JPS63308363A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS63308363A
JPS63308363A JP14466387A JP14466387A JPS63308363A JP S63308363 A JPS63308363 A JP S63308363A JP 14466387 A JP14466387 A JP 14466387A JP 14466387 A JP14466387 A JP 14466387A JP S63308363 A JPS63308363 A JP S63308363A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
connecting section
forming
ohmic electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14466387A
Other languages
Japanese (ja)
Inventor
Koji Watanabe
渡邊 厚司
Katsunori Nishii
勝則 西井
Masaya Mannou
萬濃 正也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14466387A priority Critical patent/JPS63308363A/en
Publication of JPS63308363A publication Critical patent/JPS63308363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the process by selectively forming a semiconductor layer on the semiconductor region except the connecting section of a first electric element formed on a semiconductor substrate, and forming a second electric element on the surface of the semiconductor layer, thereby omitting the recrystallization process and the process for exposing the connecting section of the electrode. CONSTITUTION:A semi-insulating GaAs epitaxial layer 9 is selectively grown by a MOVPE method for instance. At this time, since a gate electrode 4, a side wall 6 and an ohmic electrode 8 are small as compared with the respective connecting sections of the gate electrode 4 and the ohmic electrode 8 and an ohmic electrode connecting section 8', they are buried in the semi-insulating GaAs epitaxial layer 9, but conversely, the connecting section of the electrode 8 and the connecting section 8' are not completely buried because of their sizes. Then, as with a Schottky type field effect transistor A, after forming an N-type semiconductor region 10 by a Si ion implantation, a gate electrode 11 and a side wall 12 are provided, and thereafter a N<+> semiconductor region 13 is formed and an ohmic electrode 14 is formed, thereby forming a Schottky type field effect transistor B.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置およびその製造方法に係り、特に
三次元的な構造を有する半導体装置およびその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device having a three-dimensional structure and a method for manufacturing the same.

従来の技術 従来の装置として第2図に示すようなものがある。以下
5第3図a−yfに示す従来の装置の製造方法を説明す
る。第3図aに示すように1例えば半絶縁性GaAs基
板31上に例えばイオン注入とアニールにより形成した
N型半導体領域32上に、蒸着と写真食刻、およびドラ
イエツチングなどの技術を用いて例えばw s i o
、6のゲート33を形成後、ゲート33をマスクにオー
ミック領域となる+ N 半導体領域34を形成し、蒸着により例えばGo、
!で構成されるオーミック電極36を形成して、例えば
電界効果型トランジスタのような半導体素子ムを形成す
る。
2. Description of the Related Art A conventional device is shown in FIG. A method of manufacturing the conventional device shown in FIGS. 3a-yf will be described below. As shown in FIG. 3a, an N-type semiconductor region 32 formed on, for example, a semi-insulating GaAs substrate 31 by, for example, ion implantation and annealing is etched using techniques such as vapor deposition, photolithography, and dry etching. w sio
, 6, a +N semiconductor region 34 which becomes an ohmic region is formed using the gate 33 as a mask, and is made of Go, for example, by vapor deposition.
! An ohmic electrode 36 is formed to form a semiconductor element such as a field effect transistor.

次に、半導体素子ムを含むGaps基板1上に。Next, on the Gaps substrate 1 including the semiconductor element.

