JPH0525160B2 - - Google Patents

Info

Publication number
JPH0525160B2
JPH0525160B2 JP59059804A JP5980484A JPH0525160B2 JP H0525160 B2 JPH0525160 B2 JP H0525160B2 JP 59059804 A JP59059804 A JP 59059804A JP 5980484 A JP5980484 A JP 5980484A JP H0525160 B2 JPH0525160 B2 JP H0525160B2
Authority
JP
Japan
Prior art keywords
magnetic
label
sensor
detection
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059804A
Other languages
Japanese (ja)
Other versions
JPS60204100A (en
Inventor
Atsushi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59059804A priority Critical patent/JPS60204100A/en
Publication of JPS60204100A publication Critical patent/JPS60204100A/en
Publication of JPH0525160B2 publication Critical patent/JPH0525160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は磁気標識体に関するものであり、特に
フエライトを用いた磁気標識体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a magnetic label, and particularly to a magnetic label using ferrite.

〔従来技術〕[Prior art]

従来、磁気標識体(以下、標識体という)は粉
末状のフエライトを、樹脂等で固型化したものや
ペイント状にしたものが用いられていた。実用
上、前記標識体は車輌の自動走行や視覚障害者の
誘導に使われている(例特願昭54−122868号)。
標識体は一様な磁性体で構成されているので、標
識体をコイル型検知器で検出する時の出力電圧は
標識体の有無によりなだらかに変化する。
Conventionally, magnetic markers (hereinafter referred to as markers) have been made of powdered ferrite solidified with resin or the like or in the form of paint. In practice, the above-mentioned signs are used for automatic driving of vehicles and for guiding visually impaired people (eg, Japanese Patent Application No. 122868/1983).
Since the marker is made of a uniform magnetic material, the output voltage when the marker is detected by a coil type detector changes smoothly depending on the presence or absence of the marker.

このため、前記出力電圧を用いて車輌を微妙に
誘導制御することは困難であり、たとえばON−
OFF制御に限定される状況にあつた。車輌の走
行性をよくする場合にはセンサの標識体の中心位
置を知り中心からのズレに比例した制御を行なう
のが通常である。この場合、センサ出力は標識体
の中心で最大値となり、標識体の端に行くに従つ
て直線的に減少すれば十分である。この様に直線
的に変化する検出曲線は検出位置誤差を少なくす
るためにも重要である。一方、標識体の両端から
のズレをセンサで検知し制御する場合、検出曲線
は標識体の両端で急激に増加することが望まし
い。
Therefore, it is difficult to delicately control the vehicle using the output voltage, for example, ON-
The situation was such that it was limited to OFF control. In order to improve the running performance of a vehicle, it is common to know the center position of the sensor marker and perform control proportional to the deviation from the center. In this case, it is sufficient that the sensor output has a maximum value at the center of the marker and decreases linearly toward the edges of the marker. A detection curve that changes linearly in this way is important for reducing detection position errors. On the other hand, when detecting and controlling displacement from both ends of the label using a sensor, it is desirable that the detection curve increases rapidly at both ends of the label.

以上のように、検出曲線の形は、制御手段およ
び方法を簡単にし制御性を良くするために重要で
ある。しかし、従来の標識体ではこのように自由
に検出曲線の形を変えることはできず、このため
車輌を微妙に制御するためには複雑な制御を必要
とし、簡単な制御方式では一般に走行性や停止精
度が悪くなるという欠点があつた。
As described above, the shape of the detection curve is important for simplifying the control means and method and improving controllability. However, with conventional markers, it is not possible to freely change the shape of the detection curve in this way, and as a result, complex control is required to delicately control the vehicle, and simple control methods generally have poor driving performance. The drawback was that the stopping accuracy deteriorated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は異なる透磁率をもつた磁性体ま
たは非磁性体と磁性体を組み合わせることによ
り、要求される検出曲線を自由に実現させる標識
体を提供することにある。
An object of the present invention is to provide a label that can freely realize a required detection curve by combining magnetic materials or non-magnetic materials with different magnetic permeabilities and magnetic materials.

