JPS5922446B2 - Protective relay device - Google Patents

Protective relay device

Info

Publication number
JPS5922446B2
JPS5922446B2 JP52022920A JP2292077A JPS5922446B2 JP S5922446 B2 JPS5922446 B2 JP S5922446B2 JP 52022920 A JP52022920 A JP 52022920A JP 2292077 A JP2292077 A JP 2292077A JP S5922446 B2 JPS5922446 B2 JP S5922446B2
Authority
JP
Japan
Prior art keywords
relay device
current
protective relay
instantaneous
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52022920A
Other languages
Japanese (ja)
Other versions
JPS53107643A (en
Inventor
栄一 岡本
溢泰 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP52022920A priority Critical patent/JPS5922446B2/en
Publication of JPS53107643A publication Critical patent/JPS53107643A/en
Publication of JPS5922446B2 publication Critical patent/JPS5922446B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、電力系統の保護をデジタル処理によって行な
う保護継電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protective relay device that protects a power system through digital processing.

この種の保護継電装置は、数多くの提案がなされている
が、従来は送電線保護にキルヒホッフの第1法則を応用
し、各電気所で同一時刻にサンプリングしたデータの瞬
時値和の変動でしゃ断器を制御するいわゆる電流差動方
式のものであった。
Many proposals have been made for this type of protective relay device, but in the past, Kirchhoff's first law was applied to power transmission line protection, and changes in the sum of instantaneous values of data sampled at the same time at each electrical station were used. It was a so-called current differential system that controlled the circuit breaker.

しかし保護区間の送電線路が長距離、ケーブル系統等の
場合、線路の分布定数(インダクタンスし、対地容量C
等)の影響で送電端、受電端における電流波形、電圧波
形が異なり、前記電流差動方式では保護性能に限界があ
った。
However, if the power transmission line in the protected area is long distance, cable system, etc., the distribution constant of the line (inductance, ground capacitance C
etc.), the current waveform and voltage waveform at the power transmitting end and the power receiving end are different, and the current differential method has a limit in protection performance.

すなわち、送電線路が長距離、ケーブル系統でその保護
区間外に短絡等の事故が発生すると、線路のインダクタ
ンスし、対地容量Cによる共振電流により電流波形は高
次の高調波を含む。
That is, when the power transmission line is a long distance, and an accident such as a short circuit occurs outside the protected area of the cable system, the inductance of the line and the resonance current due to the ground capacitance C cause the current waveform to include high-order harmonics.

また、L、Cと線路長lにより定まる波形の伝播遅れか
ら高調波を発生する。
Further, harmonics are generated from the propagation delay of the waveform determined by L, C and line length l.

このようなことから、送電端の電流波形と受電端のそれ
とは一致することがほとんどなく、送電端と受電端の両
電流波形を単に比較する電流差動方式では電力系統の高
精度の事故検出が難しいものであった。
For this reason, the current waveform at the transmitting end and that at the receiving end rarely match, and the current differential method, which simply compares the current waveforms at the transmitting end and the receiving end, can detect faults in power systems with high accuracy. was difficult.

なお、線路のインダクタンスし1対地容量Cによる共振
で発生する高調波については、内部事故では特に影響な
く、外部事故では送電端、受電端を通過する高調波が殆
んどとなるため差動リレーの場合に特に問題とならない
Note that harmonics generated by resonance due to line inductance and ground capacitance C have no particular effect in internal faults, but in external faults most of the harmonics pass through the transmitting end and receiving end, so differential relays are There is no particular problem in this case.

本発明は、上記問題点に鑑みてなされたもので、線路の
伝播遅れによる高調波の発生が電流波形に与える影響を
補償し、電力系統の事故検出を高精度にできる保護継電
装置を提供するものである。
The present invention has been made in view of the above-mentioned problems, and provides a protective relay device that compensates for the influence that harmonics generated due to line propagation delays have on current waveforms, and can highly accurately detect faults in power systems. It is something to do.

