JPS63313105A - Image fiber - Google Patents

Image fiber

Info

Publication number
JPS63313105A
JPS63313105A JP62149594A JP14959487A JPS63313105A JP S63313105 A JPS63313105 A JP S63313105A JP 62149594 A JP62149594 A JP 62149594A JP 14959487 A JP14959487 A JP 14959487A JP S63313105 A JPS63313105 A JP S63313105A
Authority
JP
Japan
Prior art keywords
silica
core
glass
image fiber
melt viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62149594A
Other languages
Japanese (ja)
Inventor
Kazuo Sanada
和夫 真田
Sadao Chigira
定雄 千吉良
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62149594A priority Critical patent/JPS63313105A/en
Publication of JPS63313105A publication Critical patent/JPS63313105A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01214Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multifibres, fibre bundles other than multiple core preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/40Multifibres or fibre bundles, e.g. for making image fibres

Abstract

PURPOSE:To obtain an image fiber having a low transmission loss by incorporating TiO2 as a dopant into glass to constitute cores and incorporating >=1,000ppm hydroxyl group therein. CONSTITUTION:A clad 1 consists of pure silica and the many cores 2... are dispersed in the clad 1. Each core is formed to about 2-4mum diameter. A jacket 3 consisting of the pure silica is provided around the clad 1 and further, a protective film 4 consisting of a modified silicone resin or the like is provided on the outside circumference thereof. The cores 2 consist of the silica glass which is added with at least TiO2 as the dopant and in which the OH group is incorporated at >=1,000ppm by weight, more preferably SiO2, TiO2, GeO2, and the melt viscosity thereof has the value of 80-120% of the melt viscosity of the pure silica. The silica glass in the range of TiO2:GeO2: SiO2=5-20:10-20:60-85 by molar ratio is thereby obtd. and the melt viscosity having the value of 80-120% of the melt viscosity of the silica is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、主に工業用に使用される長尺のイメージフ
ァイバに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a long image fiber mainly used for industrial purposes.

〔従来技術とその問題点〕[Prior art and its problems]

近時、イメージファイバに対して細径化、多画素化の要
求がある。このような要求に対応するために、コアとし
てGeO2を大量にドープして屈折率を高くしたシリカ
を用い、クラッドとしてフッ素を大量にドープして屈折
率を低くしたシリカを用い、コアとクラッドとの比屈折
率差を4%程度まで大きくし、コア径(画素径)を3μ
m1fj度にまで細くしたものが知られている。
Recently, there has been a demand for image fibers to be smaller in diameter and have more pixels. In order to meet these demands, the core is made of silica doped with a large amount of GeO2 to increase its refractive index, and the cladding is made of silica doped with a large amount of fluorine to lower its refractive index. Increase the relative refractive index difference to about 4%, and increase the core diameter (pixel diameter) to 3μ
It is known that the diameter is as thin as m1fj degrees.

しかしながら、このイメージファイバにあプ1は、その
製造時に気泡が必然的に発生し、これが製造イメージフ
ァイバにそのまま残留し、生産性が低い問題があった。
However, in this image fiber AP1, air bubbles are inevitably generated during manufacturing, and these bubbles remain in the manufactured image fiber, resulting in a problem of low productivity.

これは、コアとなるガラスおよびクラッドとなるガラス
にともに大量のGeO2あるいはフッ素がドープされて
いるため、溶融粘度が低くなり、溶融紡糸時にジャケッ
トとなるシリカデユープの?8融粘度との簡に大きな差
が生じるためである。
This is because both the core glass and the cladding glass are doped with a large amount of GeO2 or fluorine, which lowers the melt viscosity of the silica dupe that becomes the jacket during melt spinning. This is because a large difference easily occurs between the melt viscosity and the melt viscosity.

このような不都合を解決するものとして、コアにTL 
O2とGeO2をドープしたシリカを用い、クラッドに
純粋なシリカを用いたイメージファイバが考えられてい
る。これは、ドーパントとしてのTL O2が屈折率を
高めるととbにWj@粘度をも高める性質を有している
ため、GeO2の大Aドープによる溶融粘度の低下を補
償することができ、かつコアを高屈折率とすることがで
きるからである。
As a solution to this inconvenience, TL is added to the core.
Image fibers using silica doped with O2 and GeO2 and pure silica for the cladding have been considered. This is because when TL O2 as a dopant increases the refractive index, it also increases Wj@viscosity, so it can compensate for the decrease in melt viscosity due to large A doping of GeO2, and the core This is because it can have a high refractive index.