〔発明の構成〕[Structure of the invention]

本発明は異なる透磁率をもつ磁性体からなる標
識の組合せ、または磁性体と非磁性体とからなる
標識の組合せにより磁気標識体の本体を構成した
ことを特徴とする磁気標識体である。
The present invention is a magnetic label characterized in that the main body of the magnetic label is constituted by a combination of labels made of magnetic materials having different magnetic permeabilities, or a combination of labels made of a magnetic material and a non-magnetic material.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。第
1図は本発明の一実施例を示すもので、図におい
て、磁気標識体1−5は、透磁率の異なつた磁性
体からなる標識1−1,1−2,1−3を列状に
配列、組合せて構成したものである。各標識1−
1,1−2,1−3の大きさはそれぞれ長さ10cm
巾2cm厚み0.5cmであり、初透磁率はそれぞれ標
識1−1が2.0、標識1−2が5.0、標識1−3が
10.0のものを用いた。第2図は標識体を検出する
センサの一実施例を示す。励起コイル2−2(大
きさ3cmφ、100巻き)に発振器2−1で周波数
400kHzの交流磁界を発生させる。この磁界中に
標識体が接近すると、検出コイル2−3(大きさ
2cmφ、150巻き)に誘導される電圧が変化する。
この変化を検出器2−4で検出することより標識
体の接近を知ることができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In the figure, a magnetic label 1-5 includes labels 1-1, 1-2, and 1-3 made of magnetic materials with different magnetic permeability arranged in a row. It is configured by arranging and combining them. Each sign 1-
The sizes of 1, 1-2, and 1-3 are each 10 cm long.
The width is 2cm and the thickness is 0.5cm, and the initial permeability is 2.0 for label 1-1, 5.0 for label 1-2, and 5.0 for label 1-3.
10.0 was used. FIG. 2 shows an embodiment of a sensor for detecting a marker. Frequency is applied to excitation coil 2-2 (size 3 cmφ, 100 turns) using oscillator 2-1.
Generates a 400kHz alternating magnetic field. When a marker approaches this magnetic field, the voltage induced in the detection coil 2-3 (size 2 cmφ, 150 turns) changes.
By detecting this change with the detector 2-4, the approach of the label can be known.

尚、検出コイルは、標識体が存在しない場合の
誘起電圧が最小となる様に励起コイルと重ねてあ
る。第3図a,bは、第2図で示したセンサによ
る標識体1−5及び標識体1−5と同じ大きさで
初透磁率10の均一な磁性体からなる標識体3−1
の検出曲線(高さ3cm)3−2,3−3を示す。
第3図aではセンサを第1図の矢印1−4の方向
に掃引した。縦軸はセンサの検出出力、横軸はセ
ンサ中心と標識体の関係を表わす。標識体1−5
の検出曲線3−2に比較して標識体3−1の検出
曲線3−3は、中心付近でなだらかであり、標識
体の端へなだらかに減少する。
Note that the detection coil is overlapped with the excitation coil so that the induced voltage in the absence of the label is minimized. FIGS. 3a and 3b show the labeled object 1-5 obtained by the sensor shown in FIG.
Detection curves (height 3 cm) 3-2 and 3-3 are shown.
In FIG. 3a, the sensor was swept in the direction of arrows 1-4 in FIG. The vertical axis represents the detection output of the sensor, and the horizontal axis represents the relationship between the center of the sensor and the marker. Labeled body 1-5
Compared to the detection curve 3-2 of the label 3-1, the detection curve 3-3 of the label 3-1 is gentle near the center and gradually decreases toward the edges of the label.