本発明による保護継電装置は、自保護区間の送※電線路
を分布定数回路として取扱い、各電気所で同一時刻にサ
ンプリングして変換したデジタル量を相互に送受信して
その瞬時値の差動値をサンプリング時刻毎に得、これら
差動値を自保護区間の波形伝播時間τ乃至2τ前の差動
値で加算し、加算値の最小値をしゃ断器の制御信号とし
て、または差動値を4τ区間だけ積分した信号をしゃ断
器の制御信号とするものである。
The protective relay device according to the present invention treats the transmission line in the self-protected section as a distributed constant circuit, mutually transmits and receives digital quantities sampled and converted at the same time at each electric station, and calculates the difference between the instantaneous values. Obtain the value at each sampling time, add these differential values with the differential value before the waveform propagation time τ to 2τ in the self-protection section, and use the minimum value of the added value as the control signal for the circuit breaker, or use the differential value as the control signal for the circuit breaker. A signal integrated over a 4τ interval is used as a control signal for the circuit breaker.

まず、本発明による保護継電装置を原理的に説明する。First, the principle of the protective relay device according to the present invention will be explained.

第1図aにおいて、送電端Sより受信端Rまでの距離を
6(m)、送電線路を単位長当りのインダクタンスし、
対地静電容量Cを持つLC分布定数回路として送電端電
圧Vs、送電端電流is、受電端電圧■R1受電端電流
iR,として四端子定数を用いてラプラス演算子Sによ
る周波数領域で表わすと、 上記式中、サージインピーダンスZ、伝播時間τを25
*とおくと、上記(1) 、 (2)式はV S (S
)= cosh (S r ) V R(S)+Zsi
nh (S T ) i R(S) ”
・” ”・”・= ”・・・・(3)ここで、受電端を
抵抗rで終端すると、 V R(S)−r i R(S) ・・・・・・
・・・・・・・・・(5)から該(5)式を(3) 、
(4)式に代入すると、Vs(S)=(rcosh
(Sr)+Zsinh(Sr月i□(S)・・・・・・
・・・・・・・・・・・・・・・(6)になる。
In Figure 1a, the distance from the transmitting end S to the receiving end R is 6 (m), and the inductance per unit length of the power transmission line is
As an LC distributed constant circuit with ground capacitance C, when expressed in the frequency domain by the Laplace operator S using four-terminal constants as the sending end voltage Vs, sending end current is, receiving end voltage ■R1 receiving end current iR, In the above formula, surge impedance Z and propagation time τ are 25
*, the above equations (1) and (2) become V S (S
) = cosh (S r ) V R (S) + Zsi
nh (ST) i R(S)”
・” ”・”・= ”・・・・(3) Here, if the receiving end is terminated with a resistor r, V R(S)−r i R(S) ・・・・・・
・・・・・・・・・From (5), the formula (5) is converted into (3),
Substituting into equation (4), Vs(S)=(rcosh
(Sr)+Zsinh(Sr月i□(S)・・・・・・
・・・・・・・・・・・・・・・(6)

上記(6) 、 (7)式によりi B(S)と1R(
S)を求めると、上記(8) 、 (9)式を双曲線正
弦、余弦公式から整理すると夫々 となる。
By the above equations (6) and (7), i B(S) and 1R(
S) can be obtained by rearranging the above equations (8) and (9) from the hyperbolic sine and cosine formulas.

ここで、送電端SにEなるステップ電圧を印加した場合
、ステップ電圧Eが複素周波数領域ではiE/Sで表わ
せることから上記(10)、(11式はVs(S)にE
/Sを代入整理すると、送電端電流isおよび受電端電
流iRは下記式になる。
Here, when a step voltage of E is applied to the power transmission end S, since the step voltage E can be expressed as iE/S in the complex frequency domain, the above equations (10) and (11) are expressed as Vs(S).
When /S is substituted and rearranged, the sending end current is and the receiving end current iR become the following formulas.

第1図すは、上記(12)、α3)式においてr−Oo
(受電端Rが開放)とした場合の伝播電流の時間的変化
を図示したもので、i 3(t) 、 i B(t)と
しては上記α2) 、 (13)式にr−■を代入した
計算から第1図Cに示すようになる。
Figure 1 shows that r-Oo in equation (12) and α3) above.
This diagram shows the temporal change in the propagation current when the power receiving end R is open. For i 3 (t) and i B (t), the above α2) and r-■ are substituted into equation (13). The calculations shown in Figure 1C are obtained.