第3図すに示すようにGeに比べGaAsと反応しにく
くかつ絶縁性の高い例えが5rlF2単結晶36を分子
線エピタキシー(MBK)法などにより、約200人の
厚さで成長する。次に、第3図Cに示すように、半導体
基板上を覆うように5i0237を形成した後、GaA
sと格子定数の近いGoをMBK法で約1μm、中間層
38として積層する。積層直後のGe中間層38は多結
晶であるので、第3図dに示すように例えばWによるキ
ャップ層39を中間層38上に蒸着後、例えば電子ビー
ムアニールで加熱することにより、5rF236を種と
して、SiO□3T上のHaともども、中間層38を再
結晶化する。
As shown in FIG. 3, a 5rlF2 single crystal 36, which is less likely to react with GaAs than with Ge and has high insulating properties, is grown to a thickness of about 200 nm by molecular beam epitaxy (MBK) or the like. Next, as shown in FIG. 3C, after forming 5i0237 to cover the semiconductor substrate, GaA
Go, which has a lattice constant similar to that of s, is laminated by the MBK method to a thickness of approximately 1 μm as the intermediate layer 38. Since the Ge intermediate layer 38 immediately after lamination is polycrystalline, as shown in FIG. 3d, after depositing a cap layer 39 made of, for example, W on the intermediate layer 38, 5rF236 is seeded by heating, for example, by electron beam annealing. As a result, the intermediate layer 38 is recrystallized together with the Ha on the SiO□3T.

次に%第3図eに示すように、キャップ層39をドライ
エツチングなどにより除去した後、半絶縁性GaAsエ
ピタキシャル層4oを約1μm積層する。次に、第3図
eに示すように例えば、ドライエツチングにより、半絶
縁性GaAsエピタキシャル層40及びGe中間層38
を部分的に開口して、半導体素子ムのオーミック領域上
に、選択的にG!LAsコンタクト層31を成長する。
Next, as shown in FIG. 3e, after removing the cap layer 39 by dry etching or the like, a semi-insulating GaAs epitaxial layer 4o is deposited to a thickness of about 1 μm. Next, as shown in FIG. 3e, the semi-insulating GaAs epitaxial layer 40 and the Ge intermediate layer 38 are etched, for example, by dry etching.
is partially opened and G! is selectively applied onto the ohmic region of the semiconductor element. A LAs contact layer 31 is grown.

最後に、第3図fに示すように、半導体素子ムと同様な
方法で、例えば電界効果型トランジスタのような。
Finally, as shown in FIG. 3f, in a similar manner to semiconductor devices, such as field effect transistors.

半導体素子Bを形成後、配線工程をへて、目的とする装
置を得る。
After forming the semiconductor element B, a wiring process is performed to obtain the intended device.

発明が解決しようとする問題点 ところで、このような従来の装置の構造及び製造方法か
らは次のような問題が生じる。第1に。
Problems to be Solved by the Invention The following problems arise from the structure and manufacturing method of such a conventional device. Firstly.

Ge中間層38の再結晶化のWのキャップ層39の除去
の際の表面の汚染やモホロジーの悪さが原因で、半絶縁
性GaA!lエピタキシャル層4oの表面に凹凸やグレ
インが発生する。このような凹凸やグレインは素子の特
性に悪影響を及ぼす。また、再結晶化の際、基板表面の
温度は、約80o℃まで上昇するので、同時に半絶縁性
GaAs基板31上に形成した半導体基板上も、熱によ
る歪で特性の劣化を伴う。従って素子特性の再現性が悪
く、ばらつきも多くなるという問題がある。第2に、最
終的に、第3図でいう半導体素子Bを形成するためのe
aAsエピタキシャル層4o全4o工程としては、それ
までに、SrF2単結晶26の形成とGe中間層38の
積層とそれに伴うWキャップ層39の形成などが介在す
るところから、工程が複雑である。さらに、第3図e及
びfて示すように、半導体素子ムと、半導体素子Bを結
ぶコンタクト層41の形成工程が必要であることからも
工程が複雑となる。
Due to surface contamination and poor morphology during the removal of the W cap layer 39 during recrystallization of the Ge intermediate layer 38, semi-insulating GaA! Irregularities and grains occur on the surface of the epitaxial layer 4o. Such irregularities and grains adversely affect the characteristics of the element. Further, during recrystallization, the temperature of the substrate surface rises to about 80° C., so that the characteristics of the semiconductor substrate formed on the semi-insulating GaAs substrate 31 are also deteriorated due to thermal distortion. Therefore, there is a problem that the reproducibility of the device characteristics is poor and the variation is increased. Second, finally, e
The entire process for forming the aAs epitaxial layer 4o is complicated because it includes the formation of the SrF2 single crystal 26, the stacking of the Ge intermediate layer 38, and the accompanying formation of the W cap layer 39. Furthermore, as shown in FIGS. 3e and 3f, the process becomes complicated because a step of forming a contact layer 41 connecting the semiconductor element B and the semiconductor element B is required.

