JPS6322268B2 - - Google Patents

Info

Publication number
JPS6322268B2
JPS6322268B2 JP56052529A JP5252981A JPS6322268B2 JP S6322268 B2 JPS6322268 B2 JP S6322268B2 JP 56052529 A JP56052529 A JP 56052529A JP 5252981 A JP5252981 A JP 5252981A JP S6322268 B2 JPS6322268 B2 JP S6322268B2
Authority
JP
Japan
Prior art keywords
frequency
voltage
antennas
phase difference
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56052529A
Other languages
Japanese (ja)
Other versions
JPS57166569A (en
Inventor
Tatsu Hatsuta
Tai Kusakabe
Fumiki Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP56052529A priority Critical patent/JPS57166569A/en
Publication of JPS57166569A publication Critical patent/JPS57166569A/en
Publication of JPS6322268B2 publication Critical patent/JPS6322268B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Control Of Linear Motors (AREA)

Description

【発明の詳細な説明】 本発明は、誘導無線を用いた移動体位置検知方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mobile body position detection method using guided radio.

鉄道車輛はじめ各種の交通機関あるいは産業用
運搬機関のように一定の走行路に沿つて動く移動
体の自動運転においては、常時地上において移動
体の位置を周期的かつ連続的に知ることが不可欠
の要請となる場合があり、最も典型的なものとし
てリニアモーターカーの運転をあげることができ
る。
In the automatic operation of moving objects that move along a fixed route, such as railway vehicles, various types of transportation, or industrial transport facilities, it is essential to periodically and continuously know the position of the moving object on the ground at all times. The most typical example is driving a linear motor car.

リニアモーターカーの円滑な運転には、一定の
間隔で走行路に沿つて配列されたモーター極の極
間距離の範囲内において車体位置を常時地上にお
いて正確に知り、これに応じて界磁電流の周波
数、振幅、位相等を合理的に調整することが不可
欠な要請である。
In order to operate a linear motor car smoothly, it is necessary to accurately know the position of the car body on the ground at all times within the distance between the motor poles arranged along the running route at regular intervals, and to adjust the field current accordingly. It is essential to rationally adjust the frequency, amplitude, phase, etc.

このような要請に応える代表的な位置検知方式
の原理について、第1図及び第2図により説明す
る。
The principle of a typical position detection method that meets such demands will be explained with reference to FIGS. 1 and 2.

第1図において1,2,3は導体であり、それ
ぞれ周期Pで波形に折り曲げられ、互いにP/3
づつずらして平面上に布設されることにより誘導
無線線路4が形成されている。従つて、線路4は
周期Pの繰り返し構造をとり、移動体搭載アンテ
ナ5に高周波電流(50〜200kHz)を通電すると、
各導体1,2,3間には移動体(アンテナ5)の
走行に伴つて3相の正弦波状電圧が誘起されるこ
とになる。
In Fig. 1, 1, 2, and 3 are conductors, each of which is bent into a waveform with a period of P, and each with a period of P/3.
The guided radio line 4 is formed by laying the wires on a flat surface while shifting the wires one by one. Therefore, the line 4 has a repeating structure with a period P, and when a high frequency current (50 to 200 kHz) is applied to the antenna 5 mounted on the mobile object,
Three-phase sinusoidal voltages are induced between the conductors 1, 2, and 3 as the moving body (antenna 5) travels.

線路4の長手方向にz軸をとり、アンテナ5の
座標をzとし、導体1と2、2と3、3と1間に
誘起される電圧をそれぞれV12,V23,V31とする
と、これらは次式でもつて表わすことができる。
If the z-axis is taken in the longitudinal direction of the line 4, the coordinate of the antenna 5 is z, and the voltages induced between conductors 1 and 2, 2 and 3, and 3 and 1 are respectively V 12 , V 23 , and V 31 , then These can also be expressed by the following equation.