この図から明らかなように、送電端電流1s(t)は4
τの周期を持つ矩形波となり、受電端電流1B(t)は
零になる。
As is clear from this figure, the sending end current 1s(t) is 4
It becomes a rectangular wave with a period of τ, and the receiving end current 1B(t) becomes zero.

なお、f −00。0、Z/3における電流i 5(t
)、 t B(t)の波形は(12) 、 (13)式
から次のようにして求めることができる。
Note that the current i 5(t
), t The waveform of B(t) can be obtained from equations (12) and (13) as follows.

r−(9)のとき、(12) 、 (13)式にr=■
を代入・整理すると、 ■R(S)=0 ・・・・・・・・・・・・・
・・・・・(15)この■R(S)の時間領域への逆変
換公式によれば、(第1図C)になる。
When r-(9), r=■ in equations (12) and (13)
By substituting and rearranging, ■R(S)=0 ・・・・・・・・・・・・・・・
(15) According to the formula for inversely converting ■R(S) into the time domain, it becomes (C in Figure 1).

同様に、r = Oのとき r = Z / 3のとき となり、夫々の時間領域の波形は第2図b、第3図aに
示すものになる。
Similarly, when r=O, r=Z/3, and the respective time domain waveforms are as shown in FIGS. 2b and 3a.

そして、同図Cの波形を少くとも2τ以下の間隔でサン
プリングし、差動値t 5(t)−1R(t)を各サン
プル値毎に行なえば、第1図dに示す波形が得られる。
Then, by sampling the waveform shown in Figure C at intervals of at least 2τ or less, and performing the differential value t5(t)-1R(t) for each sample value, the waveform shown in Figure 1D can be obtained. .

同様に、第2図aにr=oの場合の伝播電流の時間的変
化を示し、時間と共に電流は増加する。
Similarly, FIG. 2a shows the temporal change of the propagation current when r=o, and the current increases with time.

この場合、i 5(t) 、 i R(t)としては第
2図すに示すように階段状の波形になる。
In this case, i 5 (t) and i R (t) have step-like waveforms as shown in FIG.

そして、少くともτ以下の間隔でサンプリングし、差動
値1s(t)−iR(t)を求めれば、同図Cに示す波
形が差動値として得られる。
Then, by sampling at intervals of at least τ and finding the differential value 1s(t)-iR(t), the waveform shown in C in the figure can be obtained as the differential value.

i R(t)を示し、第3図すに差動値i 3(t)−
i R(t)の波形が得られる。
i R(t), and the differential value i 3(t)-
A waveform of i R(t) is obtained.

さらに、rに種々の値を代入すれば、1s(t)。Furthermore, if we substitute various values for r, we get 1s(t).

1B(t)は様相の異った波形となるが、倒れの場合に
も差動値i 3(t)−i B(t)の周期は2τまた
は4τになる。
1B(t) has a different waveform, but even in the case of collapse, the period of the differential value i3(t)-iB(t) is 2τ or 4τ.

差動値i 5(t)−i R(t)= i (t)とし
第1図dにおいて1(t)+ i (t −2τ)三ξ
(t)aすなわち現時点より2τ前の瞬時値を現時点の
データと加算することによってξ(t)aキOにするこ
とができる。
Differential value i 5 (t) - i R (t) = i (t), and in Figure 1 d, 1 (t) + i (t - 2τ)3ξ
By adding (t)a, that is, the instantaneous value 2τ before the current time, with the current data, ξ(t)a can be obtained.

また、第2図Cにおいては差動値i (t)+ i (
t −r )ヨξ(t)bすなわち現時点よりτ前の瞬
時値を現時点のデータと加算することによってξ(t)
bキ0とすることができる。
Moreover, in FIG. 2C, the differential value i (t) + i (
t −r ) ξ(t)b, that is, by adding the instantaneous value τ before the current time with the current data, ξ(t)
b can be set to 0.