本発明の目的は、従来の装置のような複雑な工程を用い
ない簡略化された工程で、均一で信頼性のある高集積化
半導体装置を提供するものである。
An object of the present invention is to provide a highly integrated semiconductor device that is uniform and reliable, using a simplified process that does not require the complicated steps of conventional devices.

問題点を解決するための手段 本発明は、第1の電気素子を構成する電極の結線部以外
の半導体基板領域上に、第2の電気素子を形成するエピ
タキシャル成長層を選択的に成長するようにした半導体
装置およびその製造方法を特徴とする。
Means for Solving the Problems The present invention provides a method for selectively growing an epitaxial growth layer for forming a second electric element on a region of a semiconductor substrate other than the connecting portions of electrodes constituting the first electric element. The present invention is characterized by a semiconductor device and a method for manufacturing the same.

作用 このような本発明の作用を簡単に説明すると。action The operation of the present invention will be briefly explained.

半導体基板上へのエピタキシャル成長ハ、通常。Epitaxial growth on semiconductor substrates, usually.

半導体基板表面に成長するのは公知であるが、MO−C
VDなどの気相成長法に於いては半導体基板上に形成し
た金属や絶縁膜によるパターンの上にも、パターンの形
状や大きさまたは成長条件によっては、半導体層が成長
し、上記パターンを埋め込んでしまう作用がある。本発
明はこの作用を利用するものである。
Although it is known that MO-C grows on the surface of a semiconductor substrate,
In vapor phase growth methods such as VD, a semiconductor layer grows on a metal or insulating film pattern formed on a semiconductor substrate, depending on the shape and size of the pattern or growth conditions, and embeds the pattern. It has the effect of causing it to disappear. The present invention utilizes this effect.

実施例 以下、本発明の一実施例を第1図a −hに示す断面図
で示し、その製造方法を説明する。まず。
EXAMPLE Hereinafter, an example of the present invention will be shown in cross-sectional views shown in FIGS. 1a-h, and a manufacturing method thereof will be explained. first.

第1図aに示すように半絶縁性GaAS基板上に、例え
ばレジスト2をマスクに加速電圧40KeVで4、OX
lolm  のシートキャリア濃度でSiイオンを注入
してN型半導体領域3を形成する。
As shown in FIG. 1a, 4, OX
N-type semiconductor region 3 is formed by implanting Si ions at a sheet carrier concentration of lolm.

次に第1図すに示すように、スパッタ法などにより例え
ばWSi。、6のような高融点金属を全面に2000人
蒸着後2写真食刻およびドライエツチング工程をへて、
ゲート長1μmのゲート電甑4を形成する。本実施例で
は、ゲート電極4上に、5i025を2000人同時に
形成した。
Next, as shown in FIG. 1, for example, WSi is deposited by sputtering or the like. After 2000 people deposited a high melting point metal such as No. 6 on the entire surface, it went through two photo-etching and dry-etching steps.
A gate electrode 4 having a gate length of 1 μm is formed. In this example, 5i025 was formed on the gate electrode 4 by 2000 people at the same time.

次に第1図Cに示すように、全面に例えばプラス−r 
CV D法により5102を400OA堆積後、異方性
ドライエツチングによりSiO□をたたいて幅5ooo
人の側壁θを形成する。
Next, as shown in FIG.
After depositing 400OA of 5102 using the CVD method, the SiO□ was etched by anisotropic dry etching to a width of 5ooo.
Form the side wall θ of a person.

