JPS59228168A - Detection for speed of linear motor - Google Patents

Detection for speed of linear motor

Info

Publication number
JPS59228168A
JPS59228168A JP58104634A JP10463483A JPS59228168A JP S59228168 A JPS59228168 A JP S59228168A JP 58104634 A JP58104634 A JP 58104634A JP 10463483 A JP10463483 A JP 10463483A JP S59228168 A JPS59228168 A JP S59228168A
Authority
JP
Japan
Prior art keywords
linear motor
speed
points
secondary conductor
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58104634A
Other languages
Japanese (ja)
Inventor
Toshiro Shimada
嶋田 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58104634A priority Critical patent/JPS59228168A/en
Publication of JPS59228168A publication Critical patent/JPS59228168A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/50Devices characterised by the use of electric or magnetic means for measuring linear speed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Linear Motors (AREA)

Abstract

PURPOSE:To detect the speed of a linear motor simply and accurately by measuring either or both of the amplitude ratio and the phase difference of a magnetic field at different two points between a stator and the secondary conductor of the linear motor. CONSTITUTION:A search coil is fixed on a stator core 1 in such a manner that the distance from the secondary conductor 3 on the same vertical surface is positioned at two different points C1 and C2 between the stator core 1 and the second conductor 3. Magnetic fields at two points C1 and C2 are measured with the search coil and the output voltage of the search coil is converted into a digital signal indicating the amplitude ratio or the phase difference of the magnetic fields at the two points C1 and C2 with a proper A/D converter. The digital signal is inputted into a computer to determine the running speed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、浮上鉄道システムやその他の各種輸送システ
ムの駆動源として用いられるリニアインダクションモー
タの速度検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for detecting the speed of a linear induction motor used as a drive source for a floating railway system and other various transportation systems.

〔従来技術〕[Prior art]

従来、リニアモータを駆動源とするリニアモータカーの
走行速度は、地上に敷設されたリニアモータカーの軌道
部に沿って光学方式ないし無線方式の検出体あるいは被
検出体を等間隔に設置して、リニアモータカーが軌道部
に案内されて走行する時に、リニアモータカーが単位時
間あたりに通過する上記検出体あるいは被検出体の数を
計数することによって検出されている。
Conventionally, the running speed of a linear motor car that uses a linear motor as its drive source has been determined by installing optical or wireless detecting objects or objects at equal intervals along the track of the linear motor car installed on the ground. Detection is performed by counting the number of objects to be detected or objects to be detected that the linear motor car passes per unit time when the motor car is guided by the track section and travels.

しかしながら、この従来の速度検出方法;σ「、」二記
したような地上設備と地上設備を計数する車上設備とを
必要とするので、速度検出装置が複雑になるとともに製
造コストが高くなるという欠点・社有している。
However, this conventional speed detection method requires ground equipment as described above and on-board equipment for counting the ground equipment, which makes the speed detection device complicated and increases manufacturing costs. Disadvantages: Company owned.

また、リニアモータカーの車体が、車輪等によって軌道
部上に支持されている場合には、その車輪の回転数を計
測することによって、リニアモータの速度を検出するこ
とができるが、この方法11句、磁力等によって車体が
軌道部より浮上しているリニアモータカーは使用できな
いという欠点を有している。
In addition, when the body of a linear motor car is supported on the track by wheels, etc., the speed of the linear motor can be detected by measuring the number of rotations of the wheels. However, it has the disadvantage that it cannot be used with linear motor cars whose bodies are suspended above the track due to magnetic force or the like.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のりニアモータの速度検出方法が
有する上述の欠点を除去して、浮上式すニアモータカー
においても、リニアモータの速度を簡単かつ確実に検出
できる方法を提供することにある。
An object of the present invention is to provide a method that can easily and reliably detect the speed of a linear motor even in a floating linear motor car by eliminating the above-mentioned drawbacks of the conventional method for detecting the speed of a linear motor.

〔発明の要点〕[Key points of the invention]

本発明は、リニアモータのステータと二次側導体の間に
おいて、異なる2点の磁場の振幅比と位相差とを、どち
らか一方あるいは両方計測して、リニアモータの速度を
検出しようとするものである。
The present invention attempts to detect the speed of a linear motor by measuring either or both of the amplitude ratio and phase difference of magnetic fields at two different points between the stator and the secondary conductor of the linear motor. It is.