なお、第3図すにおいて同様に1(t)+i (t−r
)Eξ(t) bの演算を行なえば0<1≧rの間で
0.5■が残るが、単に1(t)=t 5(t) t
B(t)を求める場合に比べて差動値を小さくするこ
とができる。
Furthermore, in Figure 3, 1(t)+i (t-r
)Eξ(t) If we perform the calculation of b, 0.5■ will remain between 0<1≧r, but simply 1(t)=t 5(t) t
The differential value can be made smaller than when calculating B(t).

一方、第1図d、第2図Cの波形から明らかなように、
任意の時刻tからt+4τまでの間に含まれるi (t
)−i 8(t) i□(1)を全て加算、すなわち
区間積分と同等の演算を行なえば、その結果はほとんど
零になる。
On the other hand, as is clear from the waveforms in Figure 1 d and Figure 2 C,
i (t
)−i 8(t) i□(1) If all of them are added, that is, an operation equivalent to interval integration is performed, the result will be almost zero.

上記までは、線路に直流を印加した場合の過度現象につ
いて説明したが、交番電圧E=Vsinωtを印加した
場合も同様に電流に2τ、4τの周期を有する高調波が
重畳する。
Up to this point, transient phenomena have been described when direct current is applied to the line, but harmonics having periods of 2τ and 4τ are similarly superimposed on the current when an alternating voltage E=Vsinωt is applied.

そして、この交流波形の瞬時値差動値1(t)にτ、2
τ前の差動値を加算すること、または4τ区間の積分(
加算)をすることで、高調波による差動値の誤差を小さ
くできる。
Then, the instantaneous value differential value 1(t) of this AC waveform is τ, 2
Adding the differential value before τ or integrating the 4τ interval (
(addition), it is possible to reduce errors in differential values due to harmonics.

[例えば、交番電圧V : E CO3ωt における
r=0の場合の送電端電流l5(S)は となり、時間領域のl3(t)は下記式になる。
[For example, the transmission end current l5(S) in the case of r=0 at the alternating voltage V: E CO3ωt is as follows, and l3(t) in the time domain is as follows.

I 3(t)=f(t)+2 f (t−2r )+2
f (t −4r )+ ・・・この交番電圧に対す
る電流I 5(t)波形はで=12×1O−2(SeC
)、ω=2πf=100πとして計算すると例えばt二
τでの電流■s(τ)は第6図aに示すようになる。
I 3(t)=f(t)+2 f(t-2r)+2
f (t −4r )+ ... The current I 5 (t) waveform for this alternating voltage is = 12×1O−2 (SeC
) and ω=2πf=100π, for example, the current s(τ) at t2τ becomes as shown in FIG. 6a.

図中破線は受電端電流I R(t)を示す。The broken line in the figure indicates the receiving end current I R(t).

そしてIB(t)とl8(t)の差は第6図すに示すよ
うに矩形波になる。
The difference between IB(t) and l8(t) becomes a rectangular wave as shown in FIG.

同様にr=■の電流I 5(t) 、 I □(t)及
びξ(t)=I3 IBは第6図c、dに示すように
なる。
Similarly, the currents I 5 (t), I □ (t) and ξ (t) = I3 IB when r=■ are as shown in FIGS. 6c and d.

上記までの説明で明らかなように、瞬時差動値i (t
)を得、このi (t)にτ、2τ前の瞬時差動値i(
を−τ)、1(t−2τ)を夫々加算したξ(t)a、
ξ(t)bを得、その内の最小値を検出することで、第
1図aに示すrに拘らず、常に差゛動値の誤差の最小の
ものが得られ、この信号をしゃ断器の制御信号とするこ
とで、線路の伝播時間τによる高調波の発生で差動値検
出の誤りを防ぐことができる。
As is clear from the above explanation, the instantaneous differential value i (t
) is obtained, and this i (t) is given τ, and the instantaneous differential value i(
-τ) and 1(t-2τ), respectively, ξ(t)a,
By obtaining ξ(t)b and detecting the minimum value among them, the minimum error of the differential value is always obtained regardless of r shown in Figure 1a, and this signal is used as a breaker. By using a control signal of

第1図d1第2図Cでは4τ積分でξ(t)a、ξ(t
) bは零となり第3図すでも初めの4τ間で0.75
I、次の4τ間で0.5Iさらに分すれば非常に小さく
することができる。
In Figure 1 d1 Figure 2 C, ξ(t)a, ξ(t
) b becomes zero and becomes 0.75 for the first 4τ in Figure 3.
It can be made very small by further dividing 0.5I between I and the next 4τ.