このときセンサ回路系2−1,2−4のノイズ
レベル3−6は200mVあつたので、これによる
検出位置誤差3−4,3−5はそれぞれ約1cmと
約2cmとなる。検出位置誤差3−5は位置誤差3
−4に比較して大きく、またaでは検出位置誤差
3−4は標識体のどの位置でもほぼ同じであるの
に対してbでは検出位置誤差3−5は標識体の中
心程大きくなる。第4図は、本発明の他の実施例
を示すもので、図において、標識体4−5は非磁
性体からなる標識4−4を磁性体からなる標識4
−1,4−2,4−3の間に介在させて両標識を
列状に組合せて構成したものである。磁性体から
なる各標識4−1,4−2,4−3の初透磁率は
10である。各標識の巾は標識4−1が0.5cm、標
識4−2が1.5cm、標識4−3が2cm、標識4−
4が1cmであり、各標識の厚みは0.5cm、長さは
10cmとしてある。標識体4−5の検出曲線は第3
図aと同様な形となる。第5図は磁気標識体を用
いた車輌の制御の一実施例を示す。走行路に沿つ
て並べた標識体5−1を車輌5−3前部に取りつ
けたセンサ5−4,5−5で検出する。車輌5−
3はセンサ5−3,5−4の検出信号を用いて操
舵を行ない、標識体5−1に沿つて自動走行す
る。
At this time, since the noise level 3-6 of the sensor circuit systems 2-1 and 2-4 was 200 mV, the detected position errors 3-4 and 3-5 due to this were about 1 cm and about 2 cm, respectively. Detection position error 3-5 is position error 3
-4, and while in a, the detected position error 3-4 is almost the same at any position on the marker, in b, the detected position error 3-5 increases closer to the center of the marker. FIG. 4 shows another embodiment of the present invention. In the figure, a label 4-5 is a label 4-4 made of a non-magnetic material and a label 4-4 made of a magnetic material.
-1, 4-2, and 4-3, and the two markers are combined in a row. The initial permeability of each marker 4-1, 4-2, 4-3 made of magnetic material is
It is 10. The width of each sign is 0.5 cm for sign 4-1, 1.5 cm for sign 4-2, 2 cm for sign 4-3, and 2 cm for sign 4-3.
4 is 1cm, the thickness of each sign is 0.5cm, and the length is
It is set as 10cm. The detection curve of labeled substance 4-5 is the third one.
The shape will be similar to that in Figure a. FIG. 5 shows an embodiment of vehicle control using a magnetic marker. Signs 5-1 arranged along the driving route are detected by sensors 5-4 and 5-5 attached to the front of the vehicle 5-3. Vehicle 5-
3 performs steering using detection signals from sensors 5-3 and 5-4, and automatically travels along marker 5-1.

車の誘導方法は大きく分けて2通り考えられ
る。1つはセンサ5−4,5−5で誘導用標識体
5−1の両端をそれぞれ検出し、たとえばセンサ
5−4が標識体5−1よりはずれれば(センサの
検出出力があるレベルより小さくなれば)、矢印
5−7の方向へ車が走行するように舵を切り、セ
ンサ5−5がはずれれば、矢印5−8の方向へ舵
を切る方法である。この場合、制御は比較的簡単
であるが、誘導用標識体への追随性はよくない。
この場合、検出曲線はノイズによる検出位置誤差
が少なくなるように標識体の端で急激に増加する
形が望ましい。
There are two main ways to guide the car. One is that the sensors 5-4 and 5-5 detect both ends of the guiding marker 5-1, and for example, if the sensor 5-4 deviates from the marker 5-1 (the detection output of the sensor is lower than a certain level) If the sensor 5-5 is off), the vehicle is steered in the direction of arrow 5-7, and if sensor 5-5 is off, the vehicle is steered in the direction of arrow 5-8. In this case, control is relatively simple, but followability to the guiding label is poor.
In this case, it is desirable that the detection curve sharply increases at the end of the label so that detection position errors due to noise are reduced.

もう1つはセンサのずれに応じて、舵を切る方
法、すなわち、センサの検出出力があるレベルよ
り小さくなれば、その差分に比例し舵の切り方を
変更する方法である。この方法は、前記の方法に
比較して追随性は良い。この場合、検出曲線の形
は、第3図aのような形が望ましい。これは、ノ
イズによる検出位置誤差が小さく、出力と変位に
直線性があるので、制御が安易であるためであ
る。本発明の標識体を使うことにより第3図aの
検出曲線を得ることができ、第5図の標識体5−
1として本発明に係る標識体を用いることは極め
て有益である。
The other method is to turn the rudder according to the sensor deviation, that is, if the detection output of the sensor becomes smaller than a certain level, the way the rudder is turned is changed in proportion to the difference. This method has better followability compared to the above-mentioned method. In this case, the shape of the detection curve is preferably as shown in FIG. 3a. This is because the detection position error due to noise is small and the output and displacement are linear, so control is easy. By using the labeled substance of the present invention, the detection curve shown in FIG. 3a can be obtained, and the labeled substance 5-
It is extremely advantageous to use the label according to the present invention as 1.

