JPS63310133A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS63310133A
JPS63310133A JP14660687A JP14660687A JPS63310133A JP S63310133 A JPS63310133 A JP S63310133A JP 14660687 A JP14660687 A JP 14660687A JP 14660687 A JP14660687 A JP 14660687A JP S63310133 A JPS63310133 A JP S63310133A
Authority
JP
Japan
Prior art keywords
groove
type
semiconductor substrate
integrated circuit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14660687A
Other languages
Japanese (ja)
Inventor
Yukio Minato
湊 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14660687A priority Critical patent/JPS63310133A/en
Publication of JPS63310133A publication Critical patent/JPS63310133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a parasitic effect and to prevent a lowering in an integration density by a method wherein a groove is filled with a conductive filler coming into contact with a semiconductor substrate via an opening which has been formed at the bottom of the groove of an insulating film. CONSTITUTION:A device region is partitioned by a groove which has been dug from the surface of an N-type epitaxial layer 4 of a semiconductor substrate formed by a P-type region 2, an N<+> type buried layer 3 and the N-type epitaxial layer 4 on a P-type semiconductor substrate sheet 1 composed of silicon toward the inside and which has been covered with insulating films 6-1, 6-2 composed of silicon oxide. The groove is filled with a conductive filler 10 which comes into contact with the P-type semiconductor substrate sheet 1 at the bottom of the groove. By this setup, it is not required to form a space for a substrate electrode region separately; an integration density of a semiconductor integrated circuit can be enhanced; furthermore, it is made possible to impress a substrate potential on all parts around individual devices; accordingly, a parasitic effect among the individual devices can be eliminated completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に関し、籍に、縛分離構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor integrated circuit, and more particularly to a bond isolation structure.

〔従来の技術」 最近の集積回路は、より−1111の大谷輩化−?尚速
化のため、溝分離技術が用いられつつある。
[Conventional technology] Are recent integrated circuits more like Otani's version of 1111? To increase speed, groove separation techniques are being used.

バイポーラ集積回路での溝分離の構造を第5因罠示づ−
。これは、N7型エビタキ7ヤルNI4を形成した半導
体基板罠側面及び底面をそれぞれ絶縁膜6.5で覆った
分離用の溝を形成し、その内部を多結晶7リコンからな
る充填材10で充填する。
The structure of groove separation in bipolar integrated circuits is shown as the fifth factor.
. This involves forming separation grooves each covered with an insulating film 6.5 on the side and bottom surfaces of the semiconductor substrate on which the N7-type Evitaki 7-yal NI4 is formed, and filling the inside with a filler 10 made of polycrystalline 7-lion. do.

その後、多結晶7リコン表面な絶縁膜7で覆う。Thereafter, the surface of the polycrystalline silicon is covered with an insulating film 7.

こうし℃溝で区画された素子領域に、所定の不純物を選
択的に拡散し電極用の開口を設けて素子を形成する。
A predetermined impurity is selectively diffused into the device region partitioned by the °C groove to form an opening for an electrode, thereby forming a device.

ところで、集積回路は、各素子の寄生効果防止や特性の
安定化のため、基板(第3図のP型半尋体下地板l)に
最低電位又は特定の電位を与え℃いる。時に、集積度が
鍋く℃、素子構造上基板へ漏れ電流の流れる集積回路に
於9ては、基板電位の浮きが生じやすく、を生効果が発
生しやすい。即ち、回路の誤動作や特性の不安定を招く
Incidentally, in an integrated circuit, a minimum potential or a specific potential is applied to the substrate (the P-type semicircular base plate 1 in FIG. 3) in order to prevent parasitic effects and stabilize the characteristics of each element. Sometimes, in integrated circuits where the degree of integration is low and leakage current flows to the substrate due to the element structure, the substrate potential tends to float, which tends to cause negative effects. That is, this may lead to malfunction of the circuit or instability of characteristics.