逆に、内部事故時には、差動値に商用周波の成分が大き
く、この周期が20m5または16.66m5であり、
例えば200Km 、500Kv架空線ではτは約66
0μs、4τでは2640μSになり、4τ区間の積分
をした場合、ξ(t)a、ξ(t)bを得る場合にも商
用周波を減衰させるような悪影響はない。
Conversely, in the event of an internal accident, the differential value has a large commercial frequency component, and this period is 20m5 or 16.66m5,
For example, in a 200Km, 500Kv overhead line, τ is approximately 66
At 0 μs and 4τ, it becomes 2640 μS, and when integrating over a 4τ interval, there is no adverse effect of attenuating the commercial frequency even when obtaining ξ(t)a and ξ(t)b.

上記までの原理的説明から、本発明は、単に瞬時値の差
動値を求めてしゃ断器の制御信号を得る従来の電流差動
方式に対して、瞬時値の差動値を自保護区間の波形伝播
時間τおよび2τだけ前の差動値と夫々加算し、それら
加算値のうちから差動値を最小にするようにすれば外部
事故時の差動値を小さくできることから最小値を検出し
てしゃ断器の制御信号とすること、または瞬時値の差動
値を4τ区間だけ加算してしゃ断器の制御信号とし、電
流波の伝播時間τによって発生する高調波により差動値
の誤差が大きくなるのを防ぐ。
From the above theoretical explanation, the present invention is different from the conventional current differential method in which the control signal for the circuit breaker is obtained by simply finding the differential value of the instantaneous value. By adding the waveform propagation time τ and the previous differential value by 2τ and minimizing the differential value from these added values, the differential value in the event of an external fault can be reduced, so the minimum value is detected. or add the instantaneous differential values for a 4τ interval to use as the control signal for the breaker, to avoid large errors in the differential value due to harmonics generated by the propagation time τ of the current wave. prevent becoming.

第4図は、本発明の一実施例を示すブロック図であり、
差動値にて、2τ前の差動値を加算する場合である。
FIG. 4 is a block diagram showing one embodiment of the present invention,
This is a case where the differential value 2τ before is added to the differential value.

電気所S、Rにおいて、夫々電流変成器1s、1Rを介
して得た電流のアナログ量をA−D変換器2s、2Rで
同一時刻に夫々サンプリングおよびデジタル量に変換し
、得られたデジタル量を夫々光ケーブル3s、3Rを伝
送路として電気所S、R間で送受信する。
At electric stations S and R, analog quantities of current obtained through current transformers 1s and 1R are sampled and converted into digital quantities at the same time by A-D converters 2s and 2R, respectively, and the obtained digital quantities are are transmitted and received between electrical stations S and R using optical cables 3s and 3R as transmission lines, respectively.

ここで、伝送路は光ケーブル3s、3□を用いるのは、
本発明が高調波を除去するためにサンプリングを比較的
高い周波数で行なうことから、各端で送受信するデータ
量の増大に充分対処できるようにするためであり、同等
のものとして同軸ケーブルによることもできる。
Here, the optical cable 3s, 3□ is used as the transmission line because
Since the present invention performs sampling at a relatively high frequency in order to remove harmonics, this is to be able to sufficiently cope with the increase in the amount of data transmitted and received at each end, and it is also possible to use a coaxial cable as an equivalent. can.

