JPS6240301B2 - - Google Patents

Info

Publication number
JPS6240301B2
JPS6240301B2 JP54124425A JP12442579A JPS6240301B2 JP S6240301 B2 JPS6240301 B2 JP S6240301B2 JP 54124425 A JP54124425 A JP 54124425A JP 12442579 A JP12442579 A JP 12442579A JP S6240301 B2 JPS6240301 B2 JP S6240301B2
Authority
JP
Japan
Prior art keywords
gas
quartz tube
core
temperature
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124425A
Other languages
Japanese (ja)
Other versions
JPS5650138A (en
Inventor
Tetsuo Mya
Shinji Araki
Michio Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12442579A priority Critical patent/JPS5650138A/en
Publication of JPS5650138A publication Critical patent/JPS5650138A/en
Publication of JPS6240301B2 publication Critical patent/JPS6240301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners

Description

【発明の詳細な説明】 この発明は、光フアイバの製造方法に関し、特
に内付けCVD法によつて母材を製造する工程に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber, and particularly to a process of manufacturing a base material by an internal CVD method.

発明の背景 内付けCVD法においては、「第1、第2図のよ
うに」石英管10を、フアイバのジヤケツトとし
て使う。酸水素炎20などにより石英管10を、
高温で、長時間加熱するので、石英管内のOH基
がコア14まで拡散して、OH基による吸収損失
を増大させる。
BACKGROUND OF THE INVENTION In the internal CVD method, a quartz tube 10 (as shown in FIGS. 1 and 2) is used as a jacket for the fiber. The quartz tube 10 is heated using an oxyhydrogen flame 20, etc.
Since the tube is heated at a high temperature for a long time, the OH groups in the quartz tube diffuse to the core 14, increasing absorption loss due to the OH groups.

それを防ぐため、現在、石英管のジヤケツト1
0とコア14との中間にクラツド12を設けるこ
とが行なわれている。ただし、このクラツドが薄
いと、効果が十分でない。ところが、クラツドを
形成するための加熱は、石英管10の外から行な
うので、クラツド12の層が厚くなるにつれて、
内部表面への熱の伝導が不十分になる。そして酸
化反応も、透明ガラス化もうまくゆかなくなる。
内面に伝導する熱量を増すために、加熱温度を上
げると、石英管10が軟化し、径が縮まる。する
と肉厚が厚くなつて、内部への熱伝導を悪くす
る。このようなわけで、クラツド12を厚くする
のにも限度がある。
To prevent this, we are currently using quartz tube jacket 1.
A cladding 12 is provided between the core 14 and the core 14. However, if this cladding is thin, the effect will not be sufficient. However, since the heating to form the cladding is performed from outside the quartz tube 10, as the layer of the cladding 12 becomes thicker,
Insufficient heat transfer to internal surfaces. The oxidation reaction and the formation of transparent glass also fail.
When the heating temperature is raised to increase the amount of heat conducted to the inner surface, the quartz tube 10 softens and its diameter decreases. As a result, the wall thickness becomes thicker, which impairs heat conduction to the inside. For this reason, there is a limit to how thick the cladding 12 can be made.

特に1.6μm帯まで非常に低損失なSiO2クラツ
ド、GeO2−SiO2コアの単一モードフアイバの場
合は、クラツドの生成温度が非常に高い。そのた
め、クラツドのたい積をますます困難にする。
In particular, in the case of SiO 2 clad and GeO 2 -SiO 2 core single mode fibers which have extremely low loss up to the 1.6 μm band, the clad formation temperature is extremely high. This makes crud accumulation increasingly difficult.

そこで、初めからOH基の少ない石英管を使用
すればよいようにも思える。しかし、OH基の少
ない石英管は、粘性が大きく、そのため気泡を多
く含む。そのため、強度の面から、光フアイバの
ジヤケツトには不適当とされている。実用的な、
泡のない石英管は、120〜200ppmのOH基を含ん
でいる。このような石英管を使つて1.39μmにお
けるOH基による損失を10dB/Km以下にするに
は、SiO2クラツドの場合、クラツド径/コア径
比を5以上にしなければならない。しかし、従来
の方法では不可能である。
Therefore, it seems like it would be better to use a quartz tube with fewer OH groups from the beginning. However, quartz tubes with few OH groups have high viscosity and therefore contain many bubbles. Therefore, from the viewpoint of strength, it is considered unsuitable for use in optical fiber jackets. practical,
A bubble-free quartz tube contains 120-200 ppm OH groups. In order to reduce the loss due to OH groups at 1.39 μm to 10 dB/Km or less using such a quartz tube, in the case of a SiO 2 clad, the clad diameter/core diameter ratio must be 5 or more. However, this is not possible using conventional methods.