これを防ぐためには、基板電位の浮きが1.ieF容値
に入る様に、随所に基板11他を設け、所定の電位で基
板電位を与えなければならない。
In order to prevent this, it is necessary to raise the substrate potential in 1. In order to meet the ieF capacitance value, the substrate 11 and others must be provided at various locations and a substrate potential must be applied at a predetermined potential.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の4分離を用いた半導体集積回路は、分離
用の溝の底面に絶縁膜な有し、基板との導通は取れない
。つまり従来の溝分離を用いた半纏体楽槓回路では、寄
生効果を防ぐための基板電極部を耕らたに設けなければ
ならず、その分、集積度が低下するという欠点がある。
The above-described conventional semiconductor integrated circuit using four isolations has an insulating film on the bottom of the isolation groove, and cannot be electrically connected to the substrate. In other words, in the conventional semi-integrated circuit using groove separation, it is necessary to provide the substrate electrode portion in a space to prevent parasitic effects, which has the disadvantage that the degree of integration is reduced accordingly.

籍に、メモリの様に、配列の大規模なものに、上述の基
板電極を数行毎に挿入すると、極端な集積就の低下、及
び、速度特性を悪くするという欠点がある。   ゛ 〔問題点を解決するための手段〕 本発明の半導体集積回路は、半導体基板の一主表面から
内部へ向けて掘られ表面を絶縁膜で覆われた溝で素子領
域を区画してなる半導体集積回路において、前記絶縁膜
の前記溝の底面に設けられた開口を介して前記半導体基
板に接触する導電性充填材で前記溝が充填されていると
いうものである。
In particular, if the above-mentioned substrate electrodes are inserted every few rows in a large-scale array such as a memory, there is a drawback that the integration efficiency is extremely reduced and the speed characteristics are deteriorated. [Means for Solving the Problems] The semiconductor integrated circuit of the present invention is a semiconductor device in which an element region is divided by a trench dug inward from one main surface of a semiconductor substrate and whose surface is covered with an insulating film. In the integrated circuit, the trench is filled with a conductive filler that contacts the semiconductor substrate through an opening provided at the bottom of the trench in the insulating film.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の*b澄例の主安部を示す半導体
チ、グの斜視断面図でるる。
FIG. 1 is a perspective sectional view of a semiconductor chip showing the main part of the first example of the present invention.

この実施例は7リコンからなるP型半導体下地板IKP
型領域2、N“型埋込層3、N型エビタキ7ヤル層4を
形成してなる半導体基板のNuエビター?7ヤル層4の
表面から内部へ向けて掘られ側面を酸化ンリコンからな
る絶縁膜6−1.6−2で覆われた溝で素子領域を区画
し、溝の底面において半導体基板のP8!!半導体下地
板1に接触する導電性充填材10(P型不純物をドーピ
ングされた多結晶/リコン)で溝が充填されているとい
うものである。
This example is a P-type semiconductor base plate IKP made of 7 silicon.
A semiconductor substrate formed with a mold region 2, an N type buried layer 3, and an N type buried layer 4 is dug inward from the surface of the Nu type layer 4, and an insulating layer made of silicon oxide is formed on the side surface. A conductive filler 10 (doped with a P-type impurity) is formed in a groove covered with a film 6-1. The grooves are filled with polycrystalline/recon.

次に、この実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第2図[a)〜(d)は第1の実施例の製造方法を説明
するための工a順に配列した半纏体チップの斜視@面図
である。
FIGS. 2A to 2D are perspective views of semi-integrated chips arranged in order of process a for explaining the manufacturing method of the first embodiment.

まず、第2図t8)に示すように、結晶軸(111>で
、直径4インチ、比抵抗10〜20Ω・備のンリコンか
らなるP型半導体下地板1にP型領域2゜N+型塊込層
3を形成し、その上に比抵抗5Ω・傷のN5工ビタ千7
ヤル層4を厚さ1μmで成長する。このようにして準備
された半導体基板のN型エビタキンヤル層4の表面から
P捜半導体下地慎1まで選択的に工、チングして、@2
μmの溝を形成して素子領域を区画する。次に、上述の
溝の底面及び側面と素子領域の表面を1000℃、10
分で熱酸化し、′酸化シリコンからなる絶縁膜5゜6.
7を形成する。次に1この絶縁膜で覆われた溝を高1#
度のボロンをドーピングした多結晶7リコン11で埋め
て、表面をほぼ平坦にする。尚、多結晶シリコンのかわ
りにレジストや樹脂を用いても艮い。
First, as shown in Fig. 2 (t8), a P-type region 2°N+ type lump is formed on a P-type semiconductor base plate 1 made of silicone with a crystal axis (111>, a diameter of 4 inches, a resistivity of 10 to 20Ω, and a resistivity of 10 to 20Ω). Layer 3 is formed, and on top of that is N5 with a resistivity of 5Ω and scratches.
A layer 4 is grown to a thickness of 1 μm. The thus prepared semiconductor substrate is selectively etched from the surface of the N-type epitaxial layer 4 to the P-type semiconductor substrate layer 1.
A groove of .mu.m is formed to define an element region. Next, the bottom and side surfaces of the grooves and the surface of the element region were heated at 1000°C for 10 minutes.
The insulating film made of silicon oxide is thermally oxidized for 5.6 minutes.
form 7. Next, cut the groove covered with this insulating film to a height of 1#.
The surface is made substantially flat by filling it with polycrystalline silicon 11 doped with a certain amount of boron. Note that a resist or resin may be used instead of polycrystalline silicon.