しかし、このイメージファイバでは、丁LO2添加によ
って、TL’による極めて大きなく数百dB/8JR)
伝送損失が必然的に発生し、長尺のイメージファイバに
は不適であると言う問題がある。
However, with this image fiber, due to the addition of LO2, the TL' is extremely large (several hundred dB/8 JR).
There is a problem in that transmission loss inevitably occurs, making it unsuitable for long image fibers.

(問題点を解決するための手段) この発明では、コアをなすガラスに少なくともTL O
zを含有させ、かつ水酸基を1000ppa+以上含イ
jさせることをその解決手段とした。この水酸基の導入
により、TL O2含有による伝送損失の増加が抑制さ
れ、長尺のイメージファイバとなりうる。
(Means for Solving the Problems) In the present invention, at least TLO
The solution was to contain Z and hydroxyl groups of 1000 ppa+ or more. By introducing this hydroxyl group, an increase in transmission loss due to the inclusion of TLO2 is suppressed, and a long image fiber can be obtained.

図面は、この発明のイメージファイバの一例を示すもの
で、図中符号1はクラッドである。このクラッド1は純
粋なシリカからなっており、このクラッド1内には多数
のコア2・・・が分散されている。コア2は、このイメ
ージファイバの画素を構成するもので、その径は約2〜
4μm程度となっている。また、クラッド1の周囲には
純粋なシリカからなるジャケット3が設けられており、
このジャケット3の外周には、変性シリコーン樹脂、紫
外線硬化樹脂などからなる保護被膜4が設けられている
The drawing shows an example of the image fiber of the present invention, and reference numeral 1 in the drawing indicates a cladding. This cladding 1 is made of pure silica, and a large number of cores 2... are dispersed within this cladding 1. Core 2 constitutes the pixels of this image fiber, and its diameter is approximately 2 to 2.
The thickness is approximately 4 μm. Additionally, a jacket 3 made of pure silica is provided around the cladding 1.
A protective coating 4 made of modified silicone resin, ultraviolet curing resin, or the like is provided around the outer periphery of this jacket 3.

コア2は、ドーパントとして少なくともTL O2が添
加され、かつ水M基(011基)が重呈比T:1100
0pp以上含まれるシリカガラス、好ましくは5iOz
、TLOzおよσGe0zからなり、かつその溶融粘度
が純粋シリカのそれの80〜120%(0,8−1,2
侶)であり、水酸X^が1000ppH以上含まれてい
るシリカガラスからなっている。このコア2をなりガラ
スの溶融粘度をシリカのそれの80〜120%の範囲と
するには、モル比でTL−02:GeO2:5L02−
5〜20:10〜20:60〜85の・範囲とすること
により達成される。また、このような組成のガラスtよ
、TL O2もGe02b屈折率を高めるため、高屈折
率となつ−【おり、シリカに対する比屈折率差を5%程
度まで高くすることができる。一方、上記クラッド1は
上述のように純粋なシリカからなっており、コア/クラ
ッドの北回v1率差415%程度となり、このためコア
2径を上述のように2μm程度まか細くできる。さらに
、]72には、水酸基が多hlに含まれているため、T
L02添加によるTL’″の伝送損失が抑制され、伝送
損失増加が少なくなる。ここぐ、水N!基の含有h1が
11000pp未満では、伝送損失増加を抑イリ°する
効果が不十分であり、長尺のイメージファイバに使用す
ることが不可能となる。水酸1jの含有1の上限は、T
L ”による伝送損失増加の抑止効果の点からは、特に
制限されないが、水M11による1、24μ肌等の吸収
ピークが著しく大きくなり、吸収ピークの裾野が可視領
域に伸び−(くるため、通常は50001)DI程度が
上限となる。
In the core 2, at least TL O2 is added as a dopant, and the water M group (011 group) has a weight ratio T: 1100.
Silica glass containing 0pp or more, preferably 5iOz
, TLOz and σGe0z, and its melt viscosity is 80 to 120% that of pure silica (0,8-1,2
It is made of silica glass containing 1000 ppH or more of hydroxyl X^. To make the core 2 have a melt viscosity of 80 to 120% of that of silica, the molar ratio is TL-02:GeO2:5L02-
This is achieved by setting the ratio to be in the range of 5 to 20:10 to 20:60 to 85. In addition, since the glass having such a composition also has a high refractive index because TL O2 increases the refractive index of Ge02b, the relative refractive index difference with respect to silica can be increased to about 5%. On the other hand, the cladding 1 is made of pure silica as described above, and the difference in the northern v1 ratio between the core and the cladding is about 415%, so the diameter of the core 2 can be made as thin as about 2 μm as described above. Furthermore, since ]72 contains a hydroxyl group in multiple hl, T
The transmission loss of TL''' due to the addition of L02 is suppressed, and the increase in transmission loss is reduced.If the content h1 of the water N! group is less than 11000 pp, the effect of suppressing the increase in transmission loss is insufficient, It becomes impossible to use it for a long image fiber.The upper limit of the content 1 of hydroxyl 1j is T
From the point of view of suppressing the increase in transmission loss due to L'', there are no particular restrictions, but the absorption peak of water M11 such as 1 and 24μ skin becomes significantly large, and the base of the absorption peak extends into the visible region. The upper limit is about 50001) DI.