ところで、石英管中でOH基の拡散する距離L
は、次式で表わされる(注)。
By the way, the distance L over which OH groups diffuse in a quartz tube is
is expressed by the following formula (Note).

L=√4 (1) ただし D=AexpB/RTcm2sec-1 t:加熱時間 T:加熱温度 R:気体定数 A、B:定数 これから、Tを低くすれば、Lが小さくなるこ
とがわかる。
L=√4 (1) However, D=AexpB/RTcm 2 sec -1 t: Heating time T: Heating temperature R: Gas constant A, B: Constant It can be seen from this that if T is lowered, L becomes smaller.

加熱温度を低くするためには、フアイバを、
P2O3−PiO2クラツド、P2O5−B2O3−SiO2コアな
どの型にすればよいことは知られている。しか
し、このようにすると、屈折率が変化する。また
B2O3やP2O5による赤外吸収が起きて、フアイバ
の損失特性も変化する。
In order to lower the heating temperature, use fibers,
It is known that a type such as a P 2 O 3 −PiO 2 clad or a P 2 O 5 −B 2 O 3 −SiO 2 core may be used. However, doing so changes the refractive index. Also
Infrared absorption by B 2 O 3 and P 2 O 5 occurs, and the loss characteristics of the fiber also change.

発明の目的 内付けCVD法を行なう際に、原料ガスにCl2
スを加えると、折出する合成ガラスの透明ガラス
化温度が低下し、またその低下の度合いは、Cl2
ガスの量にほぼ比例する(Cl2を多くすると、透
明ガラス化温度は下がる)ことがわかつた。
Purpose of the invention When performing the internal CVD method, when Cl 2 gas is added to the raw material gas, the transparent vitrification temperature of the synthetic glass that is precipitated decreases, and the degree of the decrease is
It was found that the temperature is almost proportional to the amount of gas (as the amount of Cl 2 increases, the transparent vitrification temperature decreases).

この発明は、上記の新しい認識に基づいて、屈
折率や損失特性を変化させずに、加熱温度を下
げ、それによつて石英管内に含まれているOH基
の拡散距離を短くして、コアまで拡散するOH基
を少なくすることのできる光フアイバの製造方法
の提供を目的とする。
Based on the above new recognition, this invention lowers the heating temperature without changing the refractive index or loss characteristics, thereby shortening the diffusion distance of the OH groups contained in the quartz tube to the core. The object of the present invention is to provide a method for manufacturing an optical fiber that can reduce the amount of OH groups that diffuse.

発明の構成とその説明 出発石英管の内面に、内付けCVD法によつて
合成ガラス膜をたい積させて母材を製造するに際
して、前記合成ガラスの原料ガスに、Cl2ガスを
加えて供給し、前記合成ガスの透明化温度を低下
させることによつて、Cl2ガスを加えないときの
加熱温度よりも低い加熱温度で、内付けCVD法
を行なうこと、を特徴とする。
Structure and Description of the Invention When manufacturing a base material by depositing a synthetic glass film on the inner surface of a starting quartz tube by an internal CVD method, Cl 2 gas is added and supplied to the raw material gas for the synthetic glass. , characterized in that the internal CVD method is performed at a heating temperature lower than the heating temperature when Cl 2 gas is not added by lowering the transparency temperature of the synthesis gas.

「第3図」は、SiO2クラツド用ガラスの透明
ガラス化温度と、Cl2の添加量との関係を示す。
ただしガラスの原料は、SiCl240c.c./min、O2
1000c.c./min、He300c.c./minで、これらは一定
である。
"Figure 3" shows the relationship between the transparent vitrification temperature of the glass for SiO 2 cladding and the amount of Cl 2 added.
However, the raw materials for glass are SiCl 2 40c.c./min, O 2 ,
1000c.c./min, He300c.c./min, which are constant.