その後、レジスト膜」2を塗布し、埋設した多結晶/リ
コン11より少し内側に選択的に帯大の幅1μmのパタ
ーン合形成する。そして、ドライエッチでP型半導体下
地板1に到達する溝」3を形成する。そして、第2図(
C)に示すように、約1分のクエットφ工、チな行ない
、溝の底部に残存している絶縁膜5を除去する。
Thereafter, a resist film 2 is applied, and a band-sized pattern with a width of 1 μm is selectively formed slightly inside the buried polycrystalline/recon 11. Then, a groove 3 reaching the P-type semiconductor base plate 1 is formed by dry etching. And Figure 2 (
As shown in C), the insulating film 5 remaining at the bottom of the trench is removed by performing a Couette etching process for about 1 minute.

次罠、第2図(d)に示すよ5に、レジスト膜12を除
去し、溝13の側壁に残った多結晶7リコン11を除去
する。ここで、素子領域の表面及び側面は全て絶縁膜で
横われ、かつ、分離領域の溝底部忙はPa半専体下地板
1の表面が霧出1゛ること罠なる。
Next, as shown in FIG. 2(d), the resist film 12 is removed, and the polycrystalline silicon 11 remaining on the side walls of the groove 13 is removed. Here, the surface and side surfaces of the element region are all covered with an insulating film, and the groove bottom portion of the isolation region is a trap for the surface of the Pa semi-containing base plate 1 to come out.

その後、第1図に示すように、高瞑度のボロンをドーピ
ングした多結晶シリコンで上述の溝を半畳体表面まで埋
設する。そして、その表面を1000℃、10分で酸化
して、酸化シリコンからなる絶縁膜7を厚さ0.5μm
形成し、表面をほぼ平坦にする。所定の場所で、上述の
溝Ka設した、高濃度の多結晶シリコンからなる導電性
充填材10上の1lll!!醸膜7に適当な開口部を設
け、電極を形成する。
Thereafter, as shown in FIG. 1, the above-mentioned grooves are buried up to the surface of the semiconducting body using polycrystalline silicon doped with highly concentrated boron. Then, the surface is oxidized at 1000°C for 10 minutes to form an insulating film 7 made of silicon oxide with a thickness of 0.5 μm.
form and make the surface almost flat. 1llll! on the conductive filling material 10 made of high concentration polycrystalline silicon, in which the above-mentioned groove Ka is provided at a predetermined location. ! A suitable opening is provided in the membrane 7 to form an electrode.

以上の説明から明らかなよ5に、基板電位が、分離用の
溝直下の基板に高黴度のボロンを拡散した多結晶ンリコ
ンを通じ℃、与えられる。
As is clear from the above description, the substrate potential is applied to the substrate directly below the isolation grooves through polycrystalline silicon in which highly moldy boron is diffused.

従って、全ての素子は素子領域の同日で、基板電位が与
えられ、基板の電気的浮遊伏態による誤動作や基板とコ
レクタ間の容量が大きくなるとい5@な特性劣化や隣接
素子間の寄生効果は全く起こらない。
Therefore, all devices are given a substrate potential on the same day in the device area, causing malfunctions due to the electrically floating state of the substrate, property deterioration such as increased capacitance between the substrate and collector, and parasitic effects between adjacent devices. does not occur at all.

