JPS6124901B2 - - Google Patents

Info

Publication number
JPS6124901B2
JPS6124901B2 JP52041311A JP4131177A JPS6124901B2 JP S6124901 B2 JPS6124901 B2 JP S6124901B2 JP 52041311 A JP52041311 A JP 52041311A JP 4131177 A JP4131177 A JP 4131177A JP S6124901 B2 JPS6124901 B2 JP S6124901B2
Authority
JP
Japan
Prior art keywords
mode
input means
current
phase
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52041311A
Other languages
Japanese (ja)
Other versions
JPS53127657A (en
Inventor
Iwao Madori
Yoshiteru Miki
Junichi Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4131177A priority Critical patent/JPS53127657A/en
Publication of JPS53127657A publication Critical patent/JPS53127657A/en
Publication of JPS6124901B2 publication Critical patent/JPS6124901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電力系統の保護方式に係り、特に送電
線保護に使用するに好適な搬送保護継電方式に関
する。 送電系統は遠隔地大容量発電所建設に伴なう長
距離送電線の出現、用地取得難に伴なう3端子系
の建設および超高圧ケーブル系統の都市部への布
設等系統が多様化しつつある。このような多様化
に共通して起る問題点としては対地充電容量が増
大し、事故時に送電線のインダクタンスと上記対
地充電容量の共振により保護リレーにとつて非常
に苛酷な高調波が発生し、従来の保護方式では検
出感度が低下したり動作時間が遅くなる欠点があ
る。このような欠点が生ずる原因は、従来の保護
リレーが基本波成分にのみ基づいた事故判定を行
うことをその動作原理として来たからである。 このような従来方式の欠点は、送電線がインダ
クタンスとキヤパシタンスの分布定数から成つて
いると考え、電圧、電流に波動方程式を適用し、
その挙動を波動として扱うことにより解決できる
ことが最近明らかになつた。この考え方の概要を
次に述べる。 送電線は第1図に示すように主としてインダク
タンスとキヤパシタンスから成つている(抵抗と
コンダクタンスは少さいので無視する。)第1図
は単相で表わしてあるが、波動方程式と進行波の
伝搬原理に基づいた差電流方式の内容を説明する
には単相回路で十分である。第1図を用いて電
圧・電流の波動方程式を説明する。線路上で十分
接近した2点S,Rの位置をそれぞれx、x+Δ
xとすると、時刻tにおけるS,R間の電圧降下
は Δe(x、t)=e(x、t)−e(x+Δx、
t) =L・Δx∂i(x、t)/∂t ……(1) となる。Δx→0に接近させたとき(1)式は −∂e(x、t)/∂x=L∂i(x、t)/∂t……
(2) となる。同様に電流の減少分は −∂i(x、t)/∂x=C∂e(x、t)/∂t……
(3) となる。(2)及び(3)式から波動方程式として知られ
ている(4)式が誘導できる。
The present invention relates to a power system protection system, and particularly to a carrier protection relay system suitable for use in power transmission line protection. Power transmission systems are becoming more diverse, with the emergence of long-distance transmission lines due to the construction of large-capacity power plants in remote areas, the construction of three-terminal systems due to land acquisition difficulties, and the installation of ultra-high voltage cable systems in urban areas. be. A common problem with this diversification is that the ground charging capacity increases, and in the event of an accident, resonance between the inductance of the power transmission line and the ground charging capacity generates harmonics that are extremely severe for protection relays. However, conventional protection methods have drawbacks such as reduced detection sensitivity and slow operation time. The reason for this drawback is that the operating principle of conventional protection relays has been to make fault judgments based only on the fundamental wave component. The disadvantage of this conventional method is that it assumes that a power transmission line consists of distributed constants of inductance and capacitance, and applies wave equations to voltage and current.
It has recently become clear that this problem can be solved by treating this behavior as a wave. An overview of this idea is given below. As shown in Figure 1, a power transmission line mainly consists of inductance and capacitance (resistance and conductance are small, so they are ignored.) Figure 1 shows a single phase, but the wave equation and the propagation principle of traveling waves A single-phase circuit is sufficient to explain the content of the differential current method based on . The wave equation of voltage and current will be explained using FIG. The positions of two points S and R that are sufficiently close on the track are x and x+Δ, respectively.
x, the voltage drop between S and R at time t is Δe(x, t)=e(x, t)−e(x+Δx,
t) =L・Δx∂i(x,t)/∂t...(1). When Δx→0 is approached, equation (1) is -∂e(x,t)/∂x=L∂i(x,t)/∂t...
(2) becomes. Similarly, the decrease in current is -∂i(x,t)/∂x=C∂e(x,t)/∂t...
(3) becomes. Equation (4), known as the wave equation, can be derived from equations (2) and (3).

