hole can be performed simultaneously with excavation of the bottom of the pile hole, so that the construction efficiency can be further improved.
[0078]
Moreover, even if it is a foundation pile which embedded the projection part of the ready-made pile which provided at least one projection part in the lower part in the pile hole widening part, if an improved ground body is formed in a pile hole expansion head, A horizontal support force commensurate with the high tip support force in the hole bottom portion can be obtained. Therefore, there is an effect that a foundation pile having a good balance between the vertical support force and the horizontal support force can be constructed.
[Brief description of the drawings]
FIGS. 1A to 1F are longitudinal sectional views illustrating a method for constructing a foundation pile according to the present invention, and FIG. 1E is a view illustrating a process for forming a soil cement for backfilling.
FIGS. 2A to 2C are longitudinal sectional views illustrating another method for excavating pile holes.
FIGS. 3A to 3D are longitudinal sectional views for explaining another method for excavating a pile hole. FIG.
FIGS. 4A and 4B are longitudinal sectional views for explaining a construction method of an embodiment using a ready-made pile with protrusions.
FIG. 5 is a graph showing the relationship between the maximum bending moment with free pile head and the improved ground Young's modulus in each ground range, as a result of the experiment.
FIG. 6 is a graph showing the relationship between the maximum bending moment and the improved ground Young's modulus in the pile head rotation constraint in each ground range, similarly in the experimental results.
[Explanation of symbols]
1 Drilling rod
2 Drilling head
3 Expanding blade
4 Kneading drum
5 Large-diameter kneading drum (enlarged drilling kneading mechanism)
6 Drilling blade (enlarged drilling and kneading mechanism)
7 Stir bar
8 Drilling arm
9 Enlarging and kneading department
10 Pile hole
11 Shaft hole shaft
12 Expanded bottom of the pile hole
13 ground
14 pits
15 Pile hole filling
17 Ready-made piles
18 Foundation pile
20 Reservoir
21 Vibrating sieve machine
22 Stirring layer
23 Improved soil hydraulic material
25 Drilling mud
26 Mud
27 Drilling mud (after treatment including excavated soil of specified grain soil)
28 Drilling mud (uniformly stirred)
30 Pile hole head expansion
31 Improved ground

Claims (2)

掘削予定の杭穴周辺にビットを形成し、所定の杭穴を掘削して、発生する掘削泥水を地上の前記ビットで回収し、前記ビットから汲み上げた前記掘削泥水に水硬化性材料を混練して改良土を形成し、前記杭穴内に基礎構造体を挿入すると共に、該基礎構造体毎に前記杭穴の杭頭周辺部を拡大掘削して所定深度の杭穴拡頭部を形成し、該杭穴拡頭部内に前記改良土を埋め戻して、前記杭穴拡頭部内に改良地盤体を形成する基礎杭の構築方法であって、前記基礎杭は根固め部を有する先端支持杭であり、かつ前記改良土の形成は「杭穴掘削の際に地上に溢れ出る掘削泥水を回収したビットから汲み上げた掘削泥水を振動振るい機等により泥塊を除去し、前記掘削泥水を貯留槽に貯めて、前記掘削泥水を前記貯留槽から撹拌槽に移して撹拌して、その後水硬化性材料を混練して」おこなうことを特徴とした基礎杭の構築方法。A bit is formed around the pile hole to be drilled, a predetermined pile hole is drilled, and the generated drilling mud is collected by the bit on the ground, and a water curable material is kneaded into the drilling mud pumped up from the bit Forming an improved soil, inserting a foundation structure into the pile hole, and expanding the pile head periphery of the pile hole for each foundation structure to form a pile hole expansion head of a predetermined depth, A foundation pile construction method for backfilling the improved soil in a pile hole expansion head and forming an improved ground body in the pile hole expansion head, wherein the foundation pile is a tip support pile having a root consolidation part, and The formation of the improved soil is " removing the mud from the bit that collected the drilling mud overflowing the ground during the excavation of the pile hole with a vibrating shaker, etc., storing the drilled mud in a storage tank, The drilling mud is transferred from the storage tank to the agitation tank and agitated. Method for constructing a foundation pile which is characterized in that to "perform kneading post water-curable material. 掘削予定の杭穴周辺にビットを形成し、杭穴拡頭部を有する所定深度の杭穴を掘削して、発生する掘削泥水を地上の前記ビットで回収し、前記ビットから汲み上げた前記掘削泥水に水硬化性材料を混練して改良土を形成し、前記杭穴内に基礎構造体を挿入し、該基礎構造体毎に前記杭穴拡頭部に、前記改良土を埋め戻して、前記杭穴拡頭部に改良地盤体を形成する基礎杭の構築方法であって、前記基礎杭は根固め部を有する先端支持杭であり、かつ前記改良土の形成は「杭穴掘削の際に地上に溢れ出る掘削泥水を回収したビットから汲み上げた掘削泥水を振動振るい機等により泥塊を除去し、前記掘削泥水を貯留槽に貯めて、前記掘削泥水を前記貯留槽から撹拌槽に移して撹拌して、その後水硬化性材料を混練して」おこなうことを特徴とした基礎杭の構築方法。A bit is formed around the pile hole to be drilled, a pile hole having a predetermined depth is drilled, and the generated drilling mud is collected by the bit on the ground, and the drilled mud pumped up from the bit Water-hardening material is kneaded to form improved soil, a foundation structure is inserted into the pile hole, the pile is expanded in the pile hole expansion head for each foundation structure , and the pile hole expansion is performed. A foundation pile construction method for forming an improved ground body in a portion, wherein the foundation pile is a tip support pile having a root-solidified portion, and the formation of the improved soil is " overflowing to the ground during pile hole excavation " Drilling mud pumped up from the bit that collected the drilling mud is removed by a vibrating shaker or the like, the mud mass is stored in a storage tank, the drilling mud is transferred from the storage tank to the stirring tank, and stirred. Then knead the water curable material " How to build the foundation piles.
JP2000293705A 2000-09-27 2000-09-27 Construction method of foundation pile to improve ground around pile head Expired - Lifetime JP4555974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293705A JP4555974B2 (en) 2000-09-27 2000-09-27 Construction method of foundation pile to improve ground around pile head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293705A JP4555974B2 (en) 2000-09-27 2000-09-27 Construction method of foundation pile to improve ground around pile head

