JPS6330587B2 - - Google Patents

Info

Publication number
JPS6330587B2
JPS6330587B2 JP12460281A JP12460281A JPS6330587B2 JP S6330587 B2 JPS6330587 B2 JP S6330587B2 JP 12460281 A JP12460281 A JP 12460281A JP 12460281 A JP12460281 A JP 12460281A JP S6330587 B2 JPS6330587 B2 JP S6330587B2
Authority
JP
Japan
Prior art keywords
conductor
phase
voltage
conductor system
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12460281A
Other languages
Japanese (ja)
Other versions
JPS5826204A (en
Inventor
Tatsu Hatsuta
Tai Kusakabe
Fumiki Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12460281A priority Critical patent/JPS5826204A/en
Publication of JPS5826204A publication Critical patent/JPS5826204A/en
Publication of JPS6330587B2 publication Critical patent/JPS6330587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】 本発明は誘導無線を用いた移動体位置検知方
式、特に地上側で移動体の位置を検知する方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the position of a moving object using guided radio, and particularly to a method for detecting the position of a moving object on the ground side.

鉄道車輛はじめ各種の交通機関あるいは産業用
運搬機関のように、一定の走行路に沿つて走行す
る移動体の自動運転においては、常時地上側にお
いて移動体の位置を正確に知つていることが不可
欠の要請である。
In the automatic operation of moving objects that travel along a fixed route, such as railway vehicles, various types of transportation, or industrial transport facilities, it is essential to accurately know the position of the moving object on the ground at all times. This is a request.

この要請に応えるものとして、全走行路を一定
の区間長(10m前後)の小区間に分割し、いずれ
の小区間内の移動体が存在するかを知ることによ
り、移動体の位置を検知する方式がある。この方
式の原理について第1図を参照して説明する。
In response to this request, the position of a moving object can be detected by dividing the entire driving route into small sections of a certain length (approximately 10 m) and knowing in which small section the moving object is present. There is a method. The principle of this method will be explained with reference to FIG.

全区間長がLの移動体走行路には導体対30,
31,32,33……が布設されている。導体対
30は全区間にわたり無交差であり、導体対3
1,32,33,……はそれぞれL/2,L/
4,L/8……の周期で交差されている。
A conductor pair 30,
31, 32, 33... are installed. The conductor pair 30 has no crossing over the entire section, and the conductor pair 3
1, 32, 33, ... are L/2, L/ respectively
They are crossed at a period of 4, L/8...

移動体に塔載されたアンテナ(枠形コイル)3
4に50〜200KHzの高周波電流を通電すると、こ
れにより生ずる磁界で各導体対30,31,3
2,33,……には電圧が誘起される。導体対3
0に誘起される電圧を位相基準電圧とすると、こ
れと導体対31に誘起される電圧の位相差はAM
区間では0、NB区間ではπとなり、移動体が
AM区間にあるかMB区間にあるか知ることがで
きる。
Antenna (frame coil) mounted on a mobile object 3
When a high frequency current of 50 to 200 KHz is applied to 4, the magnetic field generated by this causes each conductor pair 30, 31, 3 to
A voltage is induced at 2, 33, . conductor pair 3
0 is the phase reference voltage, the phase difference between this voltage and the voltage induced in the conductor pair 31 is AM
0 in the section, π in the NB section, and the moving object
You can find out whether it is in the AM section or the MB section.

同様に導体対30に誘起される電圧と、導体対
32,33……に誘起されるそれぞれの電圧との
位相差を測定することにより更に細分化された位
置情報を得ることができる。
Similarly, by measuring the phase difference between the voltage induced in the conductor pair 30 and the respective voltages induced in the conductor pairs 32, 33, . . . , further segmented position information can be obtained.

しかしながら、この方式では次のような問題点
が指摘される。
However, the following problems are pointed out with this method.

(1) 各導体対に付与される情報は0またはπだ
け、すなわち位置情報量にして1ビツトに過ぎ
ず、精密な位置情報を得るためには極めて多く
の導体対を必要とするため線路構造が複雑化
し、これに伴い製造が困難となり、高価となる
ことが避けられない。
(1) The information given to each conductor pair is only 0 or π, that is, the amount of position information is only 1 bit, and in order to obtain precise position information, an extremely large number of conductor pairs are required, so the line structure It is inevitable that the process will become more complex, making manufacturing difficult and expensive.

(2) 導体対30は無交差であり、また上位番地の
位置情報を受持つ導体対31,32等は交差周
期が長いため、周囲雑音を拾いやすく、また各
導体対の間に漏話電圧が発生して正確な位置測
定は困難となる。
(2) The conductor pair 30 does not cross, and the conductor pairs 31, 32, etc., which are in charge of the position information of the upper address, have a long crossing period, so they tend to pick up ambient noise, and crosstalk voltage is generated between each conductor pair. This makes accurate position measurement difficult.

本発明は上記した従来技術の問題点を解消する
ためのものであり、1導体当りの位置情報を画期
的に増加でき、また周囲雑音の影響を受けず、更
には漏話電圧を大幅に軽減できる移動体位置検知
方式の提供を目的とするものである。
The present invention is intended to solve the above-mentioned problems of the conventional technology, and can dramatically increase the position information per conductor, is not affected by ambient noise, and furthermore can significantly reduce crosstalk voltage. The purpose of the present invention is to provide a method for detecting the position of a moving object.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

第2図は第1発明において使用される誘導無線
線路の一例を示したものであり、1は第1の導体
系、2は第2の導体系、3は移動体塔載アンテナ
である。
FIG. 2 shows an example of the guided radio line used in the first invention, where 1 is a first conductor system, 2 is a second conductor system, and 3 is a mobile antenna.

第1の導体系1は周期Pの波形形状をした3本
の導体1a,1b,1cをそれぞれP/3づつず
らして配置したものである。
The first conductor system 1 has three conductors 1a, 1b, and 1c each having a waveform shape with a period P, and is arranged so as to be shifted by P/3.