第3図は本発明の第2の実施例の主蒙部を示す半導体す
、グの斜視断面図である。
FIG. 3 is a perspective sectional view of a semiconductor device showing the main portion of the second embodiment of the present invention.

この実施例は溝の紙面罠おいて絶縁膜5に幅1μm、長
さ5μmの開口14が選択的沈設けられているもので、
第1の実施例では開口が溝の底面全体圧設けられ℃いた
のと異なっている。第1の実施例では、溝の側面の絶縁
膜の下の部分が薄い場合絶縁分離が不完全となる恐れが
ある。第2の実施例はその恐れが殆んどない。溝の幅よ
り開口の幅の刀が小さいからである。
In this embodiment, an opening 14 having a width of 1 μm and a length of 5 μm is selectively sunk in the insulating film 5 in the paper trap of the groove.
This is different from the first embodiment in that the opening was provided at the entire bottom surface of the groove. In the first embodiment, if the portion under the insulating film on the side surface of the trench is thin, there is a risk that the insulation isolation will be incomplete. In the second embodiment, there is almost no such fear. This is because the width of the opening of the sword is smaller than the width of the groove.

第4図は、第2の実施例の#!造刀法を説明するための
途中工程における半導体チップの斜視断面図である。
FIG. 4 shows #! of the second embodiment. FIG. 2 is a perspective cross-sectional view of a semiconductor chip in an intermediate step for explaining the sword making method.

第2図13)に示したところ筐では第1の実施例の製造
方法と同じである。
As shown in FIG. 2 (13), the manufacturing method for the casing is the same as that of the first embodiment.

次に、第4図に示すように、レジスト膜15を塗布し、
11141μm1長さ5μmのパターンを選択的に形成
し、ドシイエ、チングによシ深さ4μmでP型半導体下
地板1に達する開口16を形成する。以恢の工程は第l
の実施例の■造力法に準じる0 なお、導電性充填材は多結晶7リコンが望1し−が、そ
の外KMoやWのような高融点金属でもよく、その場合
、表面の絶縁膜形成にはCVD法、スバ、り法号を用い
ればよい。
Next, as shown in FIG. 4, a resist film 15 is applied,
A pattern of 11141 μm and 5 μm in length is selectively formed, and an opening 16 reaching the P-type semiconductor base plate 1 is formed with a depth of 4 μm by dosing and chiming. The next step is step 1.
In addition, the conductive filler is preferably polycrystalline 7-licon, but may also be a high melting point metal such as KMo or W. In that case, the insulating film on the surface The CVD method, Suba, or Ri method may be used for the formation.