通常、SiO2クラツド用ガラスの透明化は、
1600℃くらいで行なつているが、上記の目的を達
成するためには、この透明ガラス化温度を少なく
とも1500〜1550℃程度まで下げる必要がある。そ
のためには、「第3図」の場合についていえば、
SiCl440c.c.に対して200〜400c.c./min程度のCl2
加えなければならない。
Usually, the transparency of glass for SiO2 cladding is
Although it is carried out at about 1600°C, in order to achieve the above objective, it is necessary to lower the transparent vitrification temperature to at least about 1500 to 1550°C. To that end, in the case of "Figure 3",
Approximately 200 to 400 c.c./min of Cl 2 must be added to 40 c.c. of SiCl 4 .

上記のようにCl2の量を多くすると、透明ガラ
ス化温度の下がり方も大になるが、あまり大量の
Cl2を加えると、折出するガラスの中にCl2の泡が
できてしまう。しかし、Heガスをいつしよに加
えると、Heは拡散速度が大きいので、ガラス内
のすき間に入り込んでCl2ガスを追い出し、Cl2
スがガラスの中に封じ込められるのを防ぐことが
できる。
As mentioned above, increasing the amount of Cl 2 will also reduce the transparent vitrification temperature, but if the amount is too large,
When Cl 2 is added, Cl 2 bubbles are formed in the precipitated glass. However, if He gas is added at any time, since He has a high diffusion rate, it can enter the gaps in the glass and drive out the Cl 2 gas, preventing the Cl 2 gas from being trapped inside the glass.

なお、従来、原料ガスの中に不純物として含ま
れる含水素化合物や、酸素ガス中の水分を塩素化
反応によつて除くために、原料ガスといつしよに
Cl2などの塩素化剤を送り込むという技術が公知
である(特開昭53−13618号)。しかし、その場合
に加えるCl2などの量はごく少量で、その程度で
は、透明ガラス化温度を下げるということにほと
んど寄与しない。
Conventionally, in order to remove hydrogen-containing compounds contained as impurities in the raw material gas and moisture in the oxygen gas through a chlorination reaction,
A technique of feeding a chlorinating agent such as Cl 2 is known (Japanese Patent Application Laid-open No. 13618/1983). However, the amount of Cl 2 etc. added in that case is very small, and this amount hardly contributes to lowering the transparent vitrification temperature.

上記のように、Cl2ガスを加えると透明ガラス
化温度が下がる。したがつて内付けCVD法にお
ける酸水炎20などによる加熱も、従来の場合
(Cl2ガスを加えない)よりも低い温度で行なう。
As mentioned above, adding Cl2 gas lowers the transparent vitrification temperature. Therefore, heating using an acid water flame 20 or the like in the internal CVD method is also performed at a lower temperature than in the conventional case (without adding Cl 2 gas).

よつて石英管10内に含まれているOH基の拡
散距離が従来より短かくなる。すなわち石英管内
面のごく近くにあるOH基だけが、たい積した合
成ガラス内に移行でき、それにより内側のOH基
は石英管の外まで出られないようになる。
Therefore, the diffusion distance of the OH groups contained in the quartz tube 10 becomes shorter than in the conventional case. In other words, only the OH groups located very close to the inner surface of the quartz tube can migrate into the accumulated synthetic glass, thereby preventing the OH groups inside from coming out of the quartz tube.

なお、Cl2ガスを添加しても、それは生成する
合成ガラス中にドープ剤としては入り込まないか
ら、屈折率に変化を与えない。
Note that even if Cl 2 gas is added, it does not enter the resulting synthetic glass as a dopant, so it does not change the refractive index.