電気所Sでは送受信したデジタル量を夫々瞬時値差電流
演算回路4で加算(実際には電流変成器is、IRは第
4図に示すように区間内部方向に流入する電流方向を正
となるよう接続するためその極性が互いに逆になるので
減算)し、瞬時値の差動値1(t)= i 3(t)−
i 、fL(t)を計算し、差動値1(t)を加算回路
5a、5bで夫々τ、2τ時間前の差動値1(t−2τ
)、i(を−τ)と加算し、最小値演算判定回路6で加
算回路5 a t5bの出力のうち最小値を検出して一
定のレベルと比較判定することにより、しゃ断器の制御
信号を得る。
At the electric station S, the transmitted and received digital quantities are added by the instantaneous value difference current calculation circuit 4 (actually, the current transformers IS and IR are configured so that the current direction flowing into the section is positive as shown in Fig. 4). To connect, the polarities are opposite to each other, so subtract), and the instantaneous differential value 1(t) = i 3(t) -
i and fL(t), and add the differential value 1(t) to the differential value 1(t-2τ
), i(-τ), and the minimum value calculation/determination circuit 6 detects the minimum value among the outputs of the adder circuits 5a and 5b and compares and determines it with a certain level, thereby determining the breaker control signal. obtain.

なお、図示しないが、電気所R側にも瞬時差電流回路、
加算回路、最小値演算判定回路を備えている。
Although not shown, there is also an instantaneous differential current circuit on the electric station R side.
It is equipped with an addition circuit and a minimum value calculation determination circuit.

ここで、破線で示す7s、7R28sはローパスフィル
タである。
Here, 7s and 7R28s shown by broken lines are low-pass filters.

一般の電力系統では、前記したように、自保護区間のτ
により発生する高調波以外に、送電端、受電端の先に分
岐した送電線路(自保護区間以外の線路)からの電流波
の透過、反射現象により発生する高次の高調波が自保護
区間の電流に重畳する。
In general power systems, as mentioned above, the self-protection interval τ
In addition to harmonics generated by Superimposed on the current.

従って、ローパスフィルタ7s、7R28sは電流信号
から複雑な高次の高調波を除去し、しゃ断器の制御精度
を向上させる。
Therefore, the low-pass filters 7s and 7R28s remove complex high-order harmonics from the current signal and improve the control accuracy of the circuit breaker.

なお、ローパスフィルタ8sはデジタルフィルタで構成
される。
Note that the low-pass filter 8s is composed of a digital filter.

第5図は、本発明の他の実施例を示すブロック図であり
、4τ区間の積分を行なう場合である。
FIG. 5 is a block diagram showing another embodiment of the present invention, in which integration is performed over a 4τ interval.

同図が第4図と異なる部分は、瞬時値差電流演算回路4
からの瞬時値の差動値i (t)を積分器9で4τ区間
の積分(加算)し、その積分結果を判定回路10で一定
レベルと比較し、しゃ断器の制御信号を得るようにした
点にある。
The difference between this figure and FIG. 4 is that the instantaneous value difference current calculation circuit 4
An integrator 9 integrates (adds) the instantaneous differential value i (t) over a 4τ interval, and a determination circuit 10 compares the integration result with a constant level to obtain a breaker control signal. At the point.

以上間らかにしたように、本発明による保護継電装置に
よれば、両電気所から得た両デジタル値の瞬時値の差動
値と伝播時間τ、2τだけ前の瞬時値の差動値とを加算
し、そのうちの最小値を制御信号として、または瞬時値
の差動値を4τ区間だけ積分(加算)して制御信号とす
るようにしたため、線路が有する伝播遅れにより発生す
る高調波を除去した瞬時値の差動値を得ることができる
As explained above, according to the protective relay device according to the present invention, the difference between the instantaneous values of both digital values obtained from both electric stations and the instantaneous value before the propagation time τ, 2τ can be The minimum value of these values is used as a control signal, or the differential value of the instantaneous value is integrated (added) over a 4τ interval and used as a control signal. The differential value of the instantaneous value can be obtained by removing .