車輌5−3の側面にとりつけたセンサ5−5は
カーブや停止の位置を示す標識体5−2を検出
し、その信号でカーブや停止の動作を行う。第6
図は本発明のさらに他の実施例である。図におい
て、標識体6−1は、両端に巾の狭い磁性体の標
識6−2を、中央に巾の広い磁性体の標識6−3
を配置して板状に並べたものである。初透磁率は
標識6−2が10で、標識6−3が5のものを用い
た。第7図は、第2図で示したセンサによる標識
体6−1の検出曲線(高さ3cm)7−1を示すも
ので、標識体6−1の検出曲線7−1は標識体の
端で急激に立ち上がる。6−4はセンサの掃引方
向である。
A sensor 5-5 attached to the side of the vehicle 5-3 detects a sign 5-2 indicating a curve or stop position, and performs a curve or stop operation based on the signal. 6th
The figure shows yet another embodiment of the invention. In the figure, a marker 6-1 has a narrow magnetic marker 6-2 at both ends and a wide magnetic marker 6-3 in the center.
are arranged in a plate shape. The initial magnetic permeability used was 10 for label 6-2 and 5 for label 6-3. FIG. 7 shows a detection curve (height: 3 cm) 7-1 of the labeled object 6-1 by the sensor shown in FIG. stands up suddenly. 6-4 is the sensor sweep direction.

回路系等のノイズ7−2が200mVあつたので、
標識体6−1の両端における検出位置誤差7−3
は約0.5cmとなり、ノイズによる影響は少ない。
Since the noise 7-2 from the circuit system etc. was 200mV,
Detection position error 7-3 at both ends of labeled body 6-1
is approximately 0.5cm, so there is little influence from noise.

ここで、センサの検出出力は標識体の透磁率が
一様な場合、次式の様になる。
Here, the detection output of the sensor is expressed by the following equation when the magnetic permeability of the marker is uniform.

ΔV∝μv μ;磁性体の初透磁率 v;センサが見込む標識体の体積、ΔV;セン
サの検出出力。ただし磁場は標識体上で一定であ
ると仮定する。
ΔV∝μv μ: Initial permeability of magnetic material v: Volume of labeled body expected by the sensor, ΔV: Detection output of the sensor. However, it is assumed that the magnetic field is constant on the label.

以上の様にセンサの検出出力はセンサが見込む
標識体の体積に比例する。この場合、センサの検
出曲線の形は、検出位置の変化によるセンサが見
込む標識体の体積vの変化のみに依存する。この
ため、センサの形状や大きさを変えることにより
検出曲線の形をある程度変えることはできるが、
あまり効果的ではない。これに対して、本発明の
標識体を用いた場合、センサの検出出力は、次式
で表わされる。
As described above, the detection output of the sensor is proportional to the volume of the label that the sensor expects. In this case, the shape of the detection curve of the sensor depends only on the change in the volume v of the label observed by the sensor due to the change in the detection position. Therefore, although it is possible to change the shape of the detection curve to some extent by changing the shape and size of the sensor,
Not very effective. On the other hand, when the marker of the present invention is used, the detection output of the sensor is expressed by the following equation.

ΔV∝o Σi=1 μivi(ただしv=o Σi=1 vi) μi;センサが見込む体積vに含まれるn個の磁性
体の内、i番目の磁性体の初透磁率。
ΔV∝ o Σ i=1 μivi (where v= o Σ i=1 v i ) μi: Initial magnetic permeability of the i-th magnetic body among the n magnetic bodies included in the volume v that the sensor sees.

vi;センサが見込む体積vに含まれるn個の磁性
体の内、i番目の磁性体の体積 以上の様にセンサ出力はセンサが見込む標識体
の体積内の磁性体の個数、透磁率、体積によつて
変化する。本発明は異なる透磁率の磁性体からな
る標識を組み合わせて標識体を作製するため、ほ
ぼ任意の形の検出曲線を得ることができる。
vi; The volume of the i-th magnetic body among the n magnetic bodies included in the volume v that the sensor expects.As described above, the sensor output is the number, magnetic permeability, and volume of the magnetic bodies in the volume of the labeled body that the sensor expects. It changes depending on. Since the present invention creates a label by combining labels made of magnetic substances with different magnetic permeabilities, it is possible to obtain a detection curve of almost any shape.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は異なる透磁率をもつた磁
性体から標識または磁性体と非磁性体とからなる
標識を、それぞれの容積大きさ及び透磁率の大き
さ等を変えて組み合わせることにより、さまざま
な検出曲線をもつた標識体を提供できる効果を有
するものである。
As described above, the present invention enables various combinations of labels made of magnetic materials with different magnetic permeabilities or labels made of magnetic materials and non-magnetic materials by changing the volume size and magnetic permeability of each material. This has the effect of providing a label with a suitable detection curve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,4,6図は本発明の標識体の一実施例を
示す構成図、第2図は標識体を検出するコイル型
センサの一実施例を示す構成図、第3図はセンサ
の検出曲線であり、aは第1図の標識体を検出し
た検出曲線図、bは従来の標識体を検出した検出
曲線図、第5図は標識体を用いた車輌の制御の一
実施例を示す構成図、第7図は第6図の標識体を
検出した検出曲線図である。 1−1,1−2,1−3,4−1,4−2,4
−3,4−4,6−2,6−3……標識、1−
5,4−5,6−1……標識体、2−1……発振
器、2−2……励起コイル、2−3……検出コイ
ル、2−4……信号処理部、3−3……検出曲
線、3−2……検出曲線。
Figures 1, 4, and 6 are block diagrams showing an embodiment of the marker of the present invention, Figure 2 is a block diagram showing an embodiment of a coil type sensor for detecting the label, and Figure 3 is a detection diagram of the sensor. 1, b is a detection curve diagram for detecting a conventional marker, and FIG. 5 shows an example of vehicle control using a marker. The configuration diagram and FIG. 7 are detection curve diagrams for detecting the labeled substance of FIG. 6. 1-1, 1-2, 1-3, 4-1, 4-2, 4
-3, 4-4, 6-2, 6-3...Sign, 1-
5, 4-5, 6-1... Label, 2-1... Oscillator, 2-2... Excitation coil, 2-3... Detection coil, 2-4... Signal processing section, 3-3... ...Detection curve, 3-2...Detection curve.