【表】 (4)式の解は一般的に次のように表わされる。 e(x、t)=(t−γx)+(t+γ
x) ……(5) i(x、t)=1/Z{(t−γx)−(t +γx)} (6) (5)及び(6)式を書きかえると(t−γx)、
(t+γx)は次のよう表わされる。 e(x、t)+z・i(x、t)=2(t−γ
x) ……(7) e(x、t)−zi(x、t)=2(t+γx)
…(8) ここで(t−γx)はxの正の方向に進む
波動であり、(t+γx)はxの負の方向に
進む波動である。(7)及び(8)式から進行波は送電線
の電圧・電流の組合せにより前進波と後進波に分
けて考えることが可能である。ここで(7)式の前進
波に着目すると、t−γxは一定不変である。つ
まりΔxの距離を速度1/γで進行し、進行に要する 時間がΔtであれば、 Δt=γ・Δxであるから、 時刻(t+Δx)、場所(x+Δx)における
t−γxを求めると、 (t+Δt)−γ(x+Δx)=t−γx+Δt−
γΔx =t−γx となり、t−γxは常に一定である。別の表現に
言い変えると、インダクタンスとキヤパシタンス
から成る分布系が一様である場合Δxだけ離れた
2点間において前進波(又は後進波)が全く減衰
又は変歪せずに伝搬するということである。これ
を式で示すと次のようになる。つまり eS(x、t)+z・iS(x、t)=eR(x+Δx、t+Δt)+z・iR(x+Δx、t+Δt) ……(10) (eS、iSはS端の電圧、電流のしゆん時値、e
R、iRはR端の電圧、電流のしゆん時値)とな
る。送電線の任意の2点間内に事故がなく、イン
ダクタンスとキヤパシタンスが一様に分布してい
る場合には(10)が成立するが、内部に事故があると
一様な分布性が崩れるので(10)式が成立しない。つ
まり(10)式の成立・不成立によつて保護区間内の事
故を検出できるわけである。実際には(10)式を変形
した次式を計算する。つまり ξ(t)=iS(x、t)−iR(x+Δx、t +Δt)+1/Z{eS(x、t)−eR(x +Δx、t+Δt)} ……(11) 外部事故時又は正常状態では理論的にはξ
(t)=0であり、内部事故時には|ξ(t)|≠
0である。しかし、計測系での誤差、計算ビツト
が有限であるための丸めの誤差、打切り誤差等が
あるので、あるスライスレベルを設けて、|ξ
(t)|<δなら事故なし、|ξ(t)|>δな
ら事故有と判定する。 以上は単相回路に基づいた判定であるが、実際
の線路は多相線路から成り、相互誘導分も考慮す
る必要がある。相互誘導分の入つた多相線路の進
行波については、これを等価的に誘導分の入らな
いn個の独立した単相回路に分解し(モード変
換)、各々の独立回路に対して(11)式で述べた差電
流をとり、その結果を逆変換して実際の送電線の
各相(a相、b相、c相等)の差電流を求めるこ
とにより、事故の有無及び事故相の選別が可能で
ある。以下にその内容を具体的に述べる。説明を
簡単にするため平衡した3相1回線を例に述べ
る。第2図は平衡3相1回線の自己インダクタン
ス、自己キヤパシタンス、相互インダクタンス及
び相互キヤパシタンスを示す。lは自己インダク
タンス、mは相互インダクタンス、cは自己キヤ
パシタンス、c′は相互キヤパシタンスである。 各相の対地電位をea、eb、ec(距離xと時
間tの関数であることを略す。以下同様)と電流
(ia、ib、ic)との関係は次の2組の式で与え
られる。
[Table] The solution to equation (4) is generally expressed as follows. e(x, t)= 1 (t-γx)+ 2 (t+γ
x) ...(5) i (x, t) = 1/Z{ 1 (t-γx)- 2 (t + γx)} (6) Rewriting equations (5) and (6), 1 (t- γx),
2 (t+γx) is expressed as follows. e(x, t)+z・i(x, t)=2 1 (t−γ
x) ...(7) e(x, t)-zi(x, t)=2 2 (t+γx)
...(8) Here, 1 (t-γx) is a wave that moves in the positive direction of x, and 2 (t+γx) is a wave that moves in the negative direction of x. From equations (7) and (8), traveling waves can be divided into forward waves and backward waves depending on the combination of voltage and current of the transmission line. Here, if we focus on the forward wave in equation (7), t-γx remains constant. In other words, if you travel a distance of Δx at a speed of 1/γ and the time required to travel is Δt, then Δt=γ・Δx, so finding t-γx at time (t+Δx) and location (x+Δx), ( t+Δt)-γ(x+Δx)=t-γx+Δt-