〔発明の構成〕[Structure of the invention]

以下に、本発明の構成について、実施例および図面とと
もに説明する。
Below, the configuration of the present invention will be explained along with examples and drawings.

第1図ないし2図において、1は、片側式リニアモータ
のステータ鉄芯であって、走行方向に沿って細長い平板
状のステータ鉄芯1には、走行方向に対して垂直な複数
の溝が等間隔に形成され、1八ニアモータの一次側コイ
ルの導線2がこの溝に沿ってステータ鉄芯1に巻かれて
ステータが形成される。また、3は、リニアモータの二
次側導体でアシ、ステータ鉄芯1と平行に位置している
In Figures 1 and 2, reference numeral 1 denotes a stator core of a single-sided linear motor, and the stator core 1, which is elongated and flat along the running direction, has a plurality of grooves perpendicular to the running direction. The stator is formed by winding the conductive wire 2 of the primary coil of the 18 linear motor around the stator iron core 1 along these grooves. Further, 3 is a secondary conductor of the linear motor, which is located parallel to the stator core 1.

このような構造を有するリニアモータのステータ1が、
図示しないリニアモータカーの車体底部に装着されると
ともに、二次側導体3が、リニアモータカーの軌道部4
上に敷設され、図示しない浮上用設備が、車体に車体の
重量とつり合う浮力を与え、また、ステータ鉄芯1が、
二次側導体3から第2図上たとえば左方向の推進力を与
えられて、リニアモータカーの車体が、軌道部4かも浮
上して走行する。
The stator 1 of the linear motor having such a structure is
The secondary conductor 3 is attached to the bottom of the vehicle body of a linear motor car (not shown), and the secondary conductor 3 is attached to the track section 4 of the linear motor car.
A flotation facility (not shown) installed above gives the car body buoyancy that balances the weight of the car body, and the stator core 1
A propulsion force is applied from the secondary conductor 3 in, for example, the left direction in FIG. 2, and the body of the linear motor car travels with the track section 4 also floating.

第2図において、二次側導体3と平行な逆走行方向をX
軸の正の方向にとり、二次側導体3と垂直な第2図中の
上方向をy軸の正の方向にとり、二次側導体3の上面に
てy=oであり、ステータ鉄芯■の底部にてy=g(g
は定数)であるとする。
In Figure 2, the reverse running direction parallel to the secondary conductor 3 is
The upper direction of FIG. 2, which is perpendicular to the secondary conductor 3, is taken as the positive direction of the y-axis, and y=o on the upper surface of the secondary conductor 3, and the stator iron core ■ At the bottom of y=g(g
is a constant).

また、ステータ鉄芯1内の電流波動の進行方向がX方向
でアシ、ステータ鉄芯1が二次側導体3に対して−X方
向に速度Vで移動し、二次側導体3の透磁率が無限大で
あるとともに二次側導体3の厚さが零であり、二次側導
体3の表面導電率がσtであるとする。
In addition, if the traveling direction of the current wave in the stator iron core 1 is in the X direction, the stator iron core 1 moves at a speed V in the −X direction with respect to the secondary conductor 3, and the magnetic permeability is infinite, the thickness of the secondary conductor 3 is zero, and the surface conductivity of the secondary conductor 3 is σt.

更に、xy面に垂直な方向に磁界が変化せず、起磁力は
y−gの位置においてxy面と垂直な方向に流れる表面
電流として存在するとする。
Furthermore, it is assumed that the magnetic field does not change in the direction perpendicular to the xy plane, and the magnetomotive force exists as a surface current flowing in the direction perpendicular to the xy plane at the y-g position.

すると、ステータ鉄芯1と二次側導体3との間の大気中
の磁場(Hx H7)は、 と表わされる。ここで、A、Bは複素定数である。
Then, the magnetic field (Hx H7) in the atmosphere between the stator iron core 1 and the secondary conductor 3 is expressed as follows. Here, A and B are complex constants.

y=Qにおける境界条件から、A、Bの間には、が成立
する。ここで■8は同期速度、μOは大気中の透磁率で
ある。
From the boundary condition at y=Q, the following holds true between A and B. Here, ■8 is the synchronous speed, and μO is the magnetic permeability in the atmosphere.