Claims (1)

【特許請求の範囲】[Claims] 1 異なる透磁率をもつ磁性体からなる標識の組
合せ、または磁性体と非磁性体とからなる標識の
組合せにより磁気標識体の本体を構成したことを
特徴とする磁気標識体。
1. A magnetic label, characterized in that the main body of the magnetic label is composed of a combination of labels made of magnetic substances with different magnetic permeabilities, or a combination of labels made of a magnetic substance and a non-magnetic substance.
JP59059804A 1984-03-28 1984-03-28 Magnetic maker Granted JPS60204100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059804A JPS60204100A (en) 1984-03-28 1984-03-28 Magnetic maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059804A JPS60204100A (en) 1984-03-28 1984-03-28 Magnetic maker

Publications (2)

Publication Number Publication Date
JPS60204100A JPS60204100A (en) 1985-10-15
JPH0525160B2 true JPH0525160B2 (en) 1993-04-12

Family

ID=13123811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059804A Granted JPS60204100A (en) 1984-03-28 1984-03-28 Magnetic maker

Country Status (1)

Country Link
JP (1) JPS60204100A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233313A (en) * 1986-04-02 1987-10-13 日本電気株式会社 Marking body
JPH0792695B2 (en) * 1986-08-13 1995-10-09 村田機械株式会社 Driving guidance device for unmanned vehicles
JPS63111505A (en) * 1986-10-29 1988-05-16 Murata Mach Ltd Traveling guiding device for unmanned vehicle
JPS63115207A (en) * 1986-10-31 1988-05-19 Murata Mach Ltd Traveling guide device for unattended vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886694A (en) * 1981-11-02 1983-05-24 アライド・コ−ポレ−シヨン Amorphous burglarproof marker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886694A (en) * 1981-11-02 1983-05-24 アライド・コ−ポレ−シヨン Amorphous burglarproof marker

Also Published As

Publication number Publication date
JPS60204100A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
CN100345715C (en) Driverless vehicle guidance system and method
IE871118L (en) Improvements in or relating to linear motion screened¹inductance sensors.
CA1265596A (en) Magnetic detector
WO1999017079A1 (en) Magnetic apparatus for detecting position of vehicle
JPH0611303A (en) Position sensor device
JPS6367583A (en) Magnetism detector
JPH0525160B2 (en)
EP0338966A3 (en) Position compensation winding for displacement transducer
JPH0370802B2 (en)
JP2910167B2 (en) Guide method of carrier
JP3241617B2 (en) Automated guided vehicle address detection device and its address detection method
JP2512951B2 (en) Automatic guided vehicle guidance device
WO2023243617A1 (en) Magnetic marker, vehicular system, and marker detection method
JPS6095616A (en) Swerving detecting device of free-running vehicle
JPH087443Y2 (en) Vehicle guidance device
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH0418007Y2 (en)
JPH0639364Y2 (en) Guide sensor
JP2582591B2 (en) Magnetic detector
JPH0625641B2 (en) Magnetic detector
JPS60204013A (en) Guiding method of unattended car
JPS6252360B2 (en)
JPH0194408A (en) Unmanned carrier traveling control method
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
EP1647465A2 (en) Driverless vehicle guidance system