次に、第1図dに示すように、ゲート電極4およびSi
、02の側壁6をマスクに、60KaVの加速電圧でシ
ートキャリア濃度1×1o 備 のS1イオンを注入し
てN 半導体基板上を形成し、820℃16分間のアニ
ールを行い、N型半導体領域3およびN 半導体領域7
を活性化する。
Next, as shown in FIG. 1d, the gate electrode 4 and the Si
, 02 as a mask, S1 ions with a sheet carrier concentration of 1×10 are implanted at an acceleration voltage of 60 KaV to form an N semiconductor substrate, and annealing is performed at 820° C. for 16 minutes to form an N type semiconductor region 3. and N semiconductor region 7
Activate.

次に、第1図eに示すように、例えば、Ge 、Wなど
の耐熱性のオーミック電極8を側壁6から2/1m離し
長さ2μmで形成して、ショットキー梨型界効果トラン
ジスタ人を設ける。ここで、8′は4μm四方のオーミ
ック電極の結線部である。
Next, as shown in FIG. 1e, a heat-resistant ohmic electrode 8 made of, for example, Ge or W is formed at a distance of 2/1 m from the side wall 6 and with a length of 2 μm to form a Schottky pear-shaped field effect transistor. establish. Here, 8' is a connection part of an ohmic electrode of 4 μm square.

本実施例では、ショットキー型電界効果トランジスタを
例にとったが、それ以外にMBX法やMOVPE法によ
るヘテロ型のトランジスタやMl’S型のトランジスタ
で半導体素子を形成してもよい。
In this embodiment, a Schottky field effect transistor is used as an example, but the semiconductor element may also be formed using a hetero type transistor or an Ml'S type transistor using the MBX method or the MOVPE method.

第1図fで、本発明の特徴とするところの半絶縁性Ga
Asエピタキシャル層9を例えばMOVPII法により
、例えば基板温度600’Cで選択的に17tm程度成
長する。このとき、ゲート電極4と側壁6およびオーミ
ック電極8は第1図には示していないゲート電極4とオ
ーミック電極8のそれぞれの結線部や第1図に示してい
るオーミック電極結線部8′に比べ小さいので半絶縁性
GaAsエピタキシャル層9に埋め込まれるが、逆に、
上記電極8の結線部および結線部8′はその大きさから
完全には埋め込まれない。本実施例では、例えばオーミ
ック電極8とその結線部8′は同じ厚みであるが、結線
部8′のみ厚みを大きくして埋め込まれに〈<シても良
い。
In FIG. 1f, semi-insulating Ga, which is a feature of the present invention,
The As epitaxial layer 9 is selectively grown to a thickness of about 17 tm using, for example, the MOVPII method at a substrate temperature of, for example, 600'C. At this time, the gate electrode 4, the side wall 6, and the ohmic electrode 8 are compared with the connection parts of the gate electrode 4 and the ohmic electrode 8, which are not shown in FIG. 1, and the ohmic electrode connection part 8' shown in FIG. Since it is small, it is embedded in the semi-insulating GaAs epitaxial layer 9, but on the contrary,
The connection portion of the electrode 8 and the connection portion 8' are not completely embedded due to their size. In this embodiment, for example, the ohmic electrode 8 and its connection portion 8' have the same thickness, but only the connection portion 8' may be made thicker and buried.

また、ここで本発明の別の実施例として第2図に示す。Another embodiment of the present invention is also shown in FIG.

例えばGaAs基板23上においては、(110)面に
対し30°の角度をなすストライプパターン21は埋め
込まれやすく、それ以外の角度例えばooや9000角
度のパターンは埋め込まれにくいという特徴があり、電
極とその結線部22を前記の特徴が出るような方向のパ
ターンにして選択性をもたせる。24は半絶縁GaAs
エピタキシャル層である。
For example, on the GaAs substrate 23, a stripe pattern 21 that forms an angle of 30° with respect to the (110) plane is easily embedded, whereas patterns that are at other angles, such as oo or 9000 angle, are difficult to be embedded. The connection portions 22 are patterned in a direction that brings out the above characteristics to provide selectivity. 24 is semi-insulating GaAs
It is an epitaxial layer.