このようなイメージファイバの製造は、次のようにして
行われる。まず、コア部とクラッド部とからなるプリフ
ォームを作製する。このブリ゛ノオームの作成は、M 
CV l)法、VAD法等によってnわれる。MCVL
)法によつ又作成するには、クラッド部となるシリカチ
ューブをガラスmWに取り付け、シリカデユープ内に5
LCIa 、 GeCfa 、 TLC14などのガラ
ス原料ガスと高純水(水蒸気)と酸素ガスとを導入し、
トラバース移動する外部加熱源によって加熱する。この
際、a純水と金属ハロゲン化物のガラス原料ガスとの反
応を防止するため、酸素ガスのシールドガスを流す。こ
れにより、シリカチューブ内壁面にコア部となるガラス
を堆積させたのち、強熱し゛(コツプラス化(中実化)
してプリフォームとする。また、V A l)法による
ものでは、多重管バーナに1−記ガラス原料ガス、Pa
寒ガス、水素ガスを供給し、火炎中ぐガラススートを生
成させ、出発棒材の先端部にガラススートを堆積させる
。ついで、これを焼結炉に収容し、ヘリウム−高純水ガ
ス雰囲気で加熱し、透明ガラス化するとともに水IIを
導入し、ついでこれを延伸したのち、クラッド部となる
シリカチューブをジyケッテインクしてブリノオームと
づる。
Manufacturing of such an image fiber is performed as follows. First, a preform consisting of a core part and a cladding part is produced. The creation of this Brynoom is by M
CV l) method, VAD method, etc. MCVL
) method, attach the silica tube that will become the cladding part to the glass mW, and place 5
Introducing frit gas such as LCIa, GeCfa, TLC14, high purity water (steam) and oxygen gas,
Heated by a traversing external heating source. At this time, a shielding gas of oxygen gas is flowed in order to prevent a reaction between the a-pure water and the metal halide glass raw material gas. As a result, after depositing the glass that will become the core on the inner wall surface of the silica tube, it is ignited (making it solid).
and use it as a preform. In addition, in the method based on the V A l) method, a multi-tube burner is equipped with the glass raw material gas, Pa
Cold gas and hydrogen gas are supplied, glass soot is generated in the flame, and glass soot is deposited on the tip of the starting bar. Next, this was placed in a sintering furnace and heated in a helium-high-purity water gas atmosphere to make it transparent and vitrified, and water II was introduced. After stretching this, a silica tube that would become the cladding part was inked. Blinohm and Zuru.

このようなプリフォームを溶融紡糸し、径150〜20
0μmの素ファイバとづる。この素ファイバを定尺に切
断し、この定尺系ファイバをジャケットとなるシリカチ
ューブ内に整列、収容し、一端部から溶融紡糸して目的
のイメージファイバとする。
Such a preform is melt-spun and has a diameter of 150 to 20 mm.
Spelled out as 0μm plain fiber. This raw fiber is cut to a fixed length, and the fixed length fiber is aligned and housed in a silica tube that serves as a jacket, and melt-spun from one end to form a target image fiber.