第2の導体系2も同様に周期Pの波形形状をし
た3本の導体2a,2b,2cをそれぞれP/3
づつずらして配置したものであるが、この導体系
2は各導体2a,2b,2cの波形形状の位相が
一定間隔毎に階段的に変化するようになつてい
る。すなわち、移動体の走行路をN個の小区間に
区分したとき、ある区間での導体の波形の位相量
を0とすれば、次の区間へ移るときπ/2の階段
的増加を示すようになつている。
Similarly, the second conductor system 2 has three conductors 2a, 2b, 2c each having a waveform shape with a period P of P/3.
In this conductor system 2, the phase of the waveform shape of each conductor 2a, 2b, 2c changes stepwise at regular intervals. In other words, when the travel path of a moving object is divided into N small sections, if the phase amount of the conductor waveform in a certain section is 0, it will show a stepwise increase of π/2 when moving to the next section. It's getting old.

かかる3相3導体の第1および第2の導体系
1,2を平行して布設することにより誘導無線線
路が構成される。
A guided radio line is constructed by laying the first and second conductor systems 1 and 2 of the three-phase three-conductor in parallel.

いま、誘導無線線路の端末から移動体塔載アン
テナ3までの距離をZとすると、線路端末におい
て第1の導体系1の導体1aと1b、1bと1
c、1cと1a間にそれぞれ誘起される電圧
Vab1、Vbc1、Vca1は次式でもつてあらわされ
る。
Now, if the distance from the terminal of the guided radio line to the mobile tower-mounted antenna 3 is Z, then the conductors 1a and 1b, 1b and 1 of the first conductor system 1 at the line terminal
c, voltage induced between 1c and 1a, respectively
Vab 1 , Vbc 1 , and Vca 1 are also expressed by the following equations.

Vab1 =k cos2π/PZe-z-jz Vbc1 =k cos2π/P(Z+1/3P)e-z-jz Vca1 =k cos2π/P(Z+2/3P)e-z-jz (1) なお、kは常数、αは線路の減衰常数、βは線
路の位相常数である。
Vab 1 =k cos2π/PZe -zjz Vbc 1 =k cos2π/P(Z+1/3P)e -zjz Vca 1 =k cos2π/P(Z+2/3P)e -zjz (1 ) Note that k is a constant, α is the attenuation constant of the line, and β is the phase constant of the line.

ここで、(1)式の3電圧について正相電圧Vp1
よび逆相電圧Vn1を次式の通りに定義する。
Here, the positive-sequence voltage Vp 1 and the negative-sequence voltage Vn 1 for the three voltages in equation (1) are defined as shown in the following equation.

(1)式および(2)式から直ちに次式が得られる。 The following equation is immediately obtained from equations (1) and (2).

次に、第2の導体系2について考えてみると、
いま、全長Lの移動体走行路を第3図に示すよう
にN個の小区間N1,N2,……,Ni,……,Nn
に分割し、第i番目の小区間Niにおいて導体の
波形に位相量ψiを与え、移動体塔載アンテナ3が
第i番目の小区間Niにあるとき、線路端末にお
いて導体2aと2b、2bと2c、2cと2a間
にそれぞれ誘起される電圧Vab2,Vbc2,Vca2
次式でもつてあらわされる。
Next, considering the second conductor system 2,
Now, as shown in Fig. 3, a moving path with a total length L is divided into N small sections N 1 , N 2 , ..., Ni, ..., Nn.
and give a phase amount ψi to the waveform of the conductor in the i-th sub-section Ni, and when the mobile tower-mounted antenna 3 is in the i-th sub-section Ni, the conductors 2a, 2b, 2b and The voltages Vab 2 , Vbc 2 and Vca 2 induced between 2c and 2c and 2a, respectively, are also expressed by the following equations.

Vab2 =k cos2π/P(Z+i)e-z-jz Vbc2=k cos2π/P (Z+1/3P+i)e-z-jz Vca2=k cos2π/P (Z+2/3P+i)e-z-jz(4) これらの3電圧についての正相電圧Vp2および
逆相電圧Vn2は(3)式と同様にして求めると次のよ
うになる。
Vab 2 =k cos2π/P(Z+i)e -zjz Vbc 2 =k cos2π/P (Z+1/3P+i)e -zjz Vca 2 =k cos2π/P (Z+2/3P+i)e -zjz (4) The positive-sequence voltage Vp 2 and negative-sequence voltage Vn 2 for these three voltages are obtained in the same way as equation (3) as follows.

ここで、Vp2とVp1の位相差を△φpi、Vn1
Vn2の位相差を△φniとすれば、 △φpi=∠Vp2−∠Vp1=i (6) △φni=∠Vn1−∠Vn2=i となる。なお、∠は複素数の位相角を示す記号で
ある。
Here, the phase difference between Vp 2 and Vp 1 is △φpi, and Vn 1 is
If the phase difference of Vn 2 is △φni, then △φpi=∠Vp 2 −∠Vp 1 =i (6) △φni=∠Vn 1 −∠Vn 2 =i. Note that ∠ is a symbol indicating the phase angle of a complex number.

(6)式から明らかな通り、△φpiまたは△φniを
測定することによりφiがわかり、これによつて移
動体が第i番目の小区間Ni内に存在することを
知ることができる。
As is clear from equation (6), φi can be found by measuring Δφpi or Δφni, and from this it can be known that the moving object exists within the i-th subsection Ni.

第4図は第1発明における信号処理回路の一例
を示したものである。
FIG. 4 shows an example of the signal processing circuit in the first invention.