γΔx =t−γx, and t−γx is always constant. In other words, if the distribution system consisting of inductance and capacitance is uniform, a forward wave (or backward wave) will propagate between two points separated by Δx without being attenuated or distorted at all. be. This can be expressed as an equation as follows. In other words, e S (x, t) + z・i S (x, t)=e R (x+Δx, t+Δt)+z・i R (x+Δx, t+Δt) ...(10) (e S , i S are the voltages at the S terminal , the current value at the time of collapse, e
R and i R are the voltage and current values at the R end. If there is no fault between any two points on the transmission line and the inductance and capacitance are uniformly distributed, then (10) holds, but if there is a fault inside, the uniform distribution will be disrupted. Equation (10) does not hold. In other words, an accident within the protected area can be detected depending on whether equation (10) holds or does not hold. In reality, the following equation, which is a modified version of equation (10), is calculated. In other words, ξ(t)=i S (x, t)−i R (x+Δx, t +Δt)+1/Z{e S (x, t)−e R (x +Δx, t+Δt)} ...(11) External accident In theory or under normal conditions, ξ
(t)=0, and in the case of an internal accident |ξ(t)|≠
It is 0. However, there are errors in the measurement system, rounding errors due to the finite number of calculation bits, truncation errors, etc., so by setting a certain slice level, |ξ
If (t)|<δ, it is determined that there is no accident, and if |ξ(t)|>δ, it is determined that there is an accident. The above judgment is based on a single-phase circuit, but the actual line consists of a multi-phase line, and mutual induction must also be taken into account. For traveling waves on a polyphase line containing mutual induction components, this is equivalently decomposed into n independent single-phase circuits containing no induction components (mode conversion), and for each independent circuit (11 ), and by inversely converting the result to obtain the difference current of each phase (A phase, B phase, C phase, etc.) of the actual power transmission line, the presence or absence of an accident and fault phase can be determined. is possible. The details will be described in detail below. To simplify the explanation, a balanced three-phase single line will be described as an example. FIG. 2 shows the self-inductance, self-capacitance, mutual inductance and mutual capacitance of a balanced three-phase single line. l is self inductance, m is mutual inductance, c is self capacitance, and c' is mutual capacitance. The relationship between the ground potential of each phase e a , e b , e c (abbreviated as a function of distance x and time t; the same applies hereinafter) and the current (i a , i b , i c ) is as follows. It is given by a set of expressions.