V12=kcos(2π/P)z・e-z-jz V23=kcos(2π/P){z+(P/3)}・e-z-jz V31=Kcos(2π/P){z+(2P/3)}・e-z-jz
……(1) αは線路4の減衰定数、βは線路4の位相定
数、Kは線路4及びアンテナ5の形状、寸法、両
者の離隔距離、励振電流の大きさ、周波数等によ
り定まる定数である。
V 12 = kcos (2π/P) z・e -zjz V 23 = kcos (2π/P) {z+(P/3)}・e -zjz V 31 = Kcos (2π/P) {z+(2P/3)}・e -zjz
...(1) α is the attenuation constant of the line 4, β is the phase constant of the line 4, and K is a constant determined by the shape and dimensions of the line 4 and the antenna 5, the separation distance between them, the magnitude of the excitation current, the frequency, etc. be.

ここで、(1)式の3電圧について、正相電圧VP
および逆相電圧Voを次式により定義する。
Here, for the three voltages in equation (1), the positive sequence voltage V P
and negative sequence voltage V o are defined by the following equation.

VP=V12+e-j2/3V23+ej2/3V31 Vo=V12+ej2/3V23+e-j2/3V31 ……(2) (1)式を(2)式に代入して整理すると次式のように
なる。
V P =V 12 +e -j2/3 V 23 +e j2/3 V 31 V o =V 12 +e j2/3 V 23 +e -j2/3 V 31 ...(2) Expression (1) Substituting into equation (2) and rearranging, we get the following equation.

VP=(3/2)kej2z/p・e-z-jz Vo=(3/2)ke-j2z/p・e-z-jz ……(3) VPとVoの位相差をΦとすると、 Φ=∠VP−∠Vo=4πz/P ……(4) となる。なお、∠は複素量の偏角を表わす記号で
ある。
V P = (3/2)ke j2z/p・e -zjz V o = (3/2)ke -j2z/p・e -zjz ……(3) V P Letting the phase difference between and Vo be Φ, Φ=∠V P −∠V o =4πz/P (4). Note that ∠ is a symbol representing the argument of a complex quantity.

すなわち、第2図に示すようにzがP/2増加
する毎にΦも2πの直線的増加を示すことになり、
Φの値を知ることにより移動体の位置(アンテナ
5の位置)をP/2の周期で連続的に知ることが
できる。
In other words, as shown in Figure 2, every time z increases by P/2, Φ also shows a linear increase of 2π,
By knowing the value of Φ, the position of the moving object (the position of the antenna 5) can be continuously known at a period of P/2.

従つて、線路4をリニアモーターカーの自動運
転に適用する場合には、周期Pはリニアモーター
極間距離の2倍としなければならず、例えば、極
間距離が6mとすると、線路4の周期Pは12mに
しなければならない。
Therefore, when applying the track 4 to automatic operation of a linear motor car, the period P must be twice the distance between the poles of the linear motor. For example, if the distance between the poles is 6 m, the period of the track 4 is P must be 12m.

しかしながら、このような長大な周期の誘導無
線線路を製造することは極めて困難なことであ
る。また、アンテナ5と線路4との結合分布を(1)
式に示すように正弦波状とするには、アンテナ5
の寸法も線路4の周期Pに比例して大型化する必
要があり、車体への取付けに困難を伴う。
However, it is extremely difficult to manufacture a guided radio line with such a long period. Also, the coupling distribution between antenna 5 and line 4 is expressed as (1)
To create a sinusoidal waveform as shown in the formula, the antenna 5
It is also necessary to increase the size in proportion to the period P of the track 4, making it difficult to attach it to the vehicle body.

本発明は、上記に基づいてなされたもので、誘
導無線線路の周期Pを長大化することなく測定周
期を拡大することができる移動体位置検知方式の
提供を目的とするものである。
The present invention has been made based on the above, and an object of the present invention is to provide a mobile body position detection method that can extend the measurement period without increasing the period P of the guided radio line.