この製造の際、ブラフ4−ムのコア部をなすガラスの溶
融時の粘性がシリカのそれの80〜120%とシリカの
粘性に近いため、シリカチ二L−1から4【るクラッド
部のジャケラディングの際に、コア部のみが粘性低下し
て軟らかくなることがなく、発泡現象が生じることがな
い。また、バ1フ?イバをジャケットとなるシリカチュ
ーブ内に収容してイメージファイバに紡糸づる際も同様
に基ファイバの粘性がシリカのそれに近いため発泡する
ことがない。また、プリフォームのクラッド部の形成が
シリカチューブで行うことができ、厚肉となるクラッド
部の形成が簡単に行える。よって、このイメージファイ
バの!lj″mにあっ(は生産性が高く、製品歩留りが
高くなる。
During this production, the viscosity of the glass forming the core of the bluff 4-me is 80-120% of that of silica, which is close to that of silica. During rudding, only the core part does not decrease in viscosity and become soft, and no foaming phenomenon occurs. Also, Ba1f? Similarly, when the base fiber is housed in a silica tube serving as a jacket and spun into an image fiber, foaming does not occur because the viscosity of the base fiber is close to that of silica. Further, the cladding portion of the preform can be formed using a silica tube, and a thick cladding portion can be easily formed. Therefore, this image fiber! lj″m has high productivity and product yield.

〔実施例〕〔Example〕

内径20 txs 、外径25aw+のクラッド部とな
るシリカチューブの内面にMCVD法により、コア部と
なるガラスを形成した。コア部のガラス形成のためのガ
ラス原料ガス等の種類およびその流量は下記の通りであ
る。
A glass serving as a core portion was formed by MCVD on the inner surface of a silica tube having an inner diameter of 20 txs and an outer diameter of 25 aw+ and serving as a cladding portion. The types and flow rates of frit gases and the like for forming glass in the core portion are as follows.

SL C14100cc/分 Gc(J 4     30cc/分 子LCj450CC/分 高純水蒸気 5〜10cc/分 酸九     600cc/分 シリカデユープの回転数を20 ramとし、外部il
l熱バーナのトラバース速度を50IH7分とし、トラ
バース回数100回後、シリカチューブを強熱してコツ
プラス化し、外径21m、コア部1¥7履、長さ500
Mの透明プリフォームを得た。
SL C14 100 cc/min Gc (J 4 30 cc/molecule LCj 450 CC/min High purity steam 5 to 10 cc/min Acid 9 600 cc/min The rotation speed of the silica duplex is 20 ram, and the external il
The traverse speed of the heat burner was set to 50 IH for 7 minutes, and after 100 traverses, the silica tube was ignited to make it into a Kotsu Plus, outer diameter 21 m, core part 1 yen 7, length 500.
A transparent preform of M was obtained.

このプリノォームを2100℃で溶融紡糸し、径150
μmの素ファイバを得た。この素ファイバの比屈折率は
5%であった。
This puri-nome was melt-spun at 2100°C, and the diameter was 150.
A μm plain fiber was obtained. The relative refractive index of this elementary fiber was 5%.

ついで、この素ファイバを長さ 200rWRに切断し
、これをジャケットとなる外径30IIIII、内径2
7mのシリカチューブ内に整列して収容し、これを21
00℃で紡糸し−(外径0.3履のイメージファイバを
得た。
Next, this raw fiber was cut into a length of 200rWR, and this was made into a jacket with an outer diameter of 30III and an inner diameter of 2.
Arranged and housed in a 7 m silica tube, this was placed in a 21
An image fiber having an outer diameter of 0.3 mm was obtained by spinning at 00°C.

この際、高純水蒸気°の供給量を変化させ、コアとなる
ガラス中の水酸基含有量を変化させて、数秒のイメージ
ファイバを作製し、水Il!基含有吊と0.63μmに
おける伝送損失とのIJ係を求めた。
At this time, by changing the amount of high-purity water vapor supplied and changing the content of hydroxyl groups in the core glass, an image fiber of several seconds was fabricated, and water Il! The IJ relationship between the group-containing suspension and the transmission loss at 0.63 μm was determined.

結果を下記に示す。The results are shown below.

水1lN1基含有吊(pp■) 伝送損失(dB /階
)300         2QO また、このイメージファイバ中の気泡の個数を顕微1!
で観察したところ、長さ 100m当り1〜2個であっ
た。また、画lA径は2μmまで細くすることが可能で
あった。
Suspension containing 1 lN of water (pp■) Transmission loss (dB/floor) 300 2 QO Also, the number of bubbles in this image fiber is 1!
When observed, there were 1 to 2 pieces per 100 m in length. Furthermore, the diameter of the image 1A could be reduced to 2 μm.