しだがって、磁場(Hx Hy )を計測して、式の、
■よ5A、Bを求めて式■に代入すれば、走行速度Vを
検出することができる。
Therefore, by measuring the magnetic field (Hx Hy ), the equation
By calculating 5A and B and substituting them into equation (2), the traveling speed V can be detected.

次に、上記のようにして速度を検出する本発明の一実施
例について述べる。
Next, an embodiment of the present invention for detecting speed as described above will be described.

まず、式■において、(A+B)/(A−B)は純虚数
であるから、IAI = IB+が成立し、A。
First, in equation (2), since (A+B)/(A-B) is a purely imaginary number, IAI = IB+ holds true, and A.

Bを と表わすことができる。ここで、aは実数である。B It can be expressed as Here, a is a real number.

式■、■、■から、X座標が互いに等しくかつ3””3
’l、y−y2である2点C,,C2の磁場のy成分は
、 と表わされる。ただし、exp(j(ωx−kx))は
省略しである。
From formulas ■, ■, ■, the X coordinates are equal to each other and 3""3
The y component of the magnetic field at two points C, , C2, which is 'l,y-y2, is expressed as follows. However, exp(j(ωx−kx)) is omitted.

式■、■から、eXP(jp)1exp(jq )は−
と表わされる。ただし、ここで、 hl”Hy(71メja、  b2=Hy(7z)/j
a       e)P=exp(2ky1)−exp
(2ky2)、Q=exp(−2ky+)−exp(−
2kyz)である。
From the formulas ■ and ■, eXP(jp)1exp(jq) is -
It is expressed as However, here, hl”Hy(71 meja, b2=Hy(7z)/j
a e) P=exp(2ky1)-exp
(2ky2), Q=exp(-2ky+)-exp(-
2kyz).

したがって、式■、■、■より A+B  aexp(jp) + aexp(jq)A
 −B  aexp(jp) −aexp(jq)が成
立する。ただし、ここで、 P(EQexp(kyl) −Pexp(−kyl)P
2 E Qexp(kyl ) −Pexp(’に3’
2 )QIE Qexp(kyl ) + Pexp(
−kyl )(4=Qexp(kyl) + Pexp
(−kyl)式Oより、 IP+h+ −P2h21 1Q+h+ −Q2h21 が成立する。ただし、ここで h+=Ih+IZダト  h2= Ihzltダ2であ
るとしている。
Therefore, from the formulas ■, ■, ■, A+B aexp(jp) + aexp(jq)A
-B aexp(jp) -aexp(jq) holds true. However, here, P(EQexp(kyl) −Pexp(−kyl)P
2 E Qexp(kyl) -Pexp('to 3'
2) QIE Qexp(kyl) + Pexp(
−kyl)(4=Qexp(kyl)+Pexp
(-kyl) From equation O, IP+h+ -P2h21 1Q+h+ -Q2h21 holds true. However, here it is assumed that h+=Ih+IZdato h2=Ihzltda2.

式■、■よシ、2点C1,C2の磁場の振幅比と位相差
を検出すれば、走行速度が計算できる。
According to equations (2) and (2), the traveling speed can be calculated by detecting the amplitude ratio and phase difference of the magnetic fields at the two points C1 and C2.

第3図には、速度比1 v/vSlに対する1■1y(
yl)/■y(72月および1ψ1−ψ21  の変化
を求めた計算機実験の結果が示されている。
Figure 3 shows 1■1y(
The results of a computer experiment to determine the changes in yl)/■y(72 months and 1ψ1−ψ21) are shown.

この計算機実験において、各数値は、実際のりニアモー
タに即して、 k −112,2m−’、  f = 60I(Z、v
s= 2 f/に= 3.36 m/e、μo=4πX
 100−7k1σt= 3.7X101J−g= 0
.003myl=0.oo1m、   y2=o、00
2mに設定された。
In this computer experiment, each numerical value is k -112,2m-', f = 60I (Z, v
s = 2 f/ = 3.36 m/e, μo = 4πX
100-7k1σt= 3.7X101J-g= 0
.. 003myl=0. oo1m, y2=o, 00
It was set to 2m.