本発明の位置検知方式(第1発明)は、所定の
周期Pでもつて繰り返し構造を有するように2本
の導体を配置してなる誘導無線線路が移動体走行
路に沿つて布設されており、移動体には線路長手
方向にP/4の間隔をおいて2個のアンテナが搭
載されており、上記アンテナ間にπ/2の位相差
を与えて周波数1の高周波電流及びこれを2逓倍
した周波数2の高周波電流を通電し、これによつ
て誘導無線線路の導体間に誘起される周波数1
係る電圧を2逓倍したものと周波数2に係る電圧
との位相差を求めるか、又は周波数2に係る電圧
を2逓倍したものと周波数1に係る電圧との位相
差を求めることにより移動体位置を知ることを特
徴とするものである。
In the position detection method (first invention) of the present invention, a guided wireless line formed by arranging two conductors so as to have a repeating structure with a predetermined period P is laid along a moving path, The moving object is equipped with two antennas spaced apart by P/4 in the longitudinal direction of the track, and a phase difference of π/2 is given between the antennas to generate a high-frequency current of frequency 1 and multiply this by 2. A high-frequency current of frequency 2 is applied, and the phase difference between the voltage related to frequency 1 , which is induced between the conductors of the inductive radio line, multiplied by 2, and the voltage related to frequency 2 , or the phase difference of the voltage related to frequency 2 is determined. This system is characterized in that the position of the moving object is known by determining the phase difference between the voltage associated with frequency 1 and the voltage associated with frequency 1 , which is doubled.

また、第2発明は、移動体には線路長手方向に
P/N(Nは3又は3より大なる整数)の間隔を
おいてN個のアンテナが搭載されており、上記ア
ンテナ間に2π/Nの位相差を与えて周波数1の高
周波電流及びこれを2逓倍した周波数2の高周波
電流を通電し、これによつて誘導無線線路の導体
間に誘起される周波数1に係る電圧を2逓倍した
ものと周波数2に係る電圧との位相差を求めるこ
とにより移動体位置を知ることを特徴とするもの
である。
Further, in the second invention, N antennas are mounted on the moving body at intervals of P/N (N is 3 or an integer greater than 3) in the longitudinal direction of the track, and the antennas are spaced at intervals of 2π/N. A high-frequency current of frequency 1 and a high-frequency current of frequency 2 , which is doubled by giving a phase difference of N, were passed, thereby doubling the voltage related to frequency 1 induced between the conductors of the guided radio line. The feature is that the position of a moving object can be determined by determining the phase difference between the object and the voltage related to frequency 2 .

本発明における誘導無線線路としては、2本の
導体を所定間隔毎に互いに交差するように平面上
に配置してなる交差型誘導線、あるいは2本の導
体をそれぞれ180℃の位置関係を保つように所定
周期で螺旋状に巻回した螺旋型誘導線等があげら
れる。
The guided radio line in the present invention may be a crossed guiding wire in which two conductors are arranged on a plane so as to intersect with each other at predetermined intervals, or two conductors are arranged in such a way as to maintain a positional relationship of 180 degrees Celsius. Examples include a spiral guide wire wound spirally at a predetermined period.

以下、本発明の一実施例を第3図に基づいて説
明する。
Hereinafter, one embodiment of the present invention will be described based on FIG. 3.

6a,6bは導体であり、各導体は周期Pの単
位でもつて波形に折り曲げられ、互いにP/2ず
らして配置することにより誘導無線線路7が形成
されている。
6a and 6b are conductors, and each conductor is bent into a waveform with a period of P, and the guided radio line 7 is formed by arranging the conductors so as to be shifted by P/2 from each other.

一方、移動体には線路7の長手方向に間隔P/
4をおいて同一寸法、同一形状のアンテナ8a及
びアンテナ8bが搭載されている。
On the other hand, the moving body has a distance P/ in the longitudinal direction of the track 7.
An antenna 8a and an antenna 8b having the same size and the same shape except for the antenna 4 are mounted.

ここで、アンテナ8a及びアンテナ8bに周波
1(角周波数ω1)の高周波電流及びこれを2逓
倍した周波数2(角周波数ω2)の高周波電流を同
時に通電する。なお、アンテナ8a及びアンテナ
8bの電流の位相をそれぞれ0及び−π/2と
し、振幅は相等しくした。
Here, a high-frequency current of frequency 1 (angular frequency ω 1 ) and a high-frequency current of frequency 2 (angular frequency ω 2 ), which is multiplied by 2, are simultaneously applied to the antennas 8a and 8b. Note that the phases of the currents of the antennas 8a and 8b were set to 0 and -π/2, respectively, and the amplitudes were set to be equal.

アンテナ8a及びアンテナ8bによつて線路7
の導体6aと6b間に電圧が誘起され、この電圧
は線路7の端末に接続された変圧器9において不
平衡電圧に変換され、次いで分波器10によつて
周波数1および周波数2の2つの電圧に分波され
る。
Line 7 by antenna 8a and antenna 8b
A voltage is induced between the conductors 6a and 6b of the line 7, this voltage is converted into an unbalanced voltage in the transformer 9 connected to the terminal of the line 7, and then divided into two voltages of frequency 1 and frequency 2 by the splitter 10. It is split into voltage.

周波数1についての電圧V1および周波数2につ
いての電圧V2はそれぞれ次のように表わされる。
The voltage V 1 for frequency 1 and the voltage V 2 for frequency 2 are respectively expressed as follows.

V1=k1[cos(2π/P)z・e-1z-j1z +e-j/2・cos(2π/P){z+(P/4)} ・e-1{z+(P/4)}-j1{z+(P/4)}]・ej(1t+1) ≒k1e(j2z/P)-1z-j1z+j(1t+1) ……(5) V2≒k2e(j2z/P)-2z-j2z+j(2t+2) ……(6) φはアンテナ電流の位相値であり、その他の各
定数は、(1)式の場合と同じである。また、添字1
は周波数1に対応する量であり、添字2は周波数
2に対応する量であることを意味する。
V 1 = k 1 [cos(2π/P)z・e -1z-j1z +e -j/2・cos(2π/P) {z+(P/4)} ・e -1 { z+ (P/4) } -j1 { z+(P/4) }]・e j(1t+1) ≒k 1 e (j2z/P)-1z-j1z+j(1t+1) ……(5) V 2 ≒k 2 e (j2z/P)-2z-j2z+j(2t+2) ……(6) φ is the phase value of the antenna current The other constants are the same as in equation (1). Also, subscript 1
is the quantity corresponding to frequency 1 , and subscript 2 is the frequency
This means that the amount corresponds to 2 .

これらの電圧V1,V2は増幅器111,112
おいて増幅され、電圧V1は逓倍器12において
2逓倍されてから位相計13に導かれ、電圧V2
はそのまま位相計13に導かれる。
These voltages V 1 and V 2 are amplified in amplifiers 11 1 and 11 2 , and voltage V 1 is doubled in a multiplier 12 and then guided to a phase meter 13, where the voltage V 2
is directly guided to the phase meter 13.

電圧V1を2逓倍したものと電圧V2との位相差
Φは次のように表わされる。
The phase difference Φ between the voltage V 1 multiplied by 2 and the voltage V 2 is expressed as follows.

Φ=2∠V1−∠V2 =(2π/P)z−(2β1−β2)z +{(2ω1−ω2)t+(2φ1−φ2)} ……(7) ところで、周波数2は周波数1を2逓倍したも
のであるから、双方の電圧の位相は完全に同期し
ているので、次の関係が成立する。
Φ=2∠V 1 −∠V 2 = (2π/P)z−(2β 1 −β 2 )z + {(2ω 1 −ω 2 )t+(2φ 1 −φ 2 )} ……(7) By the way Since frequency 2 is the frequency 1 multiplied by 2, the phases of both voltages are completely synchronized, so the following relationship holds true.

ω2=2ω1→(2ω1−ω2)t=0 ……(8) φ2=2φ1→2φ1−φ2=0 ……(9) また、誘導無線の周波数帯では線路の位相定数
βは充分の精度でもつて次式のように近似するこ
とができる。
ω 2 =2ω 1 →(2ω 1 −ω 2 )t=0 ……(8) φ 2 =2φ 1 →2φ 1 −φ 2 =0 ……(9) Also, in the frequency band of guided radio, the phase of the line The constant β can be approximated with sufficient accuracy as shown in the following equation.