一方、従来のコアをGe0zドープシリカ(比屈折率差
+2.5%)、クラッドをフッ素ドープシリカ(比屈折
率差−1,5%)から形成したイメージファイバでは、
長さ 100m当りの気泡数が10個〜12@lであっ
た。また、コア/クラッドの比171を析率差が4%で
あるので、画素径は33μmが限を臭であった。
On the other hand, in a conventional image fiber in which the core is made of GeOz-doped silica (relative refractive index difference +2.5%) and the cladding is made of fluorine-doped silica (relative refractive index difference -1.5%),
The number of bubbles per 100 m of length was 10 to 12@l. Furthermore, since the core/cladding ratio was 171 and the difference in analysis rate was 4%, the pixel diameter was limited to 33 μm.

(発明の効果〕 以上説明したように、この発明のイメージファイバは、
マルチコア形イメージファイバにおいC1コアをなすガ
ラスにはドーパントとしく少なくともTL O2が含ま
れ、水酸基が1000ppH1以上含まれているもので
あるの(゛、”I O2添加によつ°(必然的に生ずる
TL”°による伝送損失増加が水1B導入によって防止
されることになり、TL O2を添加して溶融粘喰を1
1めで製造時の気泡発生の防止を計ることによって生じ
る付随的な不都合が解消され、伝送損失の低いイメージ
ファイバとなりつる。このため、例えば20〜30mの
長尺のイメージファイバが実用化される。また、コアを
、1屈折率とすることができるので、細径化、多雨本化
も可能となる。
(Effects of the Invention) As explained above, the image fiber of the present invention has
In the multi-core image fiber, the glass that forms the C1 core contains at least TLO2 as a dopant, and contains hydroxyl groups of 1000 pppH or more. The increase in transmission loss caused by TL"° can be prevented by introducing 1B of water, and by adding TL O2, the molten viscosity can be reduced by 1B.
The incidental inconvenience caused by preventing the generation of bubbles during manufacturing is eliminated in the first step, resulting in an image fiber with low transmission loss. For this reason, a long image fiber of, for example, 20 to 30 m is put into practical use. In addition, since the core can have a refractive index of 1, it is possible to make the diameter smaller and make it rainier.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明のイメージファイバの一例を示す概略
断面図である。 1・・・・・・クラッド、 2・・・・・・コア。
The drawing is a schematic cross-sectional view showing an example of the image fiber of the present invention. 1...Clad, 2...Core.

Claims (1)

【特許請求の範囲】 多数のコアが集合されてなるマルチコア形イメージファ
イバにおいて、 コアをなすガラスには、ドーパントとして少なくともT
iO_2が含まれ、かつ水酸基が1000ppm以上含
まれていることを特徴とするイメージファイバ。
[Claims] In a multi-core image fiber made up of a large number of cores, the glass forming the core contains at least T as a dopant.
An image fiber containing iO_2 and 1000 ppm or more of hydroxyl groups.
JP62149594A 1987-06-16 1987-06-16 Image fiber Pending JPS63313105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149594A JPS63313105A (en) 1987-06-16 1987-06-16 Image fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149594A JPS63313105A (en) 1987-06-16 1987-06-16 Image fiber

Publications (1)

Publication Number Publication Date
JPS63313105A true JPS63313105A (en) 1988-12-21

Family

ID=15478617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149594A Pending JPS63313105A (en) 1987-06-16 1987-06-16 Image fiber

Country Status (1)

Country Link
JP (1) JPS63313105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048356A1 (en) * 2022-08-29 2024-03-07 住友電気工業株式会社 Method for producing optical fiber preform, and optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048356A1 (en) * 2022-08-29 2024-03-07 住友電気工業株式会社 Method for producing optical fiber preform, and optical fiber preform

Similar Documents

Publication Publication Date Title
US4184860A (en) Process for the production of glass fiber light conductors
US4664474A (en) Optical fiber and process for producing the same
JP2959877B2 (en) Optical fiber manufacturing method
KR890001125B1 (en) Optical fifer
JPS59174541A (en) Optical fiber maintaining plane of polarization
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6240301B2 (en)
JPS63313105A (en) Image fiber
US20200024176A1 (en) Viscocity-Reducing Dopants In Optical Fibers
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
GB1598760A (en) Optical fibre preforms and their manufacture
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JP2770092B2 (en) Radiation-resistant image fiber
JPH0551542B2 (en)
JPS6011250A (en) Fiber for optical transmission and its manufacture
JPS6128612B2 (en)
JPS6131328A (en) Optical fiber
JPS63313103A (en) Image fiber
JPH0254285B2 (en)
JPS63313104A (en) Image fiber
JP2657726B2 (en) Radiation-resistant optical fiber and image fiber
JPH01242432A (en) Production of base material for optical fiber
JPH046120A (en) Preform for image fiber
JPS6212180B2 (en)