第1の導体系1の線路端末での導体間電圧
Vab1,Vbc1,Vca1はそれぞれ変成器4a1,4
b1,4c1によつて不平衡電圧に変換され、加算器
1に導かれる。この場合変成器4a1の出力は直
接加算器61に導かれるが、変成器4b1,4c1
出力は移相回路5b1,5c1によつてそれぞれ−
120゜,+120゜の位相変位を受けてから加算器61
導かれる。
Interconductor voltage at line terminals of first conductor system 1
Vab 1 , Vbc 1 , and Vca 1 are transformers 4a 1 and 4, respectively.
It is converted into an unbalanced voltage by b 1 and 4c 1 and guided to the adder 6 1 . In this case, the output of the transformer 4a 1 is directly led to the adder 6 1 , but the outputs of the transformers 4b 1 and 4c 1 are passed through phase shift circuits 5b 1 and 5c 1 , respectively.
After receiving a phase shift of 120° and +120°, it is led to an adder 61 .

加算器61においては、上記した(2)式に相当す
る演算が行われ、その出力は(3)式で与えられる
Vp1に等しい。
In adder 6 1 , an operation corresponding to equation (2) above is performed, and its output is given by equation (3).
Equal to Vp 1 .

第2の導体系2の場合についても同様に、導体
間電圧Vab2,Vbc2,Vca2は変成器4a2,4b2
4c2および移相回路5b2,5c2を経て加算器62
に導かれ、(5)式で与えられるVp2に等しい電圧が
出力される。
Similarly, in the case of the second conductor system 2, the interconductor voltages Vab 2 , Vbc 2 , Vca 2 are the same as those of the transformers 4a 2 , 4b 2 ,
Adder 6 2 via 4c 2 and phase shift circuits 5b 2 and 5c 2
, and a voltage equal to Vp 2 given by equation (5) is output.

加算器61,62の出力は位相計7に導かれ、こ
こにおいて(6)式の△φpiを求める演算が行われ、
入力の位相差iに比例した電圧または電流が出力
され、その値は計器13に指示されることにな
る。
The outputs of the adders 6 1 and 6 2 are led to the phase meter 7, where the calculation to obtain △φpi in equation (6) is performed,
A voltage or current proportional to the input phase difference i is output, and its value is indicated to the meter 13.

なお、逆相電圧Vn1とVn2の位相差を求めるこ
とによつても上記と全く同じ結果が得られること
は前述した通りである。
Note that, as described above, the same result as above can be obtained by determining the phase difference between the negative phase voltages Vn 1 and Vn 2 .

これまでに説明した方式は、線路長が比較的短
い場合に有効であるが、線路長が長大化な場合に
は、第1および第2の導体系の導体形状ピツチが
同一なため、両導体系の間に漏話電圧が発生し、
位置検知誤差を生ずるおそれがある。
The method explained so far is effective when the line length is relatively short, but when the line length is long, the conductor shape pitch of the first and second conductor systems is the same, so both conductors are A crosstalk voltage occurs between the systems,
This may cause position detection errors.

このような問題点を一掃するのが第2および第
3発明であり、以下これらについて説明する。第
5図は第2および第3発明において使用される誘
導無線線路の一例を示したものである。第1の導
体系51は周期P1の波形形状をした3本の導体
51a,51b,51cをそれぞれP1/3づつ
ずらして配置したものであり、第2の導体系52
は周期P2(P2=P1/2)の波形形状をした3本の
導体52a,52b,52cをそれぞれP2/3
づつずらして配置したものである。
The second and third inventions eliminate such problems, and these will be explained below. FIG. 5 shows an example of the guided radio line used in the second and third inventions. The first conductor system 51 has three conductors 51a, 51b, and 51c each having a waveform shape with a period of P 1 and is arranged with a shift of P 1 /3, and the second conductor system 52
The three conductors 52a, 52b, and 52c each having a waveform shape with a period of P 2 (P 2 =P 1 /2) are connected to P 2 /3.
They are arranged in a staggered manner.

第2の導体系52は第2図で示した導体系2と
同様に各導体52a,52b,52cの波形形状
の位相が一定間隔毎に階段的に変化するようにな
つており、第i番目の小区間Niにおいては位相
量iが付与されているものとする。
In the second conductor system 52, the phase of the waveform shape of each conductor 52a, 52b, 52c changes stepwise at regular intervals, similar to the conductor system 2 shown in FIG. It is assumed that a phase amount i is given in the small section Ni of .

いま、誘導無線線路の端末から移動体塔載アン
テナ53までの距離をZとし、アンテナ53を異
なる周波数ω1およびω2で共用し、第1の導体系
51の端末ではω1を、第2の導体系52の端末
ではω2をそれぞれ選択受信する。
Now, let Z be the distance from the terminal of the guided radio line to the antenna 53 mounted on the mobile object, and the antenna 53 is shared by different frequencies ω 1 and ω 2 , and the terminal of the first conductor system 51 uses ω 1 and the second The terminals of the conductor system 52 selectively receive ω 2 .

第1の導体系51についての正相電圧Vp1およ
び逆相電圧Vn1は次式で与えられる。
The positive sequence voltage Vp 1 and the negative sequence voltage Vn 1 for the first conductor system 51 are given by the following equations.

また、第2の導体系52についての正相電圧
Vp2および逆相電圧Vn2は次式で与えられる。
Also, the positive sequence voltage for the second conductor system 52
Vp 2 and negative phase voltage Vn 2 are given by the following equations.

なお、(7)式および(8)式において、k,α,βに
付した添字1および2はそれぞれ第1の導体系5
1および第2の導体系52に関する量であること
を示す。
In addition, in equations (7) and (8), the subscripts 1 and 2 attached to k, α, and β are the first conductor system 5, respectively.
1 and the second conductor system 52.

ここで、Vp1およびVn1を2逓倍し、Vp2およ
びVn2との位相差をそれぞれ△φpiおよび△φniと
すれば、 △φpi=∠Vp2−2∠Vp1 △φni=∠Vn1−2∠Vn2 (9) となる。
Here, if Vp 1 and Vn 1 are multiplied by 2 and the phase difference with Vp 2 and Vn 2 is △φpi and △φni, respectively, then △φpi=∠Vp 2 −2∠Vp 1 △φni=∠Vn 1 −2∠Vn 2 (9).