なお、上記Ga五Sエピタキシャル層9.24以外に、
ム1GaAsやムlムSなどのへテロエピタキシャル層
や不純物を添加したP型G&ムSさらには、それらの材
料の組み合わせによる多層エピタキシャル層を用いても
よい。
In addition to the above Ga5S epitaxial layer 9.24,
A heteroepitaxial layer made of GaAs or MuS, a P-type G&S to which impurities are added, or a multilayer epitaxial layer made of a combination of these materials may be used.

次に、第1図gに示すように、ショットキー型電界効果
トランジスタ人と同様に、S1イオン注入ニヨリ、40
KaV、2.6×1o12眞1でN型半導体領域10を
形成後、ゲート電極11および側壁12を設けて、その
後N+半導体領域13を60 KaV  1.OX I
 Q13cm ”の条件で形成して。
Next, as shown in FIG.
After forming the N-type semiconductor region 10 at a temperature of 60 KaV 1.6×1012, the gate electrode 11 and sidewalls 12 are provided, and then the N+ semiconductor region 13 is formed at a temperature of 60 KaV 1. OXI
Formed under the conditions of ``Q13cm''.

アニール後、蒸着により例えばムuGeなどのオーミッ
ク電極14を形成して、ショットキー型電界効果トラン
ジスタBを形成する。このショットキー型電界効果トラ
ンジスタBに限らず、ヘテロ型トランジスタやMIS型
トランジスタなどのトランジスタや抵抗などの抵抗体素
子を形成してもかまわない。
After annealing, an ohmic electrode 14 made of, for example, MuGe is formed by vapor deposition to form a Schottky field effect transistor B. In addition to the Schottky field effect transistor B, transistors such as hetero-type transistors and MIS-type transistors, and resistor elements such as resistors may also be formed.

最後に、第1図りに示すように、オーミック電極結線部
8′に配線16を施し1本発明の目的とする半導体装置
を得る。
Finally, as shown in the first diagram, a wiring 16 is provided to the ohmic electrode connection portion 8' to obtain a semiconductor device which is an object of the present invention.