β≒ω/(LC)1/2 ……(10) LおよびCはそれぞれ線路7の単位長当りのイ
ンダクタンスおよび静電容量である。
β≒ω/(LC) 1/2 (10) L and C are the inductance and capacitance per unit length of the line 7, respectively.

(8)式および(10)式から次式が成立する。 The following equation holds from equations (8) and (10).

β2≒2β1→(2β1−β2)z≒0 ……(11) 以上の関係から次式が得られる。 β 2 ≒2β 1 → (2β 1 −β 2 )z≒0 (11) From the above relationship, the following equation can be obtained.

Φ=(2π/P)z ……(12) すなわち、Φの測定を通じてzの位置をPの周
期で連続的に知ることができる。このことは、前
述した従来例に比して測定周期が2倍に拡大され
たことを意味する。
Φ=(2π/P)z...(12) That is, the position of z can be continuously known with a period of P through the measurement of Φ. This means that the measurement period is doubled compared to the conventional example described above.

なお、アンテナ8aおよび8bへの給電位相を
それぞれ0およびπ/2としたときは次の関係が
成立する。
Note that when the feeding phases to the antennas 8a and 8b are set to 0 and π/2, respectively, the following relationship holds true.

V1≒k1e-j(2z/P)-1z-j1z+j(1t+1) V2≒k2e-j(2z/P)-2z-j2z+j(2t+2)……(13) 従つて、 Φ′=∠V2−2∠V1 ……(14) で定義されるΦ′を利用することによつても同様
の結果を得ることができる。
V 1 ≒k 1 e -j(2z/P)-1z-j1z+j(1t+1) V 2 ≒k 2 e -j(2z/P)-2z-j2z+j(2t+2) ……(13) Therefore, a similar result can be obtained by using Φ′ defined by Φ′=∠V 2 −2∠V 1 ……(14) You can get results.

第4図は第2発明の一実施例を示すもので、N
=3の場合が例示されている。
FIG. 4 shows an embodiment of the second invention.
=3 is illustrated.

誘導無線線路7は、第3図と同様のものが使用
され、アンテナ8a,8b,8cは間隔P/3で
もつて配置されている。この場合、アンテナ8
a,8b,8cへの給電振幅を等しくし、位相を
(1,ej2/3,e-j2/3)又は(1,e-j2/3,ej2
/3)と
することにより、第1発明で説明したのと同一の
結果が得られる。
The guided radio line 7 is similar to that shown in FIG. 3, and the antennas 8a, 8b, and 8c are arranged at intervals of P/3. In this case, antenna 8
Make the power supply amplitudes to a, 8b, and 8c equal, and set the phase to (1, e j2/3 , e -j2/3 ) or (1, e -j2/3 , e j2
/3 ), the same result as explained in the first invention can be obtained.

すなわち、アンテナ8a,8b,8cへの給電
位相を(1,ej2/3,e-j2/3)としたとき、線路7
の端末における周波数1についての電圧V1およ
び周波数2についての電圧V2はそれぞれ次のよ
うに表わされる。
In other words, when the feeding phase to the antennas 8a, 8b, and 8c is (1, e j2/3 , e -j2/3 ), the line 7
The voltage V 1 for frequency 1 and the voltage V 2 for frequency 2 at the terminals of are respectively expressed as follows.