Publications (2)

Publication Number Publication Date
JP2002097636A JP2002097636A (en) 2002-04-02
JP4555974B2 true JP4555974B2 (en) 2010-10-06

Family

ID=18776454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293705A Expired - Lifetime JP4555974B2 (en) 2000-09-27 2000-09-27 Construction method of foundation pile to improve ground around pile head

Country Status (1)

Country Link
JP (1) JP4555974B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876353B2 (en) * 2012-03-29 2016-03-02 鹿島建設株式会社 Steel pipe pile construction method
JP6157112B2 (en) * 2012-12-27 2017-07-05 株式会社錢高組 Caisson float prevention member and installation method of caisson float prevention member
JP6284119B2 (en) * 2013-11-15 2018-02-28 三谷セキサン株式会社 Excavation method for pile holes with expanded head
JP6567327B2 (en) * 2015-05-28 2019-08-28 三谷セキサン株式会社 Pile hole drilling method, pile hole drill rod
CN106320739B (en) * 2016-08-29 2018-10-19 中铁第四勘察设计院集团有限公司 A kind of attached diaphram wall between main body in subway station cuts method
JP7007054B2 (en) * 2017-10-30 2022-01-24 三谷セキサン株式会社 How to build foundation piles in the ground including contaminated soil layer
CN113445510B (en) * 2021-08-06 2022-05-03 江苏兰馨园林有限公司 Method for opening high-compactness building foundation pit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664020A (en) * 1979-10-30 1981-06-01 Asahi Chem Ind Co Ltd Expanded diameter pile and diameter-expanding work for existing pile
JPS62253817A (en) * 1986-04-28 1987-11-05 Nippon Concrete Ind Co Ltd Burying work of custom-made concrete pile with expanded head
JPH02289718A (en) * 1989-04-28 1990-11-29 Mitani Sekisan Co Ltd Drilling method of expanded head pile hole, constructing method of expanded head pile and pile hole drill
JP3280710B2 (en) * 1992-07-17 2002-05-13 財団法人土木研究センター Ground improvement method
JPH07279171A (en) * 1994-04-11 1995-10-24 Maruyasu Doboku Kk Soil cement composite pile, and execution method and execution device therefor
JP3702435B2 (en) * 1996-02-02 2005-10-05 三谷セキサン株式会社 How to build the foundation

Also Published As

Publication number Publication date
JP2002097636A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JPS5991214A (en) Head treatment work of on-site pile
JP4555974B2 (en) Construction method of foundation pile to improve ground around pile head
JP3960372B2 (en) Foundation pile structure
JPH0960028A (en) Method for increasing strength of existing steel pipe pile
JP4154487B2 (en) Foundation pile construction method, foundation pile
JP4378752B2 (en) Ready-made piles for large-diameter ready-made concrete pile foundations
JP2005282063A (en) Composite field preparation pile, its construction method and device for preparing composite field preparation pile
JP2885077B2 (en) Connection pile method of ready-made concrete pile
JP2001355233A (en) Forming method for cast-in-place pile by mixing and stirring
JP2005282043A (en) Earth retaining wall reinforcing method
JPS63315724A (en) Execution work of cast-in-place concrete pile with high yield strength
JP3881961B2 (en) Pile embedding method and excavator used for the method
JP4200237B2 (en) Construction method of foundation pile
JPH1060879A (en) Building foundation and construction method thereof
JP2004124452A (en) Foundation pile structure in bearing ground and working method of foundation pile
JP2000230232A (en) Tenacity improving method for prestressed reinforced concrete pile
JP2004150070A (en) Treatment method for removed soil, and removed soil-treated construction method for foundation pile
JP2937766B2 (en) Continuous underground wall construction method
JP2006348637A (en) Construction method of cast-in-place pile and cast-in-place pile structure
JP3612524B2 (en) Septic tank installation and construction method
JP3335593B2 (en) Underground structure construction structure
JPS63197718A (en) Construction work of in-situ pile
JPH0627405B2 (en) Ready-made pile burying method
JPH0613766B2 (en) Construction method of open-ended pile foundation
JP4576768B2 (en) Composite type underground continuous wall and construction method of the same wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Ref document number: 4555974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250