発明の効果 以上、本発明では、三次元的な半導体装置において5選
択的にエピタキシャル成長を利用して、成長層の再結晶
化工程や、電極の結線部を露出させるような工程を省い
て工程を簡略化するとともに、それにより、素子の再現
性を高め、ばらつきを小さくする効果をもたらし、信頼
性の高い、高集積化された半導体装置を提供するもので
ある。
In addition to the effects of the invention, the present invention selectively utilizes epitaxial growth in a three-dimensional semiconductor device to eliminate the recrystallization process of the grown layer and the process of exposing the connection part of the electrode. This simplifies the process, thereby improving element reproducibility and reducing variations, thereby providing a highly reliable and highly integrated semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−hは、本発明の一実施例における半導体装置
の製造方法を示す工程断面図、第2図aは本発明の他の
実施例装置における電極パターンを示す平面図、第2図
b−dは同地の実施例の工程断面図、第3図a −f’
は従来の半導体装置の製造方法を示す工程断面図である
。 1.23・・・・・・半絶縁性GaAs基板、2・・・
・・・レジスト、3,10・・・・・・N型半導体領域
、4.11・・・・・・ゲート電極、6・・・・・・5
i02 、6 、12・・・・・・側壁、7.13・・
・・・・N 半導体領域、8.14・・・・・・オーミ
ック電極、8′・・・・・・オーミック電極結線部、9
.24・・・・・・半絶縁性Ga1aエピタキシヤル層
、1θ・・・・・・配線、21・・・・・・ストライプ
パターン、22・・・・・・結線部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 cL58−Ql        。
1a-h are process cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2a is a plan view showing an electrode pattern in a device according to another embodiment of the present invention, and FIG. b-d are process cross-sectional views of the example at the same location, Figure 3 a-f'
1A and 1B are process cross-sectional views showing a conventional method for manufacturing a semiconductor device. 1.23... Semi-insulating GaAs substrate, 2...
...Resist, 3,10...N-type semiconductor region, 4.11...Gate electrode, 6...5
i02, 6, 12...Side wall, 7.13...
...N Semiconductor region, 8.14...Ohmic electrode, 8'...Ohmic electrode connection part, 9
.. 24... Semi-insulating Ga1a epitaxial layer, 1θ... Wiring, 21... Stripe pattern, 22... Connection portion. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 cL58-Ql.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成した第1の電気素子の電極の
結線部を除く半導体基板領域上に、選択的に半導体層を
形成し、この半導体層表面に第2の電気素子を形成して
なる半導体装置。
(1) A semiconductor layer is selectively formed on a semiconductor substrate region excluding a connection portion of an electrode of a first electric element formed on a semiconductor substrate, and a second electric element is formed on the surface of this semiconductor layer. A semiconductor device.
(2)半導体基板上に、電気素子を構成する帯状の電極
の方向と前記帯状の電極に連結する方形状の結線部の方
向を、前記半導体基板の特定の面方位に対して異なるよ
うに形成して、半導体層の成長を選択的に行うようにし
てなる半導体装置の製造方法。
(2) On a semiconductor substrate, the direction of a strip-shaped electrode constituting an electric element and the direction of a rectangular connection portion connected to the strip-shaped electrode are formed to be different with respect to a specific surface orientation of the semiconductor substrate. A method for manufacturing a semiconductor device, in which a semiconductor layer is selectively grown.
JP14466387A 1987-06-10 1987-06-10 Semiconductor device and manufacture thereof Pending JPS63308363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14466387A JPS63308363A (en) 1987-06-10 1987-06-10 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14466387A JPS63308363A (en) 1987-06-10 1987-06-10 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63308363A true JPS63308363A (en) 1988-12-15

Family

ID=15367330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14466387A Pending JPS63308363A (en) 1987-06-10 1987-06-10 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63308363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376812A (en) * 1989-04-12 1994-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376812A (en) * 1989-04-12 1994-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Similar Documents

Publication Publication Date Title
JPS6015155B2 (en) Manufacturing method of semiconductor device
JPS63308363A (en) Semiconductor device and manufacture thereof
JPS62204576A (en) Manufacture of vertical type transistor
JP2541230B2 (en) Method for manufacturing field effect transistor
JPH05190854A (en) Manufacture of semiconductor device
JPH01296667A (en) Manufacture of heterojunction bipolar transistor
JPH03227023A (en) Manufacture of bipolar transistor
JP2697888B2 (en) Method for manufacturing semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPS6022506B2 (en) Manufacturing method for semiconductor devices
JP2000306833A (en) Method for manufacturing semiconductor device
JPH01196811A (en) Formation of single crystal silicon film on insulating film
JPS59228715A (en) Selective epitaxial growth method
JPS6030150A (en) Manufacture of semiconductor device
JPS6342177A (en) Manufacture of semiconductor element
JPH05267321A (en) Bipolar transistor and its manufacture
JPH0370126A (en) Polycrystalline silicon electrode and its manufacture
JPH0258848A (en) Manufacture of semiconductor device
JPH0332232B2 (en)
JPH08264724A (en) Semiconductor device and fabrication thereof
JPH02226758A (en) Semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH01259526A (en) Formation of single crystal silicon film on insulating film
JPS63152175A (en) Manufacture of semiconductor device
JPS583220A (en) Manufacture of semiconductor device