第3図より、2点CI、C2の磁場l−17(y、)、
H3’(3’z)の振幅比1Hy(yt列y(y2 )
 lおよび位相差1ψ1−ψ21が、速度比IV/vS
1に対して、単調でかつ十分識別可能な大きさの変化量
を有していることがわかる。
From Figure 3, the magnetic field l-17(y,) at two points CI and C2,
Amplitude ratio 1Hy of H3'(3'z) (yt column y (y2)
l and the phase difference 1ψ1-ψ21 are the speed ratio IV/vS
1, it can be seen that the amount of change is monotonous and has a sufficiently distinguishable magnitude.

したがって、逆に、2点C1、C2の磁場の振幅比ある
いは位相差を計測すれば、走行速度Vを検出することが
できる。
Therefore, conversely, the traveling speed V can be detected by measuring the amplitude ratio or phase difference of the magnetic fields at the two points C1 and C2.

上記の速度検出方法を実施するには、サーチコイルを、
ステータ鉄芯1と二次側導体3との間にて同一垂直面上
の二次側導体3からの距離が異なる2点C1、C2に位
置するようにステータ鉄芯1に固定し、サーチコイルで
2点C1、C2の磁場を計測し、適宜なA/D変換器を
用いてサーチコイルの出力電圧を2点C1、C2の磁場
の振幅比あるいは位相差を示すデジタル信号に変換する
To implement the above speed detection method, the search coil is
The search coil is fixed to the stator core 1 so as to be located at two points C1 and C2 at different distances from the secondary conductor 3 on the same vertical plane between the stator core 1 and the secondary conductor 3. The magnetic fields at the two points C1 and C2 are measured, and an appropriate A/D converter is used to convert the output voltage of the search coil into a digital signal indicating the amplitude ratio or phase difference of the magnetic fields at the two points C1 and C2.

次に、第3図に示された走行速度と磁場の振幅比との関
係、あるいは走行速度と磁場の位相差との関係が予め記
憶されている記憶装置を用いて、上記のデジタル信号を
走行速度に変換すればよい。
Next, using a storage device that stores in advance the relationship between the running speed and the amplitude ratio of the magnetic field or the relationship between the running speed and the phase difference of the magnetic field shown in FIG. Just convert it to speed.

また、上記のデジタル信号をコンピュータに入力して、
上述したような計算を実行して走行速度を求めてもよい
Also, input the above digital signal to the computer,
The traveling speed may be determined by performing calculations as described above.

なお、リニアモータの惰行時には、ステータ鉄芯1と二
次側導体3との間に磁界が作用しないが、リニアモータ
の走行に影響を与えないような微少電流を一次側コイル
に流してステータ鉄芯1と二次側導体3との間に微弱な
磁界を作用させて、この磁界を計測するようにすれば、
惰行中でも速度検出が可能である。
Note that when the linear motor is coasting, no magnetic field acts between the stator iron core 1 and the secondary conductor 3, but the stator iron is If a weak magnetic field is applied between the core 1 and the secondary conductor 3 and this magnetic field is measured,
Speed detection is possible even while coasting.