また、検出したアナログ量またはデジタル量にローパス
フィルタを設けたため、自保護区間外の事故により高次
高調波が重畳するのを防ぐことができ、制御精度の一層
の向上を図ることができる。
Furthermore, since a low-pass filter is provided for the detected analog or digital quantity, it is possible to prevent superimposition of high-order harmonics due to an accident outside the self-protection area, and it is possible to further improve control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明を原理的に説明するための図
、第4図は本発明による保護継電装置の一実施例を示す
ブロック図、第5図は不発りの他の実施例を示すブロッ
ク図、第6図は交番電圧における送電端電流1s(t)
と受電端電流I B(t)を説明するための図である。 S、R・・・・・・電気所、181□・・・・・・電流
変成器、2S2R・・・・・・A−D変換器、3s、3
R・・・・・・光ケブル、4・・・・・・瞬時値差電流
演算回路、5a 、 5b・・・・・・加算回路、6・
・・・・・最小値演算判定回路、7s。 7□、88・・・・・・ローパスフィルタ、9・・・・
・・積分器、10・・・・・・判定回路。
1 to 3 are diagrams for explaining the principle of the present invention, FIG. 4 is a block diagram showing one embodiment of the protective relay device according to the present invention, and FIG. 5 is a diagram showing another embodiment of the protective relay device according to the present invention. A block diagram showing an example, Fig. 6 shows the sending end current 1s(t) at an alternating voltage.
FIG. 3 is a diagram for explaining the receiving end current I B (t). S, R...Electric station, 181□...Current transformer, 2S2R...A-D converter, 3s, 3
R... Optical cable, 4... Instantaneous value difference current calculation circuit, 5a, 5b... Addition circuit, 6.
...Minimum value calculation judgment circuit, 7s. 7□, 88...Low pass filter, 9...
... Integrator, 10... Judgment circuit.

Claims (1)

【特許請求の範囲】 1 電力系統から得る電流のアナログ量を各電気所で同
一時刻に夫々サンプリングしてデジタル量に変換する手
段と、前記デジタル量を対向する電気所間で相互に送受
信する手段と、自電気所から保護区間に向って流入する
方向の検出電流になる前記デジタル量と対向する電気所
から受信した該保護区間に向かって流入する方向の検出
電流になる前記デジタル量との瞬時値の差動値を得る手
段と、前記瞬時値の差動値と自保護区間線路の距離lと
単位長当りのインダクタンスLと対地静電容量Cで決ま
る電流波伝播時間の1倍および2倍の時間だけ前の瞬時
値の差動作とを夫々加算する手段と、加算した瞬時値の
差動値のうち最小値を検出してしゃ断器の制御信号とす
る出段とを備えたことを特徴とする保護継電装置。 2 前記電力系統から得る電流のアナログ量は高次高調
波を除去した特許請求の範囲第1項記載の保護継電装置
。 3 前記デジタル量は高次高調波を除去した特許請求の
範囲第1項記載の保護継電装置。 4 電力系統から得る電流のアナログ量を各電気所で同
一時刻に夫々サンプリングしてデジタル量に変換する手
段と、前記デジタル量を対向する電気所間で相互に送受
信する手段と、自電気所から保護区間に向って流入する
方向の検出電流になる前記デジタル量と対向する電気所
から受信した該保護区間に向かって流入する方向の検出
電流になる前記デジタル量との瞬時値の差動値を得る手
段と、自保護区間線路の距離lと単位長当りのインダク
タンスLと対地静電容量Cで決まる電流波伝播時間の4
倍の時間内に得られる前記瞬時値の差動値を積分する手
段と、積分した瞬時値の差動値によりしゃ断器を制御す
る手段とを備えたことを特徴とする保護継電装置。 5 前記電力系統から得る電流のアナログ量は高次高調
波を除去した特許請求の範囲第2項記載の保護継電装置 6 前記デジタル量は高次高調波を除去した特許請求の
範囲第2項記載の保護継電装置。
[Scope of Claims] 1. Means for sampling the analog quantity of current obtained from the power system at the same time at each electric station and converting it into a digital quantity, and means for mutually transmitting and receiving the digital quantity between opposing electric stations. and the instantaneous difference between the digital quantity, which becomes the detected current flowing in the direction from the own electrical station toward the protected area, and the digital quantity, which becomes the detected current flowing in the direction towards the protected area, received from the opposing electrical station. 1 and 2 times the current wave propagation time determined by the differential value of the instantaneous value, the distance l of the self-protected section line, the inductance L per unit length, and the ground capacitance C. The circuit breaker is characterized by comprising means for adding the differential values of the instantaneous values from the previous time, and an output stage that detects the minimum value of the differential values of the added instantaneous values and uses it as a control signal for the circuit breaker. Protective relay device. 2. The protective relay device according to claim 1, wherein the analog amount of current obtained from the power system has high-order harmonics removed. 3. The protective relay device according to claim 1, wherein the digital quantity has high-order harmonics removed. 4. Means for sampling the analog amount of current obtained from the power system at the same time at each electric station and converting it into a digital amount, means for mutually transmitting and receiving the digital amount between opposing electric stations, and The differential value of the instantaneous value between the digital quantity, which becomes the detected current flowing in the direction toward the protected area, and the digital quantity, which becomes the detected current flowing in the direction flowing towards the protected area, received from the opposite electrical station. and the current wave propagation time determined by the distance l of the self-protection line, the inductance per unit length, and the ground capacitance C.
A protective relay device comprising: means for integrating a differential value of the instantaneous values obtained within twice the time; and means for controlling a breaker based on the differential value of the integrated instantaneous values. 5. The protective relay device according to claim 2, wherein the analog amount of current obtained from the power system has high-order harmonics removed. 6. The protection relay device according to claim 2, wherein the digital amount has high-order harmonics removed. Protective relay device as described.
JP52022920A 1977-03-02 1977-03-02 Protective relay device Expired JPS5922446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52022920A JPS5922446B2 (en) 1977-03-02 1977-03-02 Protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52022920A JPS5922446B2 (en) 1977-03-02 1977-03-02 Protective relay device

Publications (2)

Publication Number Publication Date
JPS53107643A JPS53107643A (en) 1978-09-19
JPS5922446B2 true JPS5922446B2 (en) 1984-05-26

Family

ID=12096067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52022920A Expired JPS5922446B2 (en) 1977-03-02 1977-03-02 Protective relay device

Country Status (1)

Country Link
JP (1) JPS5922446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336993Y2 (en) * 1984-06-08 1991-08-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341668A (en) * 2009-04-27 2012-02-01 株式会社神钢环境舒立净 Filler material and filler sheet for cooling towers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336993Y2 (en) * 1984-06-08 1991-08-06

Also Published As

Publication number Publication date
JPS53107643A (en) 1978-09-19

Similar Documents

Publication Publication Date Title
CN107219439B (en) Method, device and system for determining the fault location of a fault on a line of an electrical power supply network
US10598717B2 (en) Method, device and system for determining the fault location of a fault on a line of an electrical energy supply network
CA2146866C (en) A method and a device for determining the distance from a measuring station to a fault on a transmission line
CN109283428B (en) Zero-sequence component high-order differential transformation-based single-phase grounding transient protection method at feeder outlet
US6397156B1 (en) Impedance measurement system for power system transmission lines
CA1056909A (en) Apparatus for localization of a line fault
CN102255292B (en) High-voltage transmission line distance protection method based on parametric recognition
US10802054B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
US4560922A (en) Method for determining the direction of the origin of a disturbance affecting an element of an electrical energy transfer network
JPH0210651B2 (en)
US4577279A (en) Method and apparatus for providing offset compensation
US10345363B2 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
EP0139123A1 (en) Protective relay system
JP3322996B2 (en) Protection relay method
JPS5922446B2 (en) Protective relay device
JPS6327770A (en) Trouble point locating system
CA2427821C (en) Current compensation method and device for power system protection
US11105832B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
Javaid et al. High pass filter based traveling wave method for fault location in VSC-Interfaced HVDC system
JPH07318590A (en) Method and device for removing interference component of periodic signal and application on electronic capacity transformer thereof
JPS5849830B2 (en) Fault point location method for power transmission lines
JPS6124901B2 (en)
JPS592518A (en) Corona discharge detector and detecting method
RU2279687C1 (en) Method of measurement of distance to point of single-phase arc short circuit in radial distribution network
JPS6124900B2 (en)