(7)式および(8)式を(9)式の右辺に代入すると、△
φpiおよび△φniの瞬時値は次式のようになる。
Substituting equations (7) and (8) into the right-hand side of equation (9), we get △
The instantaneous values of φpi and △φni are as shown in the following equations.

△φpi=−2π/P1(2−P1/P2)z+i+{2β1
ω1)−β2(ω2)}z−(2ω1−ω2)t △φni=−2π/P1(2−P1/P2)z+i−{2β1
ω1)−β2(ω2)}z+(2ω1−ω2)t(10) ここで、P1=2P2である。またω2としてω1を2
逓倍したものを用いればω2=2ω1であり、その位
相も完全に同期していることから (2ω1−ω2)t=0 が成り立つ。
△φpi=−2π/P 1 (2−P 1 /P 2 )z+i+{2β 1 (
ω 1 )−β 22 )}z−(2ω 1 −ω 2 )t △φni=−2π/P 1 (2−P 1 /P 2 )z+i−{2β 1 (
ω 1 )−β 22 )}z+(2ω 1 −ω 2 )t(10) Here, P 1 =2P 2 . Also, set ω 2 to ω 1 as 2
If the multiplied one is used, ω 2 =2ω 1 , and since the phases are also completely synchronized, (2ω 1 −ω 2 )t=0 holds true.

従つて、(10)式は次式のようになる。 Therefore, equation (10) becomes as follows.

△φpi =i+{2β1(ω1)−β2(ω2)}Z △φni =i−{2β1(ω1)−β2(ω2)}Z(11) 誘導無線の周波数帯(50〜200KHz)では、線
路常数は概ね周波数ωに比例し、また線路絶縁媒
質の誘電率が等しい限り、その値は概ね相等し
く、Zが比較的小さい場合(Z<約200m)のと
きは {2ω1(ω1)−β2(ω2)}Z≪1 となり、△φpiまたは△φniの値からφiの概略値
がわかり、これによつて移動体が第i番目の小区
間Ni内に存在することがわかる。
△φpi = i + {2β 11 )−β 22 )}Z △φni = i−{2β 11 )−β 22 )}Z(11) Inductive radio frequency band ( 50 to 200 KHz), the line constant is approximately proportional to the frequency ω, and as long as the dielectric constants of the line insulating medium are equal, the values are approximately equal. When Z is relatively small (Z < approximately 200 m), 2ω 11 )−β 22 )}Z≪1, and the approximate value of φi can be found from the value of △φpi or △φni, which allows the moving object to be within the i-th subsection Ni. You can see that it exists.

一方、Zが大きく(Z=1000〜2000m)、(11)式
の右辺の第2項が無視できない場合は、△φpiと
△φniの平均値△φiを求めることにより誤差項は
相殺され、 △φi=1/2(△φpi+△φni)=i (12) となり、正確なiを知ることができる。
On the other hand, if Z is large (Z = 1000 to 2000 m) and the second term on the right side of equation (11) cannot be ignored, the error term is canceled out by finding the average value △φi of △φpi and △φni, and △ φi=1/2(△φpi+△φni)=i (12) Therefore, it is possible to know the exact i.

この方式は第1および第2の導体系51,52
の周期は2:1であるから、これら両系統間の漏
話は極めて少なく、線路区間が長大な場合でも測
定誤差が増大するおそれがない。
This method uses first and second conductor systems 51, 52.
Since the period of is 2:1, there is extremely little crosstalk between these two systems, and there is no risk of measurement errors increasing even if the line section is long.

第6図は第2および第3発明における信号処理
回路の一例を示したものである。
FIG. 6 shows an example of the signal processing circuit in the second and third inventions.

第1の導体系51の線路端末での各導体間電圧
はそれぞれ変成器64a1,64b1,64c1によつ
て不平衡電圧に変換され、帯域通過濾波器9a1
9b1,9c1に導かれる。濾波器9a1,9b1,9c1
は入力信号のうち周波数がω1の成分のみを通過
させ、ω2の成分を遮断する。
The voltage between each conductor at the line terminal of the first conductor system 51 is converted into an unbalanced voltage by a transformer 64a 1 , 64b 1 , 64c 1 , respectively, and a bandpass filter 9a 1 ,
Guided by 9b 1 and 9c 1 . Filter 9a 1 , 9b 1 , 9c 1
passes only the component with frequency ω 1 of the input signal and blocks the component with frequency ω 2 .

各濾波器9a1,9b1,9c1の出力はそれぞれ二
分されて加算器66p1および66n1に導かれる。
加算器66p1に向う成分についていえば、濾波器
9a1の出力は直接に加算器66p1に到達するのに
対し、濾波器9b1,9c1の出力は移相回路65
bp1,65cp1によりそれぞれ−120゜,+120゜の位相
変位を受けた後、加算器66p1に到達する。従つ
て、加算器66p1においては(2)式のVp1を求める
演算が行われ、その出力は(7)式のVp1となる。ま
た、加算器66n1に向う成分についていえば、濾
波器9a1の出力は直接に加算器66n1に到達する
のに対し、濾波器9b1,9c1の出力は移相回路6
5bn1,65cn1によりそれぞれ+120゜,−120゜の位
相変位を受けた後、加算器66n1に到達すること
になる。
The output of each filter 9a 1 , 9b 1 , 9c 1 is divided into two and guided to adders 66p 1 and 66n 1 , respectively.
Regarding the components going to the adder 66p 1 , the output of the filter 9a 1 directly reaches the adder 66p 1 , whereas the outputs of the filters 9b 1 and 9c 1 reach the phase shift circuit 65.
After being subjected to a phase shift of -120° and +120° by bp 1 and 65cp 1 , respectively, it reaches the adder 66p 1 . Therefore, the adder 66p 1 performs an operation to obtain Vp 1 in equation (2), and its output becomes Vp 1 in equation (7). Regarding the components going to the adder 66n 1 , the output of the filter 9a 1 directly reaches the adder 66n 1 , whereas the outputs of the filters 9b 1 and 9c 1 reach the phase shift circuit 6.
After being subjected to phase displacements of +120° and −120° by 5bn 1 and 65cn 1 , respectively, it reaches the adder 66n 1 .

従つて、加算器66n1においては、(2)式のVn1
を求める演算が行われ、その出力は(7)式のVn1
なる。
Therefore, in the adder 66n 1 , Vn 1 of equation (2)
An operation is performed to obtain Vn 1 in equation (7).

次いで、第2の導体系52の線路端末での各導
体間電圧についても同様にして加算器66p2,6
6n2に導かれるが、第1の導体系51の場合と異
なるのは帯域通過濾波器9a2,9b2,9c2は周波
数がω2の成分のみを通過させ、ω1の成分を遮断
する点である。
Next, adders 66p 2 , 6
6n 2 , but the difference from the first conductor system 51 is that the bandpass filters 9a 2 , 9b 2 , and 9c 2 pass only the component with a frequency of ω 2 and block the component with a frequency of ω 1 It is a point.

なお、64a2,64b2,64c2は変成器、65
bp2,65Cp2,65bn2,65Cn2は移相回路で
あり、加算器66p2,66n2の出力はそれぞれ(8)
式のVp2,Vn2である。
In addition, 64a 2 , 64b 2 , 64c 2 are transformers, 65
bp 2 , 65Cp 2 , 65bn 2 , and 65Cn 2 are phase shift circuits, and the outputs of adders 66p 2 and 66n 2 are (8)
Vp 2 and Vn 2 in the equation.

加算器66p1,66p2の出力は位相計67p
に、また加算器66n1,66n2の出力は位相計6
7nにそれぞれ導かれることになるが、加算器6
6p1,66n1の出力はそれぞれ周波数2逓倍器1
0p,10nで2逓倍されてから位相計67p,
67nに到達する。位相計67pにおいては(9)式
の△φpiを求める演算が、また位相計67nにお
いては(9)式の△φniを求める演算が行われ、その
出力は(11)式の△φpi,△φniとなる。位相計67
p,67nの出力は加算器11に導かれて(12)式に
相当する演算が行われ、φiに比例した電圧または
電流が出力され、その値は計器68に指示される
ことになる。
The output of the adders 66p 1 and 66p 2 is the phase meter 67p.
Also, the outputs of the adders 66n 1 and 66n 2 are sent to the phase meter 6
7n respectively, adder 6
The outputs of 6p 1 and 66n 1 are respectively frequency doubler 1
After being doubled by 0p and 10n, the phase meter 67p,
67n is reached. The phase meter 67p performs calculations to obtain △φpi in equation (9), and the phase meter 67n performs calculations to obtain △φni in equation (9), and their outputs are calculated as △φpi and △φni in equation (11). becomes. Phase meter 67
The outputs of p and 67n are led to the adder 11, where calculations corresponding to equation (12) are performed, and a voltage or current proportional to φi is output, and the value is indicated to the meter 68.

なお、第2発明の場合、加算器11は省略され
位相計67pあるいは67nの出力が計器68に
指示されることになる。位相計67p,67n、
加算器11、計器68はアナログ式あるいはデイ
ジタル式のどちらでもよい。
In the case of the second invention, the adder 11 is omitted and the output of the phase meter 67p or 67n is instructed to the meter 68. Phase meter 67p, 67n,
The adder 11 and the meter 68 may be of either analog type or digital type.

第7図は第2および第3発明における信号処理
回路の他の例を示したものであり、第6図を同じ
呼称部は同一符号を付してある。
FIG. 7 shows another example of the signal processing circuit in the second and third inventions, and the same reference numerals as in FIG. 6 are given the same reference numerals.

本実施例が第6図の実施例と異なる点は、濾波
器9a1,9b1,9c1の直後に周波数2逓倍器10
a,10b,10cを設けた点であるが、この場
合であつても第6図の実施例と同じ結果が得られ
る。これまでは、ω2=2ω1,P1=2P2の場合につ
いて説明してきたが、一般的にはω2=2mω1,P1
=2mP2とし、Vp1およびVn1を2m逓倍して、それ
ぞれとVp2およびVn2との位相を比較する方式で
あつても全く同じ結果が得られる。例えば、第5
図の第1および第2の導体系に更に第3の導体系
(導体形状ピツチはP3)を組み合わせ、移動体塔
載アンテナを三つの周波数ω1,ω2,ω3で共用す
る場合は、P3=P1/4,ω3=4ω1となる。第3の
導体系の波形に下位番地の位置情報を付与し(例
えば第2の導体系の第i番目の区間を更にN区間
に分割し、その各々について第3導体系の波形に
異なる位相量′iを付与する)、これを第2の導体
系の位置情報iと組み合わせることにより、更に
細分化された位置情報を得ることができる。
This embodiment is different from the embodiment shown in FIG .
a, 10b, and 10c are provided, but even in this case, the same results as in the embodiment shown in FIG. 6 can be obtained. So far, we have explained the case where ω 2 = 2ω 1 , P 1 = 2P 2 , but in general, ω 2 = 2 m ω 1 , P 1
= 2 m P 2 , multiply Vp 1 and Vn 1 by 2 m , and compare the phases of each with Vp 2 and Vn 2 to obtain exactly the same result. For example, the fifth
When a third conductor system (conductor shape pitch is P 3 ) is further combined with the first and second conductor systems shown in the figure, and the antenna mounted on the mobile body is shared at three frequencies ω 1 , ω 2 , ω 3 , , P 3 =P 1 /4, ω 3 =4ω 1 . The position information of the lower address is added to the waveform of the third conductor system (for example, the i-th section of the second conductor system is further divided into N sections, and for each of them, the waveform of the third conductor system is given a different phase amount. By combining this with the position information i of the second conductor system, further segmented position information can be obtained.