〔発明の効果〕〔Effect of the invention〕

以上に詳述したように、本発明によれば、リニアモータ
の一次側コイルと二次側導体との間に作用する磁界を、
リニアモータが駆動する移動体に装着されたサーチコイ
ル等で計測して、走行速度を検出するようにしたので、
浮上式移動システムにおいても、移動体上の設備だけで
簡単にかつ低コストで走行速度を検出できる速度検出方
法を提供することができる。
As detailed above, according to the present invention, the magnetic field acting between the primary coil and the secondary conductor of the linear motor is
The running speed is detected by measuring with a search coil etc. attached to the moving object driven by the linear motor.
Even in a floating moving system, it is possible to provide a speed detection method that can detect the running speed simply and at low cost using only equipment on the moving body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリニアモータの構造を示す斜視図、第2図は第
1図の断面図、第3図は、第2図中の2点CI、C2の
磁場の振幅比IHy(yθ/”V (72) lおよび
位相差1ψ1−ψ21  と走行速度比I V/■8+
  との関係を示す線図である。 1・・・ステーク鉄芯、2・−次側コイルの導線、3・
・・二次側導体 特許出願人 住友電気工業株式会社 代理人弁理士青山 葆外1名 工 \ 第2図                0ご 第3図 V/Vs
Figure 1 is a perspective view showing the structure of a linear motor, Figure 2 is a sectional view of Figure 1, and Figure 3 is the amplitude ratio IHy (yθ/''V) of the magnetic field at two points CI and C2 in Figure 2. (72) l and phase difference 1ψ1−ψ21 and running speed ratio I V/■8+
FIG. 1. Stake iron core, 2. - secondary coil conductor, 3.
...Secondary side conductor patent applicant Sumitomo Electric Industries Co., Ltd. Patent attorney Aoyama Shugai 1 master craftsman\ Figure 2 0 Figure 3 V/Vs

Claims (1)

【特許請求の範囲】[Claims] (1)リニアモータの一次側コイルと二次側導体との間
において、リニアモータの走行方向に対して垂直な一つ
の面でかつ二次側導体からの距離が異なる2点の磁場の
振幅比あるいは位相差のどちらか一方の値、あるいは両
方の値からリニアモータの走行速度を検出することを特
徴とする速度検出方法。
(1) Between the primary coil and secondary conductor of a linear motor, the amplitude ratio of the magnetic fields at two points on a plane perpendicular to the running direction of the linear motor and at different distances from the secondary conductor. Alternatively, a speed detection method is characterized in that the running speed of a linear motor is detected from one or both values of the phase difference.
JP58104634A 1983-06-10 1983-06-10 Detection for speed of linear motor Pending JPS59228168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104634A JPS59228168A (en) 1983-06-10 1983-06-10 Detection for speed of linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104634A JPS59228168A (en) 1983-06-10 1983-06-10 Detection for speed of linear motor

Publications (1)

Publication Number Publication Date
JPS59228168A true JPS59228168A (en) 1984-12-21

Family

ID=14385873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104634A Pending JPS59228168A (en) 1983-06-10 1983-06-10 Detection for speed of linear motor

Country Status (1)

Country Link
JP (1) JPS59228168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661350C2 (en) * 2016-11-21 2018-07-16 Дмитрий Олегович Рокачевский Synchronous linear electric motor with speed sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661350C2 (en) * 2016-11-21 2018-07-16 Дмитрий Олегович Рокачевский Synchronous linear electric motor with speed sensor

Similar Documents

Publication Publication Date Title
CA1265596A (en) Magnetic detector
JPS5997005A (en) Sensor detecting magnetic field strain or measuring parameter which can be drawn out of magnetic field strain
JPS59228168A (en) Detection for speed of linear motor
Rule et al. Combined magnetic levitation and propulsion: The mag-transit concept
JP2001057713A (en) Device for detecting speed and position of linear motor drive carrying vehicle
JPS6247241B2 (en)
JPH0423285B2 (en)
JP3704630B2 (en) Magnetically levitated train with torsional vibration detection coil of superconducting magnet
JPS61224009A (en) Automatic steering device of unmanned car
JPS6095616A (en) Swerving detecting device of free-running vehicle
JPS603513A (en) Position and speed detecting device of moving body
JPS5821504A (en) Device for measuring misalignment of rail
RU2136035C1 (en) Method and device for vehicle control
JPS6327203Y2 (en)
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
JPS6341081B2 (en)
JPH0525160B2 (en)
JPH0789681B2 (en) Levitation coil displacement detector
JP2910167B2 (en) Guide method of carrier
JPS63214614A (en) Method for measuring traveling azimuth of vehicle
JPS5910631Y2 (en) Shape of measurement loop coil
JPS58115376A (en) Magnetic azimuth detector
Coffey et al. An evaluation of the dynamics of a magnetically levitated vehicle
SU1712518A1 (en) Track surfacing device
Mulcahy et al. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet