JPS6332155B2 - - Google Patents

Info

Publication number
JPS6332155B2
JPS6332155B2 JP56012023A JP1202381A JPS6332155B2 JP S6332155 B2 JPS6332155 B2 JP S6332155B2 JP 56012023 A JP56012023 A JP 56012023A JP 1202381 A JP1202381 A JP 1202381A JP S6332155 B2 JPS6332155 B2 JP S6332155B2
Authority
JP
Japan
Prior art keywords
voltages
voltage
radio line
guided radio
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56012023A
Other languages
Japanese (ja)
Other versions
JPS57125859A (en
Inventor
Tatsu Hatsuta
Tai Kusakabe
Fumiki Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP56012023A priority Critical patent/JPS57125859A/en
Publication of JPS57125859A publication Critical patent/JPS57125859A/en
Publication of JPS6332155B2 publication Critical patent/JPS6332155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Near-Field Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は、誘導無線を利用した移動体位置検知
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mobile body position detection method using guided radio.

鉄道車輌のように一定の軌道に沿つて走行する
移動体の位置を誘導無線を利用して検知すること
は従来より知られており、これまでに種々の方式
が提案されている。
2. Description of the Related Art It has been known for a long time to detect the position of a moving object such as a railway vehicle traveling along a certain track using guided radio, and various methods have been proposed so far.

従来から提案されている移動体位置検知方式の
一例を第1図および第2図を参照して説明する。
第1図において、1,2,3はそれぞれ導体であ
り、これら導体によつて誘導無線線路4が形成さ
れている。5は移動体搭載アンテナである。各導
体1,2,3は平面状に周期Pで波形形状に折り
曲げられ、P/3ずつずらして配置されているの
で誘導無線線路4全体としては周期Pの繰り返し
構造となつている。
An example of a conventional moving object position detection method will be described with reference to FIGS. 1 and 2.
In FIG. 1, 1, 2, and 3 are conductors, and a guided radio line 4 is formed by these conductors. 5 is an antenna mounted on a mobile object. Each of the conductors 1, 2, and 3 is bent in a planar shape into a waveform shape with a period P, and is arranged at intervals of P/3, so that the guided radio line 4 as a whole has a repeating structure with a period P.

ここで、誘導無線線路4とアンテナ5との離隔
距離およびアンテナ5の寸法を適当に選択し、ア
ンテナ5に高周波電流(50〜200kHz)を通電す
ると、各導体1,2,3間には移動体の移動に伴
つて正弦波状電圧が電磁誘導により誘起される。
Here, if the separation distance between the guided radio line 4 and the antenna 5 and the dimensions of the antenna 5 are appropriately selected and a high frequency current (50 to 200 kHz) is applied to the antenna 5, there will be no movement between the conductors 1, 2, and 3. As the body moves, a sinusoidal voltage is induced by electromagnetic induction.

いま、誘導無線線路4の端末からアンテナ5ま
での距離をzとし、各導体1−2,2−3,3−
1間に誘起される電圧をそれぞれV12、V23、V31
とすると、これらは次式でもつて表わすことがで
きる。
Now, let the distance from the terminal of the guided radio line 4 to the antenna 5 be z, and each conductor 1-2, 2-3, 3-
The voltages induced between 1 and 1 are V 12 , V 23 and V 31 respectively.
Then, these can also be expressed by the following equation.

V12=kcos(2π/P)z V23=kcos(2π/P){z+(P/3)} =kcos{(2π/P)z+(2π/3)} V31=kcos(2π/P){z+(2P+3)} =kcos{(2π/P)z−(2π/3)} …(1) ここで、kは誘導無線線路4、アンテナ5の形
状、寸法、両者の離隔距離、電流の大きさ、周波
数により定まる定数である。
V 12 =kcos(2π/P)z V 23 =kcos(2π/P){z+(P/3)} =kcos{(2π/P)z+(2π/3)} V 31 =kcos(2π/P ) {z+(2P+3)} =kcos{(2π/P)z−(2π/3)} …(1) Here, k is the shape and dimensions of the inductive wireless line 4 and antenna 5, the separation distance between them, and the current It is a constant determined by the size and frequency of .

いま、V12、V23、V31についての正相電圧Vp
よび逆相電圧Voを次式により定義する。
Now, the positive-sequence voltage V p and negative-sequence voltage V o for V 12 , V 23 , and V 31 are defined by the following equations.