以上の説明は、誘導無線線路を構成する各導体
系を3相3導体としているが、本発明はこれに限
定されるものではなく、一般的にはM相M導体
(Mは3より大なる整数)に拡張できるものであ
ることは、当業者にとり自明の理であろう。第8
図はM導体よりなる誘導無線線路の部分説明図で
あり、81は第1の導体系、83は移動体塔載ア
ンテナである。第1の導体系81は周期Pの波形
形状をしたM本の導体81a,81b,81c…
81nを夫々P/Mずつずらして配置したもので
ある。
Although the above description assumes that each conductor system constituting the guided radio line is a three-phase three-conductor, the present invention is not limited to this, and generally is an M-phase, M-conductor (M is greater than 3). It will be obvious to those skilled in the art that it can be extended to integers). 8th
The figure is a partial explanatory diagram of a guided radio line made of M conductors, where 81 is a first conductor system and 83 is a mobile tower-mounted antenna. The first conductor system 81 has M conductors 81a, 81b, 81c, . . . having a waveform shape with a period P.
81n are arranged shifted by P/M.

いま、誘導無線線路の端末から移動体塔載アン
テナ83までの距離をZとすると、線路端末にお
いて第1の導体系81の導体81aと81b、8
1bと81c、……81nと81a間に夫々誘起
される電圧Vab1,Vbc1,…Voa1は次式でもつて表
わされることが明らかである。
Now, if the distance from the terminal of the guided radio line to the mobile tower-mounted antenna 83 is Z, then the conductors 81a, 81b, 8 of the first conductor system 81 at the line terminal
It is clear that the voltages V ab1 , V bc1 , ... V oa1 induced between 1b and 81c, . . . 81n and 81a, respectively, can be expressed by the following equations.

Vab1=k cos2π/Pze-z-jz (13) Vbc1 =k cos2π/P(z+1/MP)e-z-jz 〓 Voa1=k cos2π/P (zM−1/MP)e-z-jz (13) K:定数,α:線路の減衰定数, β:線路の位相定数 ここで、(13)式のMコの電圧について正相電
圧Vb1及び逆相電圧Vo1は、次式の通り定義であ
る。
V ab1 =k cos2π/Pze -zjz (13) V bc1 =k cos2π/P (z+1/MP)e -zjz 〓 V oa1 =k cos2π/P (zM-1/MP)e -zjz (13) K: constant, α: line attenuation constant, β: line phase constant Here, regarding the voltage of M in equation (13), the positive sequence voltage V b1 and the negative sequence voltage V o1 are, It is defined as the following formula.

(13)式及び(14)式より次式が得られる。 The following equation is obtained from equations (13) and (14).

(15)式より明らかな通り、M相M導体の場合
においても、3相3導体の場合の正相及び逆相電
圧に関する(3)式と相似の性質が成り立つ(M=3
であれば同一となる)のである。
As is clear from equation (15), properties similar to equation (3) concerning positive and negative sequence voltages in the case of three-phase three-conductor hold true even in the case of M-phase M conductor (M = 3
, then they are the same).

従つて、図示しない第2の導体系を、M本の導
体にて位相を一定区間毎に階段的に変化させて構
成すれば、この第2の導体系における正相電圧
Vp2及び逆相電圧Vo2について、 (5)式と相似の式が成り立つから、(6)式をそのま
ま用いれば、Mの値に何ら関係なく位相量ψiがわ
かり、これにより移動体の位置を知ることができ
る。
Therefore, if a second conductor system (not shown) is configured with M conductors whose phase is changed stepwise in each fixed section, the positive sequence voltage in this second conductor system
For V p2 and the negative phase voltage V o2 , an equation similar to equation (5) holds, so if equation (6) is used as is, the phase amount ψi can be found regardless of the value of M, and from this, the position of the moving object can be known.

このような相似関係は、上述した第1の発明に
限らず、第2及び第3の発明における(7),(8),(9)
式においても同様に成り立つことは自明であろ
う。
Such a similar relationship is not limited to the first invention described above, but also applies to (7), (8), (9) in the second and third inventions.
It is obvious that the same holds true in Eq.

尚、このような導体数を増加すると誘導無線線
路及び信号処理回路が複雑になるという不利得を
伴うが、誘起電圧中に含まれる高調波成分が多数
打消され、測定精度がより向上するという利点が
ある。例えば6相6導体にすれば第3,9,15…
次の高調波成分のほか、偶数次の全高調波成分を
消滅させることができる。ちなみに、導体の形状
は第2図あるいは第5図のように梯形波状のもの
に限定されるものではなく、矩形波あるいは第8
図のような三角波状のものであつてもよく、また
平形のものばかりでなく、らせん状のものであつ
てもよい。
Although increasing the number of conductors has the disadvantage of complicating the guided radio line and signal processing circuit, it has the advantage of canceling out many harmonic components contained in the induced voltage, further improving measurement accuracy. There is. For example, if you use 6 phases and 6 conductors, the 3rd, 9th, 15th...
In addition to the next harmonic component, all even-order harmonic components can be eliminated. Incidentally, the shape of the conductor is not limited to the trapezoidal wave shape as shown in Figures 2 or 5, but may be rectangular or 8th wave.
It may be in the shape of a triangular wave as shown in the figure, or it may be not only flat but also spiral.

以上説明してきた本発明は次のような効果を生
ずることになる。
The present invention described above produces the following effects.

(1) 1導体当りに付与される位置情報量は画期的
に増加し、線路の構成が簡略化するので経済的
なシステムを実現できる。
(1) The amount of positional information given per conductor is dramatically increased, and the line configuration is simplified, making it possible to realize an economical system.

(2) 導体のピツチを極めて小さく(数十cm〜数
m)選ぶことができ、周囲雑音の甚しい地域で
使用する場合でも誘導雑音は線路内において相
殺され、測定精度を劣化させることはない。
(2) The conductor pitch can be selected to be extremely small (several tens of centimeters to several meters), so even when used in areas with severe ambient noise, induced noise is canceled out within the line and measurement accuracy does not deteriorate. .