実施例 出発石英管は外径18mm、内径16mm、長さ1000mm
の市販品。その中に、はじめ、クラツド用とし
て、SiCl440c.c.(毎分値、以下同じ)、O21000c.c.、
Cl2250c.c.、He300c.c.を送り込み、内付けCVD法に
よつて、クラツド用のガラス膜を、厚さ0.54mmた
い積させた。加熱温度は1530℃、加熱源のトラバ
ース速度は100mm/min、石英管の回転は60rpm
であつた。
Example: The starting quartz tube has an outer diameter of 18 mm, an inner diameter of 16 mm, and a length of 1000 mm.
commercially available products. Among them, SiCl 4 40 c.c. (value per minute, same below), O 2 1000 c.c., for cladding.
250 c.c. of Cl 2 and 300 c.c. of He were fed, and a glass film for the cladding was deposited to a thickness of 0.54 mm using the internal CVD method. The heating temperature is 1530℃, the traverse speed of the heating source is 100mm/min, and the rotation of the quartz tube is 60rpm.
It was hot.

次いで、コア用として、SiCl410c.c.、GeCl43
c.c.、O2500c.c.、Cl250c.c.、He150c.c.を送り込み、

ア用のガラス膜を、厚さ0.02mmにたい積させた。
加熱温度は1600℃、トラバース速度は100mm/
min、石英管の回転は60ppmであつた。
Next, for the core, SiCl 4 10c.c., GeCl 4 3
cc, O 2 500c.c., Cl 2 50c.c., He150c.c.
A glass film for the core was deposited to a thickness of 0.02 mm.
Heating temperature is 1600℃, traverse speed is 100mm/
min, the rotation of the quartz tube was 60 ppm.

それから1900℃でコラツプスし、外径10mm、ク
ラツド外径6mm、コア径1.2mmの母材を得、さら
にその上に外径20mm、内径16.6mmのジヤケツト管
をかぶせた。それを紡糸して、外径125μm、ク
ラツド外径50μm、コア径10μm、比屈折率差
0.20%、クラツド径/コア径比が5の、SiO2クラ
ツド、GeO2−SiO2コアの単一モード光フアイバ
を製造した。
It was then collapsed at 1900°C to obtain a base material with an outer diameter of 10 mm, a clad outer diameter of 6 mm, and a core diameter of 1.2 mm, and a jacket tube with an outer diameter of 20 mm and an inner diameter of 16.6 mm was placed on top of this. It is spun into a yarn with an outer diameter of 125 μm, a cladding outer diameter of 50 μm, a core diameter of 10 μm, and a relative refractive index difference.
A SiO 2 clad, GeO 2 -SiO 2 core single mode optical fiber with a cladding diameter/core diameter ratio of 0.20% and a cladding diameter/core diameter ratio of 5 was fabricated.

その損失波長特性を「第4図」のA(実線)に
示した。波長1.39μmにおけるOH基による吸収
損失は8dB/Kmであつた。
The loss wavelength characteristic is shown in A (solid line) in "Figure 4". The absorption loss due to OH groups at a wavelength of 1.39 μm was 8 dB/Km.

また、本発明品と対比するため、Cl2を添加し
ない従来の方法で、上記と同種の光フアイバを作
つた。
In addition, in order to compare with the product of the present invention, an optical fiber of the same type as above was made using a conventional method without adding Cl 2 .

すなわち、はじめ、SiCl440c.c.、O21000c.c.を送
り込んで、クラツド用ガラス膜を、たい積させ
た。ただしそのときの加熱温度は1600℃で、上記
の1530℃では透明ガラス化がうまくゆかなかつ
た。またクラツドガラス膜の厚さは0.3mm程度が
限度であつた。なおそれ以上に厚くするためには
加熱温度を1650℃くらいまで上昇させなければな
らず、またそうすると石英管が軟化し、収縮す
る。
That is, first, 40 c.c. of SiCl 4 and 1000 c.c. of O 2 were fed to deposit a glass film for the cladding. However, the heating temperature at that time was 1,600°C, and transparent vitrification was not successful at the above-mentioned temperature of 1,530°C. Furthermore, the thickness of the clad glass film was limited to about 0.3 mm. In order to make it thicker than that, the heating temperature must be raised to about 1,650°C, and this will cause the quartz tube to soften and shrink.