Vp=V12+e-j2/3V23+ej2/3V31 Vo=V12+ej2/3V23+e-j2/3V31 …(2) (1)式を(2)式に代入して整理すると次式のように
なる。
V p =V 12 +e -j2/3 V 23 +e j2/3 V 31 V o =V 12 +e j2/3 V 23 +e -j2/3 V 31 ...(2) Substitute equation (1) for ( 2) By substituting and rearranging the equation, we get the following equation.

Vp=(3/2)kej2z/P Vo=(3/2)ke-j2z/P …(3) VpとVoの位相差をφとすると、 φ=∠Vp−∠Vo=4πz/P …(4) となる。なお、∠は複素量の偏角を表わす記号で
ある。
V p = (3/2)ke j2z/P V o = (3/2)ke -j2z/P …(3) If the phase difference between V p and V o is φ, then φ=∠V p −∠V o =4πz/P (4). Note that ∠ is a symbol representing the argument of a complex quantity.

このことは、誘導無線線路4の端末に信号処理
回路をおき、(1)式から(4)式に相当する演算をアナ
ログ的に行つて位相差φ=∠Vp−∠Voを求めれ
ば第2図に示すように移動体位置zをP/2の周
期で連続的に知ることができることを意味する。
This can be determined by placing a signal processing circuit at the terminal of the guided radio line 4 and performing analog calculations corresponding to equations (1) to (4) to obtain the phase difference φ=∠V p −∠V o . As shown in FIG. 2, this means that the moving body position z can be continuously known at a period of P/2.

しかしながら、この方式は各導体間に誘起され
る電圧の位相情報に依存するものであり、正相お
よび逆相両電圧間には漏話が発生し、位置検知誤
差を生じるという問題がある。
However, this method relies on phase information of the voltage induced between each conductor, and there is a problem in that crosstalk occurs between the positive-phase and negative-phase voltages, resulting in a position detection error.

また、第3図に示すように周期Paの繰り返し
周期構造を有する誘導無線線路4aと、これとは
異なる周期Pbの繰り返し構造を有する誘導無線
線路4bとを用いて位置検知を行う場合において
も前述と同様な問題を生ずることになる。
Furthermore, as shown in FIG. 3, when performing position detection using a guided radio line 4a having a repeating periodic structure with a period P a and a guided radio line 4b having a repeating structure with a different period P b , would also cause the same problem as mentioned above.

すなわち、アンテナ5でもつて誘導無線線路4
aと4bを励振し、前述と同様な処理を行つて誘
導無線線路4aについての正相電圧VPaおよび誘
導無線線路4bについての正相電圧Vpbを得、こ
れらの位相差φをとると次のようになる。
That is, even if the antenna 5 is connected to the guided radio line 4
a and 4b, and perform the same processing as described above to obtain the positive sequence voltage V Pa for the inductive radio line 4a and the positive sequence voltage V pb for the inductive radio line 4b, and taking the phase difference φ between them, the following is obtained. become that way.

φ=∠Vpa−∠Vpb =(2π/Pa)z−(2π/Pb)z =(2π/Pc)z …(5) なお、Pc=PaPb/(Pb−Pa)であり、Pa、Pb
のいずれよりも大である。
φ=∠V pa −∠V pb = (2π/P a )z − (2π/P b )z = (2π/P c )z …(5) Furthermore, P c =P a P b /(P b −P a ), and P a , P b
is larger than either of the following.

このように、φ=∠Vpa−∠Vpbを求めること
によりPcの周期で移動体位置を測定でき、しかも
測定周期を拡大できることになる。
In this way, by determining φ=∠V pa −∠V pb , the position of the moving object can be measured at a period of P c , and the measurement period can be expanded.

しかし、この方式では、誘導無線線路4aと4
bの正相回線には位相定数の偏差があり、これを
それぞれβa、βbとすると、誘導無線線路の端末で
は、 φ=∠Vpa−∠Vpb =(2π/Pc)z+(βa−βb)z …(6) となり、zと共に増大する測定誤差を含むことに
なる。
However, in this method, the guided radio lines 4a and 4
There is a phase constant deviation in the positive phase line of b, and if these are respectively β a and β b , then at the terminal of the guided radio line, φ=∠V pa −∠V pb = (2π/P c )z+( β a −β b )z (6), which includes a measurement error that increases with z.

本発明は、上記したような位相定数の相違によ
る位置検知誤差を解消できる移動体位置検知方式
の提供を目的とするものである。
An object of the present invention is to provide a moving body position detection method that can eliminate the position detection error caused by the difference in phase constants as described above.

本発明の位置検知方式は、移動体の位置変化に
伴い各導体間に正弦波状の導体間電圧が誘起され
るように繰り返し周期Pを有する3本の導体を
P/3ずつずらして配置してなる誘導無線線路が
移動体走行路に沿つて布設されており、この誘導
無線線路を移動体搭載アンテナで励振することに
より上記各導体間に移動体の走行に伴つて正弦波
状に変化し、かつ2π/3の位相差を有する3個
の電圧を発生させ、これら各電圧について包絡線
の自乗値を求め、この自乗値の相互間の差に比例
した3個の電圧を得、これら3個の電圧によつて
新たな搬送波を再度変調して得られる3個の電圧
Vu、Vv、Vwについての正相電圧Vpおよび逆相電
圧Voを次式により定義したとき、 Vp=Vu+e-j2/3Vv+ej2/3Vw Vo=Vu+ej2/3Vv+e-j2/3Vw 正相電圧Vpまたは逆相電圧Voと、搬送波電源よ
り導かれる基準位相信号との位相差に基づいて移
動体の位置を検知することを特徴とするものであ
る。
In the position detection method of the present invention, three conductors having a repetition period P are arranged at intervals of P/3 so that a sinusoidal inter-conductor voltage is induced between each conductor as the position of the moving body changes. A guided radio line is laid along the path of the moving object, and when this guided wireless line is excited by an antenna mounted on the moving object, a sinusoidal waveform is generated between the conductors as the moving object moves, and Generate three voltages with a phase difference of 2π/3, find the square value of the envelope for each of these voltages, obtain three voltages proportional to the difference between these square values, and 3 voltages obtained by modulating the new carrier wave again with voltages
When the positive-sequence voltage V p and negative-sequence voltage V o for V u , V v , and V w are defined by the following formula, V p = V u +e -j2/3 V v +e j2/3 V w V o = V u +e j2/3 V v + e -j2/3 V wThe moving object is It is characterized by detecting the position.

また、本発明は、移動体の位置変化に伴い各導
体間に正弦波状の導体間電圧が誘起されるように
繰り返し周期Pを有する3本の導体をP/3ずつ
ずらして配置してなる第1の誘導無線線路と、こ
の第1の誘導無線線路とは繰り返し周期のみが異
なる第2の誘導無線線路とが移動体走行路に沿つ
て布設されており、この第1および第2の誘導無
線線路を移動体搭載アンテナで励振することによ
り上記第1および第2の誘導無線線路の系統毎の
各導体間に移動体の走行に伴つて正弦波状に変化
し、かつ2π/3の位相差を有する3個の電圧を
発生させ、これら各電圧について包絡線の自乗値
を求め、第1および第2の誘導無線線路の系統毎
にこれら自乗値の相互間の差に比例した3個の電
圧を得、これら3個の電圧によつて新たな搬送波
を再度変調して得られる第1の誘導無線線路の系
統の電圧Va u、Va v、Va wについての正相電圧Va pおよ
び逆相電圧Va oを次式により定義し、 Va p=Va u+e-j2/3Va v+ej2/3Va w Va o=Va u+ej2/3Va v+e-j2/3Va w また、第2の誘導無線線路の系統の電圧Vb u、Vb v
Vb wについての正相電圧Vb pおよび逆相電圧Vb oを次
式により定義したとき、 Vb p=Vb u+e-j2/3Vb v+ej2/3Vb w Vb o=Vb u+ej2/3Vb v+e-j2/3Vb w 第1と第2の誘導無線線路の系統についての正相
電圧同志または逆相電圧同志の位相差に基づいて
移動体の位置を検知することを特徴とするもので
ある。
Further, the present invention provides a third conductor in which three conductors having a repetition period P are arranged shifted by P/3 so that a sinusoidal inter-conductor voltage is induced between each conductor as the position of the moving body changes. A first guided radio line and a second guided radio line that differs only in repetition period from the first guided radio line are laid along the moving path, and the first and second guided radio lines By exciting the line with an antenna mounted on a mobile object, a sinusoidal change occurs between each conductor of each system of the first and second guided radio lines as the mobile object moves, and a phase difference of 2π/3 is created. generate three voltages, calculate the square value of the envelope for each of these voltages, and calculate three voltages proportional to the difference between these square values for each system of the first and second inductive radio lines. The positive sequence voltage V a p and the voltage V a u , V a v , V a w of the system of the first inductive radio line obtained by modulating the new carrier wave again with these three voltages are obtained. The negative sequence voltage V a o is defined by the following formula, V a p = V a u +e -j2/3 V a v +e j2/3 V a w V a o = V a u +e j2/3 V a v +e -j2/3 V a wAlso, the voltage of the second inductive radio line system V b u , V b v ,
When the positive sequence voltage V b p and negative sequence voltage V b o for V b w are defined by the following formula, V b p = V b u +e -j2/3 V b v +e j2/3 V b w V b o =V b u +e j2/3 V b v +e -j2/3 V b wThe phase difference between the positive-sequence voltages or negative-sequence voltages for the first and second inductive radio line systems This feature is characterized in that the position of a moving object is detected based on the