(3) 各導体系の導体形状ピツチ比を1:2mとする
ことにより、導体系の間の漏話は大幅に軽減さ
れ、位置検和精度が向上する。
(3) By setting the conductor shape pitch ratio of each conductor system to 1:2 m , crosstalk between conductor systems is significantly reduced and position detection accuracy is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の説明図、第2図は第1発明に
おける誘導無線線路の一例の説明図、第3図は移
動体走行路を小区間に分割した状態の説明図、第
4図は第1発明における信号処理回路の一例の説
明図、第5図は第2および第3発明における誘導
無線線路の一例の説明図、第6図は第2および第
3発明における信号処理回路の一例の説明図、第
7図は第2および第3発明における信号処理回路
の他の例の説明図、第8図はM導体よりなる誘導
無線線路の部分説面図である。 1,51,81:第1の導体系、2,52:第
2の導体系、3,53,83:移動体搭載アンテ
ナ、4,64:変成器、5,65:移相回路、
6,66:加算器、7,67:位相計、8,6
8:指示計器、9:帯域通過濾波器、10:周波
数2逓倍器、11:加算器。
Fig. 1 is an explanatory diagram of a conventional example, Fig. 2 is an explanatory diagram of an example of a guided radio line in the first invention, Fig. 3 is an explanatory diagram of a state in which a moving vehicle running path is divided into small sections, and Fig. 4 is an explanatory diagram of an example of a guided radio line in the first invention. An explanatory diagram of an example of the signal processing circuit in the first invention, FIG. 5 is an explanatory diagram of an example of the guided radio line in the second and third inventions, and FIG. 6 is an explanatory diagram of an example of the signal processing circuit in the second and third inventions. FIG. 7 is an explanatory diagram of another example of the signal processing circuit in the second and third inventions, and FIG. 8 is a partial diagram of an inductive radio line made of M conductors. 1, 51, 81: first conductor system, 2, 52: second conductor system, 3, 53, 83: mobile mounted antenna, 4, 64: transformer, 5, 65: phase shift circuit,
6, 66: Adder, 7, 67: Phase meter, 8, 6
8: Indicator, 9: Bandpass filter, 10: Frequency doubler, 11: Adder.

Claims (1)