次に、SiCl410c.c.、GeCl43c.c.、O2500c.c.を送り
込み、加熱温度1650℃で、コア用ガラス膜を厚さ
0.02mmにたい積。それから、1900℃でコラツプス
して、外径9.4mm、クラツド外径4.5mm、コア径1.1
mmの母材を得、その上にさらに外径18、内径15mm
のジヤケツト管をかぶせそれを紡糸して、外径
125μm、クラツド外径41mm、コア径10mm、比屈
折率差0.20%、クラツド径/コア径比が4.1の単
一モード光フアイバを作つた。
Next, SiCl 4 10c.c., GeCl 4 3c.c., and O 2 500c.c. are fed into the core glass film at a heating temperature of 1650°C.
Accumulated to 0.02mm. Then, it was collapsed at 1900℃, with an outer diameter of 9.4 mm, a clad outer diameter of 4.5 mm, and a core diameter of 1.1 mm.
Obtain a base material of mm, and then add an outer diameter of 18 mm and an inner diameter of 15 mm.
Cover the jacket tube and spin it to determine the outer diameter.
A single mode optical fiber was fabricated with a diameter of 125 μm, a clad outer diameter of 41 mm, a core diameter of 10 mm, a relative refractive index difference of 0.20%, and a clad diameter/core diameter ratio of 4.1.

その損失波長特性を「第4図」のB(点線)に
示した。波長1.39μmにおけるOH基による吸収
損は17dB/Kmであつた。
The loss wavelength characteristic is shown in B (dotted line) in "Figure 4". The absorption loss due to OH groups at a wavelength of 1.39 μm was 17 dB/Km.

発明の効果 (1) Cl2ガスを加えて透明ガラス化温度を低下さ
せるので、OH基の拡散距離が短くなる。
Effects of the invention (1) Since the transparent vitrification temperature is lowered by adding Cl 2 gas, the diffusion distance of OH groups becomes shorter.

(2) 上記のように、SiO2クラツド用ガラスの場
合でも、透明ガラス化温度を出発石英管の軟化
温度以下まで下げることができる。したがつて
出発石英管の軟化による縮径と、それによる肉
厚増大が起らず、クラツド用ガラスをより厚く
さい積することができるようになる。
(2) As mentioned above, even in the case of glass for SiO 2 cladding, the transparent vitrification temperature can be lowered to below the softening temperature of the starting quartz tube. Therefore, the diameter of the starting quartz tube does not decrease due to softening, and the wall thickness does not increase due to this, and the glass for the cladding can be laminated thicker.

(3) 上記の(1)と(2)とがあいまつて、出発石英管か
らコアへ拡散するOH基の量を減少させること
ができ、OH基による吸収損失の少ない光フア
イバを製造することができる。
(3) By combining (1) and (2) above, it is possible to reduce the amount of OH groups diffusing from the starting quartz tube to the core, and it is possible to manufacture an optical fiber with less absorption loss due to OH groups. can.

(注) T.Bell et al.Phy.Chem.Glass 3 No.5(1964)
P.141
(Note) T.Bell et al.Phy.Chem.Glass 3 No.5 (1964)
P.141

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内付けCVD法の一般的説明図で、そ
の−の拡大断面を第2図に示す。第3図以下
は本発明に係り、第3図はガラス化温度とCl2
ス添加量との関係、第4図は損失波長特性を示
す。 10:出発石英管、12:クラツド用ガラス
膜、14:コア用ガラス膜。
FIG. 1 is a general explanatory diagram of the internal CVD method, and FIG. 2 shows an enlarged cross-section of -. Figure 3 and subsequent figures relate to the present invention; Figure 3 shows the relationship between the vitrification temperature and the amount of Cl 2 gas added, and Figure 4 shows the loss wavelength characteristics. 10: Starting quartz tube, 12: Glass film for cladding, 14: Glass film for core.

Claims (1)

【特許請求の範囲】 1 出発石英管の内面に、内付けCVD法によつ
て合成ガラス膜をたい積させて、母材を製造する
に際し、 前記合成ガラスの原料ガスに、Cl2ガスを加え
て、前記合成ガラスの透明ガラス化温度を低下さ
せることによつて、Cl2ガスを加えないときの加
熱温度よりも低い加熱温度で、前記内付けCVD
法を行なうこと、 を特徴とする光フアイバの製造方法。
[Claims] 1. When producing a base material by depositing a synthetic glass film on the inner surface of the starting quartz tube by an internal CVD method, Cl 2 gas is added to the raw material gas for the synthetic glass. , by lowering the transparent vitrification temperature of the synthetic glass, the internal CVD can be heated at a lower heating temperature than when no Cl2 gas is added.
1. A method for manufacturing an optical fiber, comprising: carrying out a method.
JP12442579A 1979-09-27 1979-09-27 Manufacture of optical fiber Granted JPS5650138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12442579A JPS5650138A (en) 1979-09-27 1979-09-27 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12442579A JPS5650138A (en) 1979-09-27 1979-09-27 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS5650138A JPS5650138A (en) 1981-05-07
JPS6240301B2 true JPS6240301B2 (en) 1987-08-27