【表】 〓………(12)
−∂e ∂i ∂i ∂i
[Table] 〓……(12)
−∂e b ∂i a ∂i b ∂i c

Claims (1)

【特許請求の範囲】 1 三相送電線の自端に設けられ三相の電流、電
圧の全量を周期Δtごとにサンプリングする第1
の入力手段、三相送電線の相手端に設けられ三相
の電流、電圧の全量を周期Δtごとにサンプリン
グするとともに前記第1の入力手段とは異なる時
刻にサンプリングするようにされた第2の入力手
段、第1の入力手段の出力を相手端側へ伝送し第
2の入力手段の出力を自端側へ伝送する信号伝送
装置、自端と相手端に夫々設置され、2組の入力
手段の出力である三相の電流、電圧値と所定の特
性インピーダンスとから前進波(後進波)につい
て成立する進行波理論式を夫々の端子ごとに実施
し、全端子で求めた進行波理論式の解の差に応じ
てこの差が零でないとき保護区間送電線の内部事
故と判断して該当する送電線しや断器を開放する
出力を与える演算部とより成り、 前記演算部における進行波理論式はその端子の
三相の電流、電圧値を、零モード、αモード、β
モードより成るモーダル領域での値に変換し、モ
ーダル領域での電流、電圧値のうちのαモード又
はβモードのいずれかを代表モードとして選択
し、この代表モードでの値を用いたときに送電線
の各相ごとに成立する進行波理論式の形で準備さ
れるとともに、モーダル領域の代表モードの電
流、電圧値を導出する際に必要となる代表モード
の時刻の電流、電圧値として、前記2組の入力手
段の間のサンプリング時間差を代表モードの時の
時間差に対応させてサンプリング入力した値を用
い、かつ特性インピーダンスとして代表モードで
の特性インピーダンスを使用して進行波理論式を
実施することを特徴とする搬送保護継電方式。
[Claims] 1. A first circuit provided at the own end of a three-phase power transmission line that samples the total amount of three-phase current and voltage every period Δt.
a second input means provided at the other end of the three-phase power transmission line and configured to sample the total amount of three-phase current and voltage every period Δt and at a different time from that of the first input means; an input means, a signal transmission device that transmits the output of the first input means to the opposite end and the output of the second input means to the own end; two sets of input means installed at the own end and the opposite end respectively; The traveling wave theoretical formula that holds for forward waves (backward waves) is implemented for each terminal from the three-phase current and voltage values that are the output of and a calculation unit that determines that an internal fault has occurred in the protected area transmission line when this difference is not zero, and outputs an output to open the corresponding transmission line or disconnection, according to the traveling wave theory in the calculation unit. The formula calculates the three-phase current and voltage values at that terminal, zero mode, α mode, and β.
Convert it to a value in a modal region consisting of modes, select either α mode or β mode of the current and voltage values in the modal region as a representative mode, and send when using the value in this representative mode. It is prepared in the form of a traveling wave theoretical equation that holds true for each phase of the electric wire, and the current and voltage values at the time of the representative mode, which are necessary when deriving the current and voltage values of the representative mode in the modal region, are as follows. Implementing a traveling wave theory formula using values sampled and input by making the sampling time difference between the two sets of input means correspond to the time difference in the representative mode, and using the characteristic impedance in the representative mode as the characteristic impedance. A transport protection relay system featuring:
JP4131177A 1977-04-13 1977-04-13 Carrier protective relay system Granted JPS53127657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131177A JPS53127657A (en) 1977-04-13 1977-04-13 Carrier protective relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131177A JPS53127657A (en) 1977-04-13 1977-04-13 Carrier protective relay system

Publications (2)

Publication Number Publication Date
JPS53127657A JPS53127657A (en) 1978-11-08
JPS6124901B2 true JPS6124901B2 (en) 1986-06-13

Family

ID=12604945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131177A Granted JPS53127657A (en) 1977-04-13 1977-04-13 Carrier protective relay system

Country Status (1)

Country Link
JP (1) JPS53127657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119101U (en) * 1988-02-08 1989-08-11

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147944A (en) * 1977-05-30 1978-12-23 Tokyo Electric Power Co Inc:The Digital protective relay
JPS53147947A (en) * 1977-05-30 1978-12-23 Tokyo Electric Power Co Inc:The Digital protective relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119101U (en) * 1988-02-08 1989-08-11

Also Published As

Publication number Publication date
JPS53127657A (en) 1978-11-08

Similar Documents

Publication Publication Date Title
Chamia et al. Ultra high speed relay for EHV/UHV transmission lines--Development, design and application
US5446387A (en) Method and a device for determining a fault on a transmission line
US4254444A (en) Multiphase undervoltage tripping circuitry for electrical power supply networks
EP0035365A2 (en) Method and apparatus for fault detection
Tang et al. Fault indicators in transmission and distribution systems
CA1056909A (en) Apparatus for localization of a line fault
Chu Unbalanced current analysis and novel differential protection for HVDC transmission lines based on the distributed parameter model
Akke et al. Some improvements in the three-phase differential equation algorithm for fast transmission line protection
CN107359603B (en) Hvdc transmission line multistage distance protection method and system based on one-terminal data
CN104779591A (en) Longitudinal differential protection scheme for inverter interfaced distributed generator teed line
CN103869221A (en) SV network sampling-based double-circuit line single-phase earth fault distance measurement method
US4261038A (en) Protection of electrical power supply systems
CN106932645A (en) Insulating resistor detecting circuit and detection method based on direct current IT system
Taheri et al. Single-end current-based algorithm for fault location in series capacitor compensated transmission lines
EP0139123B1 (en) Protective relay system
Johns et al. New approach to power line protection based upon the detection of fault induced high frequency signals
CN102082420B (en) Longitudinal differential protection method of power transmission line
Lian et al. An overview of digital fault location algorithms for power transmission lines using transient waveforms
JPS6124901B2 (en)
Yu et al. A sensitive single-end DC line fault detection method for MMC-HVDC grids using reactor voltage ratio
Thomas et al. A novel transmission-line voltage measuring method
Jeyasurya et al. Determination of transient apparent impedances of faulted transmission lines
JPS5922446B2 (en) Protective relay device
Saha et al. A new approach to past distance protection with adaptive features
JP3441906B2 (en) DC transmission line protection device