【特許請求の範囲】 1 M相M導体(Mは3または3より大なる整
数)によつて形成される第1の導体系と、この第
1の導体系と等しい導体形状ピツチを有する第2
の導体系とを移動体走行路に沿つて布設して誘導
無線線路を構成し、上記走行路をN個(Nは2ま
たは2より大なる整数)の小区間に区分すると共
に、各小区間の境界を通過する毎に一方の導体系
のみの導体形状の位相を階段的に変化せしめ、高
周波電流が通電された移動体塔載アンテナで上記
誘導無線線路を励振することにより生ずる上記第
1および第2の導体系の導体間電圧の正相成分
(あるいは逆相成分)間の位相差から移動体の存
在する小区間を知ることを特徴とする移動体位置
検知方式。 2 M相M導体(Mは3または3より大なる整
数)によつて形成される第1の導体系と、M相M
導体によつて形成され、第1の導体系の導体形状
ピツチの1/2m(mは任意の正の整数)の導体形状
ピツチを有する第2の導体系とを移動体走行路に
沿つて布設して誘導無線線路を構成し、上記走行
路をN個(Nは2または2より大なる整数)の小
区間に区分すると共に、各小区間の境界を通過す
る毎に第2の導体系のみの導体形状の位相を階段
的に変化せしめ、周波数ω1およびω1を2m逓倍し
た周波数ω2の高周波電流が通電された移動体塔
載アンテナで上記誘導無線線路を励振することに
より、上記第1および第2の導体系の各導体間に
電圧を誘起せしめ、第1の導体系については周波
数ω1の信号を選択受信してこの信号についての
各導体間電圧の正相(あるいは逆相)成分を求め
てから2m逓倍するか、あるいは各導体間電圧を2m
逓倍してからこれらの電圧についての正相(ある
いは逆相)成分を求め、第2の導体系については
周波数ω2の信号を選択受信してこの信号につい
ての各導体間電圧の正相(あるいは逆相)成分を
求め、第1の導体系の2m逓倍された正相(あるい
は逆相)電圧と第2の導体系の正相(あるいは逆
相)電圧との位相差からの移動体の存在する小区
間を知ることを特徴とする移動体位置検知方式。 3 M相M導体(Mは3または3より大なる整
数)によつて形成される第1の導体系と、M相M
導体によつて形成され、第1の導体系の導体形状
ピツチの1/2m(mは任意の正の整数)の導体形状
ピツチを有する第2の導体系とを移動体走行路に
沿つて布設して誘導無線線路を構成し、上記走行
路をN個(Nは2または2より大なる整数)の小
区間に分割すると共に、各小区間の境界を通過す
る毎に第2の導体系のみの導体形状の位相を階段
的に変化せしめ、周波数ω1およびω1を2m逓倍し
た周波数ω2の高周波電流が通電された移動体塔
載アンテナで上記誘導無線線路を励振することに
より、上記第1および第2の導体系の各導体間に
電圧を誘起せしめ、第1の導体系については周波
数ω1の信号を選択受信してこの信号についての
各導体間電圧の正相および逆相成分を求めてから
2m逓倍するか、あるいは各導体間電圧を2m逓倍し
てからこれらの電圧についての正相および逆相成
分を求め、第2の導体系については周波数ω2
信号を選択受信して各導体間電圧の正相および逆
相成分を求め、第2の導体系の正相電圧と第1の
導体系の2m逓倍された正相電圧の位相差と第1の
導体系についての2m逓倍された逆相電圧を第2の
導体系についての逆相電圧の位相差の算術平均値
から移動体の存在する小区間を知ることを特徴と
する移動体位置検知方式。
[Claims] 1. A first conductor system formed by M-phase M conductors (M is 3 or an integer greater than 3), and a second conductor system having a conductor shape pitch equal to that of the first conductor system.
A conductor system of The phase of the conductor shape of only one conductor system is changed stepwise each time it passes through the boundary of A moving body position detection method characterized in that a small section in which a moving body exists is known from a phase difference between positive phase components (or negative phase components) of a voltage between conductors of a second conductor system. 2. A first conductor system formed by M phase M conductors (M is 3 or an integer greater than 3);
A second conductor system formed of a conductor and having a conductor shape pitch of 1/2 m (m is any positive integer) of the conductor shape pitch of the first conductor system is laid along the moving vehicle running path. The guided radio track is divided into N subsections (N is 2 or an integer greater than 2), and only the second conductor system is connected each time the boundary of each subsection is passed. By changing the phase of the conductor shape stepwise, and exciting the above-mentioned inductive radio line with a mobile tower-mounted antenna to which a high-frequency current of frequency ω 1 and frequency ω 2 , which is ω 1 multiplied by 2 m , is applied. A voltage is induced between each conductor of the first and second conductor systems, and for the first conductor system, a signal with a frequency ω 1 is selectively received, and the voltage between the conductors for this signal is in the positive phase (or negative phase). ) component and then multiply it by 2 m , or multiply the voltage between each conductor by 2 m
After multiplying, the positive phase (or negative phase) components of these voltages are determined, and for the second conductor system, the signal with frequency ω 2 is selectively received and the positive phase (or negative phase) component of each conductor voltage for this signal is calculated. The component of the moving object is calculated from the phase difference between the 2 m multiplied positive sequence (or negative phase) voltage of the first conductor system and the positive sequence (or negative phase) voltage of the second conductor system. A mobile object position detection method characterized by knowing the existing small section. 3. A first conductor system formed by M-phase M conductors (M is 3 or an integer greater than 3);
A second conductor system formed of a conductor and having a conductor shape pitch of 1/2 m (m is any positive integer) of the conductor shape pitch of the first conductor system is laid along the moving vehicle running path. The above-mentioned running route is divided into N small sections (N is 2 or an integer greater than 2), and each time the boundary of each small section is passed, only the second conductor system is constructed. The phase of the conductor shape is changed in a stepwise manner, and the above-mentioned inductive radio line is excited by a mobile tower-mounted antenna to which a high-frequency current of frequency ω 1 and frequency ω 2 , which is ω 1 multiplied by 2 m , is applied. A voltage is induced between each conductor of the first and second conductor systems, and for the first conductor system, a signal of frequency ω 1 is selectively received, and the positive-phase and negative-phase components of the voltage between each conductor for this signal are calculated. After asking for it
2 m , or the voltage between each conductor is multiplied by 2 m , and then the positive and negative phase components of these voltages are determined, and for the second conductor system, the signal at frequency ω 2 is selectively received and each Find the positive-sequence and negative-sequence components of the voltage between the conductors, and calculate the phase difference between the positive-sequence voltage of the second conductor system and the 2 m multiplied positive-sequence voltage of the first conductor system, and the 2 m of the first conductor system. A moving object position detection method characterized in that a small section in which the moving object exists is determined from the arithmetic mean value of the phase difference of the multiplied negative phase voltage in the second conductor system.
JP12460281A 1981-08-08 1981-08-08 Detection of position for moving body Granted JPS5826204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12460281A JPS5826204A (en) 1981-08-08 1981-08-08 Detection of position for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12460281A JPS5826204A (en) 1981-08-08 1981-08-08 Detection of position for moving body

Publications (2)

Publication Number Publication Date
JPS5826204A JPS5826204A (en) 1983-02-16
JPS6330587B2 true JPS6330587B2 (en) 1988-06-20

Family

ID=14889498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12460281A Granted JPS5826204A (en) 1981-08-08 1981-08-08 Detection of position for moving body

Country Status (1)

Country Link
JP (1) JPS5826204A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606443A (en) * 1983-11-30 1986-08-19 Harada Industry Co., Ltd. Planetary drive with overload clutch release means for an antenna
US4893077A (en) * 1987-05-28 1990-01-09 Auchterlonie Richard C Absolute position sensor having multi-layer windings of different pitches providing respective indications of phase proportional to displacement
US4893078A (en) * 1987-05-28 1990-01-09 Auchterlonie Richard C Absolute position sensing using sets of windings of different pitches providing respective indications of phase proportional to displacement

Also Published As

Publication number Publication date
JPS5826204A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
EP1020729B1 (en) Fault detection for power lines
CN101779134A (en) Method with the asynchronous measurement of both-end fault location in non-compensates electric circuit
US4063165A (en) Apparatus for localization of a line fault by using traveling wave signals especially for locating faults both near and far from a measuring location
JPS6330587B2 (en)
RU2153426C2 (en) Contact system short-circuit fault indicator
JPS6322268B2 (en)
JPS6246829B2 (en)
JP2532155B2 (en) Fault location method for n-terminal parallel 2-circuit transmission line
JPH0450539B2 (en)
JPH07234102A (en) Displacement measuring apparatus
JPS6015028B2 (en) How to detect the position of a moving object
SU1645184A1 (en) Device for measuring conductivity of rail line insulation
JPS6246828B2 (en)
JPS6048763B2 (en) Mobile object position detection method
JPH0450538B2 (en)
GB1459788A (en) Vehicle guidance systems
JPH0450541B2 (en)
JPH0566988B2 (en)
JPS6332155B2 (en)
JP2889252B2 (en) Power cable dielectric loss measuring device
JPS59228168A (en) Detection for speed of linear motor
SU1113726A1 (en) Dielectric coating thickness gauge
JPH0235266B2 (en)
JPS6124901B2 (en)
SU1659920A1 (en) Device for localizing shorts in electrical circuits