Family

ID=14885160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12442579A Granted JPS5650138A (en) 1979-09-27 1979-09-27 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS5650138A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442414B2 (en) 2020-05-11 2022-09-13 Apple Inc. User interfaces related to time
US11481988B2 (en) 2010-04-07 2022-10-25 Apple Inc. Avatar editing environment
US11532112B2 (en) 2017-05-16 2022-12-20 Apple Inc. Emoji recording and sending
US11682182B2 (en) 2018-05-07 2023-06-20 Apple Inc. Avatar creation user interface
US11714536B2 (en) 2021-05-21 2023-08-01 Apple Inc. Avatar sticker editor user interfaces
US11722764B2 (en) 2018-05-07 2023-08-08 Apple Inc. Creative camera
US11776190B2 (en) 2021-06-04 2023-10-03 Apple Inc. Techniques for managing an avatar on a lock screen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837792B1 (en) * 2006-01-25 2008-06-13 주식회사 옵토매직 Optical Fiber Manufacturing Method for Optical Amplifier
KR100800813B1 (en) * 2006-03-10 2008-02-01 엘에스전선 주식회사 Method of manufacturing optical fiber preform, Optical fiber preform and Optical fiber manufactured using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313618A (en) * 1976-07-26 1978-02-07 Nippon Telegraph & Telephone Process for preparing dehydrated glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313618A (en) * 1976-07-26 1978-02-07 Nippon Telegraph & Telephone Process for preparing dehydrated glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11481988B2 (en) 2010-04-07 2022-10-25 Apple Inc. Avatar editing environment
US11532112B2 (en) 2017-05-16 2022-12-20 Apple Inc. Emoji recording and sending
US11682182B2 (en) 2018-05-07 2023-06-20 Apple Inc. Avatar creation user interface
US11722764B2 (en) 2018-05-07 2023-08-08 Apple Inc. Creative camera
US11442414B2 (en) 2020-05-11 2022-09-13 Apple Inc. User interfaces related to time
US11714536B2 (en) 2021-05-21 2023-08-01 Apple Inc. Avatar sticker editor user interfaces
US11776190B2 (en) 2021-06-04 2023-10-03 Apple Inc. Techniques for managing an avatar on a lock screen

Also Published As

Publication number Publication date
JPS5650138A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
US4125388A (en) Method of making optical waveguides
EP0249230B1 (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
US4846867A (en) Method for producing glass preform for optical fiber
GB1558550A (en) Glass fibre light conductors
US4257797A (en) Optical fiber fabrication process
US4327965A (en) Single mode fibre and method of manufacture
JPS60257408A (en) Optical fiber and its production
EP0028155B1 (en) Single mode optical fibre and method of making it
JPS6240301B2 (en)
KR20000051960A (en) Optical fiber preform having OH barrier and method of fabricating the same
US4518407A (en) Optical fibre preform manufacture
FR2307639A1 (en) Optical fibres with low attenuation - drawn from fused silica blank contg. multilayer core of doped silica and flux (NL191076)
JPS61191544A (en) Quartz base optical fiber
US4537611A (en) Method for manufacturing glass from the gas phase
JP3258478B2 (en) High viscosity synthetic quartz glass tube for thermal CVD method and quartz glass preform for optical fiber using the same
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS63315530A (en) Production of optical fiber preform
JP3174682B2 (en) Method for producing glass preform for optical fiber
JP2699231B2 (en) Radiation-resistant optical fiber, image fiber, and method of manufacturing the same
JPS5838368B2 (en) Optical fiber manufacturing method
JPH0463365B2 (en)
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS6240302B2 (en)
EP0185975A1 (en) Process for fabricating a glass preform