〔発明の効果〕〔Effect of the invention〕

以上に説明した様に、本発明は分離用の溝を埋める導電
性充填材を半導体基板部と接触させ褥通をとり、適宜に
その上に電極を形成できるので、基板電極憤域のスペー
スを別!cdける会費がなく、その分″P尋体集積回路
の集積度を向上できる効果がある。史罠、各素子の周囲
全てに基板電位を与えることが可能罠なるので、各素子
間の寄生効果も全くなく、又も素子の%注は安定し、半
導体集積回路の安定動作、信頼性の向上をもたらすこと
ができる効果もある。
As explained above, according to the present invention, the conductive filler filling the separation groove is brought into contact with the semiconductor substrate portion, and electrodes can be formed on the conductive filler as appropriate, thereby saving space in the substrate electrode area. another! There is no membership fee for CD, which has the effect of increasing the degree of integration of P-type integrated circuits.Since it is possible to apply a substrate potential to the entire surrounding area of each element, parasitic effects between each element can be reduced. Moreover, the % concentration of the element is stable, and there is an effect that the semiconductor integrated circuit can operate stably and improve its reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第一の実施例の主景部を示す半導体
チップの枡視Bfr面図、第2図ta)〜(切は第1の
実施例の製造方法を説明するための工@順に配列した半
導体チップの斜視譚「面図、第3図は本発明の第2の実
施例の主矢部を示す半導体す、グの斜視前面図、第4図
は第2の実施例の製造方法を説明するための途中工程に
おける半纏体チップの斜視断面図、第5図は従来例の生
安部を示す半導体チップの@視断面図である。 1・・・・・・P型半尋体下地板、2・・・・・・P型
領域、3・・・・・・N+型埋込層、4・・・・・・N
型エビタキ7ヤル層、5.6.7・・・・・・IP!縁
膜、8−1.8−2・旧・・P型拡散領域、9・・・・
・・N+型拡散狽域、10 °−−−−−充填材、11
・・・・・・多結晶/リコン、12・・・・・・レジス
ト!、13・・・・・・溝、14・・川・開口、15・
旧・・レジスト膜。 第2図 償2図 第4図
FIG. 1 is a square view Bfr side view of a semiconductor chip showing the main feature of the first embodiment of the present invention, and FIG. Figure 3 is a perspective front view of semiconductor chips illustrating the main arrow parts of the second embodiment of the present invention, and Figure 4 is a perspective view of the semiconductor chips arranged in order of FIG. 5 is a perspective sectional view of a semi-integrated chip in an intermediate process for explaining the manufacturing method, and FIG. 5 is a sectional view of a semiconductor chip showing the production part of a conventional example. Body base plate, 2...P type region, 3...N+ type buried layer, 4...N
Type Ebitaki 7-year layer, 5.6.7...IP! Membrane, 8-1.8-2 Old... P-type diffusion region, 9...
・・N+ type diffusion area, 10°---filling material, 11
...Polycrystalline/Recon, 12...Resist! , 13... ditch, 14... river/opening, 15...
Old...resist film. Figure 2 Compensation Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主表面から内部へ向けて掘られ表面を絶
縁膜で覆われた溝で素子領域を区画してなる半導体集積
回路において、前記絶縁膜の前記溝の底面に設けられた
開口を介して前記半導体基板に接触する導電性充填材で
前記溝が充填されていることを特徴とする半導体集積回
路。
In a semiconductor integrated circuit in which an element region is defined by a trench dug inward from one main surface of a semiconductor substrate and whose surface is covered with an insulating film, the semiconductor integrated circuit is configured such that an element region is defined by a trench dug inward from one main surface of a semiconductor substrate and whose surface is covered with an insulating film. A semiconductor integrated circuit characterized in that the groove is filled with a conductive filler that contacts the semiconductor substrate.
JP14660687A 1987-06-11 1987-06-11 Semiconductor integrated circuit Pending JPS63310133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14660687A JPS63310133A (en) 1987-06-11 1987-06-11 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14660687A JPS63310133A (en) 1987-06-11 1987-06-11 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63310133A true JPS63310133A (en) 1988-12-19

Family

ID=15411532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14660687A Pending JPS63310133A (en) 1987-06-11 1987-06-11 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63310133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196373A (en) * 1990-08-06 1993-03-23 Harris Corporation Method of making trench conductor and crossunder architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196373A (en) * 1990-08-06 1993-03-23 Harris Corporation Method of making trench conductor and crossunder architecture

Similar Documents

Publication Publication Date Title
US5449946A (en) Semiconductor device provided with isolation region
GB2148591A (en) Semiconductor device isolation grooves
US4053349A (en) Method for forming a narrow gap
US4051506A (en) Complementary semiconductor device
JPS6321351B2 (en)
US4903109A (en) Semiconductor devices having local oxide isolation
CA1126875A (en) Dielectrically-isolated integrated circuit complementary transistors for high voltage use
EP0112489A1 (en) Semiconductor device with compact isolation and method of making the same
JPH02208952A (en) Semiconductor device and its manufacture
JPS63310133A (en) Semiconductor integrated circuit
JPS6048111B2 (en) Non-volatile semiconductor memory device
KR100273678B1 (en) Memory device and method for fabricating the same
KR100273679B1 (en) Memory device and method for fabricating the same
JPS6010718A (en) Manufacture of semiconductor device
CN108922925B (en) Power device protection chip and manufacturing method thereof
JPS63307775A (en) Capacitor and manufacture thereof
JPS5838939B2 (en) integrated circuit
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPS6031107B2 (en) Semiconductor integrated circuit device
JP3417482B2 (en) Method for manufacturing semiconductor device
JPS60144961A (en) Semiconductor integrated circuit
KR100268866B1 (en) Semiconductor device and method for fabricating the same
JPH02151050A (en) Semiconductor device
JPS6322068B2 (en)
JPS6095939A (en) Manufacture of semiconductor integrated circuit