V1=k1[cos(2π/P)z・e-1z-j1z +ej2/3・cos(2π/P){z+(P/3)} ・e-1{z+(P/3)}-j1{z+(P/3)} +e-j2/3・cos(2π/P){z+(2P/3)} ・e-1{z+(2P/3)}-j1(z+(2P/3)}]・ej(1t+
1) ≒(3/2)k1e-(j2z/P)-1z-j1z+j(1t+1)
……(15) V2≒(3/2)k2e-(j2z/P)-2z-j2z+j(2t+2)
……(16) (13)式と同様な関係が得られ、前述と同様に
して位置を知ることができる。
V 1 = k 1 [cos(2π/P)z・e -1z-j1z +e j2/3・cos(2π/P) {z+(P/3)} ・e -1 { z+( P/3) } -j1 { z+(P/3) } +e -j2/3・cos(2π/P) {z+(2P/3)} ・e -1 { z+(2P/3) } -j1(z+(2P/3) }]・e j(1t+
1) ≒(3/2)k 1 e -(j2z/P)-1z-j1z+j(1t+1)
……(15) V 2 ≒ (3/2) k 2 e -(j2z/P)-2z-j2z+j(2t+2)
...(16) A relationship similar to equation (13) is obtained, and the position can be determined in the same manner as described above.

なお、3個のアンテナ8a,8b,8cを使用
することにより、アンテナと線路間の結合分布波
形の第3,9,15…次の高調波が打消し合い、測
定精度を向上することができる。
Note that by using the three antennas 8a, 8b, and 8c, the 3rd, 9th, 15th... harmonics of the coupling distribution waveform between the antenna and the line cancel each other out, improving measurement accuracy. .

第2発明においては一般にN(N≧3)個のア
ンテナを使用する場合、アンテナ間隔をP/N、
隣接アンテナ間の給電位相差を±2π/Nとすれ
ば前述のようにして位置を知ることができる。
In the second invention, generally when using N (N≧3) antennas, the antenna spacing is P/N,
If the feeding phase difference between adjacent antennas is ±2π/N, the position can be determined as described above.

以上説明してきた通り、本発明によれば移動体
の位置検知周期を線路の周期Pに等しくすること
ができ、従来方法に比して検知周期を倍増するこ
とが可能となる。換言すれば、同一の検知周期を
得るためには線路の周期は従来方式の半分です
み、線路の製造が容易となる。また、車上アンテ
ナも小型化できるので、実装上の多くの利点を有
する。
As explained above, according to the present invention, the position detection period of the moving body can be made equal to the period P of the track, and the detection period can be doubled compared to the conventional method. In other words, in order to obtain the same detection period, the period of the line needs to be half of that of the conventional method, making it easier to manufacture the line. Furthermore, since the on-vehicle antenna can also be made smaller, it has many advantages in terms of implementation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の誘導無線線路を用い
た位置検知方式の説明図、第3図は第1発明の一
実施例の説明図、第4図は第2発明の一実施例の
説明図である。 1,2,3:導体、4:誘導無線線路、5:移
動体搭載アンテナ、6:端子、7:緩衝増幅器、
8:分波器、9:移相器、10:加算器、11:
逓倍器、12:位相計、13:加算器。
Figures 1 and 2 are explanatory diagrams of a position detection system using a conventional guided radio line, Figure 3 is an explanatory diagram of an embodiment of the first invention, and Figure 4 is an illustration of an embodiment of the second invention. It is an explanatory diagram. 1, 2, 3: Conductor, 4: Inductive radio line, 5: Mobile-mounted antenna, 6: Terminal, 7: Buffer amplifier,
8: Duplexer, 9: Phase shifter, 10: Adder, 11:
Multiplier, 12: Phase meter, 13: Adder.

Claims (1)

【特許請求の範囲】 1 所定の周期Pでもつて繰り返し構造を有する
ように2本の導体を配置してなる誘導無線線路が
移動体走行路に沿つて布設されており、移動体に
は線路長手方向にP/4の間隔をおいて2個のア
ンテナが搭載されており、上記アンテナ間にπ/
2の位相差を与えて周波数1の高周波電流及びこ
れを2逓倍した周波数2の高周波電流を通電し、
これによつて誘導無線線路の導体間に誘起される
周波数1に係る電圧を2逓倍したものと周波数2
に係る電圧との位相差を求めるか、又は周波数2
に係る電圧を2逓倍したものと周波数1に係る電
圧との位相差を求めることにより移動体位置を知
ることを特徴とする移動体位置検知方式。 2 所定の周期Pでもつて繰り返し構造を有する
ように2本の導体を配置してなる誘導無線線路が
移動体走行路に沿つて布設されており、移動体に
は線路長手方向にP/N(Nは3又は3より大な
る整数)の間隔をおいてN個のアンテナが搭載さ
れており、上記アンテナ間に2π/Nの位相差を
与えて周波数1の高周波電流及びこれを2逓倍し
た周波数2の高周波電流を通電し、これによつて
誘導無線線路の導体間に誘起される周波数1に係
る電圧を2逓倍したものと周波数2に係る電圧と
の位相差を求めることにより移動体位置を知るこ
とを特徴とする移動体位置検知方式。
[Claims] 1. A guided radio line consisting of two conductors arranged so as to have a repeating structure with a predetermined period P is laid along a moving path, and the moving object has a Two antennas are mounted at an interval of P/4 in the direction, and there is a distance of π/4 between the antennas.
Applying a high frequency current of frequency 1 and a high frequency current of frequency 2 which is multiplied by 2 with a phase difference of 2,
As a result, the voltage related to frequency 1 induced between the conductors of the guided radio line multiplied by 2 and the voltage related to frequency 2
or find the phase difference with the voltage related to frequency 2
A moving body position detection method characterized in that the position of a moving body is determined by determining the phase difference between a voltage related to frequency 1 multiplied by 2 and a voltage related to frequency 1 . 2. A guided radio line consisting of two conductors arranged so as to have a repeating structure with a predetermined period P is laid along a moving vehicle running path, and the moving body has a P/N (P/N) in the longitudinal direction of the track. N antennas are mounted at intervals of 3 or an integer greater than 3), and a phase difference of 2π/N is given between the antennas to generate a high frequency current of frequency 1 and a frequency that is doubled. The position of the moving object is determined by applying a high-frequency current of 2 and calculating the phase difference between the voltage of frequency 1 , which is induced between the conductors of the inductive radio line, multiplied by 2, and the voltage of frequency 2 . A mobile object position detection method that is characterized by knowing the position of a moving object.
JP56052529A 1981-04-08 1981-04-08 Detection system for position of moving body Granted JPS57166569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56052529A JPS57166569A (en) 1981-04-08 1981-04-08 Detection system for position of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56052529A JPS57166569A (en) 1981-04-08 1981-04-08 Detection system for position of moving body

Publications (2)

Publication Number Publication Date
JPS57166569A JPS57166569A (en) 1982-10-14
JPS6322268B2 true JPS6322268B2 (en) 1988-05-11

Family

ID=12917273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56052529A Granted JPS57166569A (en) 1981-04-08 1981-04-08 Detection system for position of moving body

Country Status (1)

Country Link
JP (1) JPS57166569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288870U (en) * 1988-12-28 1990-07-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288870U (en) * 1988-12-28 1990-07-13

Also Published As

Publication number Publication date
JPS57166569A (en) 1982-10-14

Similar Documents

Publication Publication Date Title
CN104470752B (en) Should be vehicle by magnetic strength and configuration structure and the method for electric energy are provided
JPS6322268B2 (en)
JPH0450538B2 (en)
JPH0450541B2 (en)
JPH0450539B2 (en)
JPH0235267B2 (en)
JPH0641971B2 (en) Moving body position detection method
JPH0418794B2 (en)
JPS6237853B2 (en)
JPS6336471B2 (en)
JPS6246829B2 (en)
JPH0543069B2 (en)
JPH0450540B2 (en)
CN101583513B (en) Pole position measuring device for a magnetic levitation vehicle on a magnetic levitation track and method for operation thereof
JPH0235269B2 (en)
JPS5810955B2 (en) Position detection method for linear motor vehicle
CN114274801B (en) Output voltage fluctuation suppression method for three-phase dynamic wireless power supply system
JPH0235268B2 (en)
JPS6126604B2 (en)
US1692530A (en) Method and apparatus for locating ore bodies
JPS6129236B2 (en)
JPS6332155B2 (en)
JPH02236186A (en) Method for sensing position of moving body
JPS6017371A (en) Detection of position of moving body
JPS59228168A (en) Detection for speed of linear motor