本発明は、各導体間に誘起された電圧の包絡線
の自乗値、つまり振幅情報にのみ基づいて移動体
の位置を検知するものであり、従来のように位相
情報に依存しないため誤差のない位置検知が可能
となる。また、本発明では、誘導無線線路は3本
の導体により構成するため、奇数次の空間高調波
成分は信号処理回路中で消滅するので位置検知誤
差の要因を除去できる。なお、偶数本の導体によ
り誘導無線線路を構成した場合には、偶数次の空
間高調波成分は信号処理回路中で消滅できるが、
奇数次の空間高調波成分を消滅できず、また、重
信回線が第3回線を構成するため2次漏話の原因
となり、位置検知誤差を生じやすい。
The present invention detects the position of a moving object based only on the square value of the envelope of the voltage induced between each conductor, that is, amplitude information, and does not depend on phase information unlike conventional methods, so there is no error. Position detection becomes possible. Furthermore, in the present invention, since the guided radio line is constituted by three conductors, odd-order spatial harmonic components disappear in the signal processing circuit, thereby eliminating the cause of position detection errors. Note that when an inductive radio line is constructed with an even number of conductors, the even-order spatial harmonic components can disappear in the signal processing circuit;
Odd-numbered spatial harmonic components cannot be eliminated, and since the overlapping line constitutes the third line, it causes secondary crosstalk, which tends to cause position detection errors.

以下、本発明の位置検知方式について詳細に説
明する。
Hereinafter, the position detection method of the present invention will be explained in detail.

まず、第1図に示すような誘導無線線路を用い
た位置検知方式について説明する。
First, a position detection method using a guided radio line as shown in FIG. 1 will be explained.

アンテナ5により誘導無線線路4を励振するこ
とによつて、導体1−2、2−3、3−1にそれ
ぞれ誘起される電圧V12、V23、V31の誘導無線線
路4の端末における瞬時値は、誘導無線線路4の
位相定数を考慮に入れると次のようになる。
By exciting the inductive radio line 4 with the antenna 5, the instantaneous voltages V 12 , V 23 , and V 31 induced in the conductors 1-2, 2-3, and 3-1 at the terminals of the inductive radio line 4 The value is as follows when the phase constant of the guided radio line 4 is taken into consideration.

V12=k1cos(2π/P)z ・e-jz・ejt V23 =k1cos{(2π/P)z+(2π/3)} ・e-jz・ejt V31 =k1cos{(2π/P)z−(2π/3)} ・e-jz・ejt …(7) なお、ωはアンテナ電流の角周波数である。V 12 =k 1 cos(2π/P)z ・e -jz・e jt V 23 =k 1 cos {(2π/P)z+(2π/3)} ・e -jz・e jt V 31 = k 1 cos {(2π/P)z−(2π/3)} ・e −jz・e jt …(7) Note that ω is the angular frequency of the antenna current.

いま、各電圧V12、V23、V31を直線検波してそ
の包絡線の絶対値を求め、更にその自乗値を求め
ると次のようになる。
Now, if each voltage V 12 , V 23 , V 31 is linearly detected and the absolute value of its envelope is determined, and then its square value is determined, the following is obtained.

|V122=k2 1cos2(2π/P)z =(1/2)k2 1[1+cos(4π/P)z] |V232 =k2 1cos2{(2π/P)z+(2π/3)} =(1/2)k2 1[1+cos{(4π/P)z −(2π/3)}] |V312 =k2 1cos2{(2π/P)z−(2π/3)} =(1/2)k2 1[1+cos{(4π/P)z +(2π/3)}] …(8) 次いで、 Veu=k2(|V122−|V232) Vev=k2(|V232−|V312) Vew=k2(|V312−|V132) …(9) によつてVeu、Vev、Vewをそれぞれ定義し、(8)式
を(9)式に代入することにより、次式が得られる。
|V 12 | 2 =k 2 1 cos 2 (2π/P)z = (1/2)k 2 1 [1+cos(4π/P)z] |V 23 | 2 =k 2 1 cos 2 {(2π/ P)z+(2π/3)} =(1/2)k 2 1 [1+cos{(4π/P)z −(2π/3)}] |V 31 | 2 =k 2 1 cos 2 {(2π/ P)z−(2π/3)} =(1/2)k 2 1 [1+cos{(4π/P)z +(2π/3)}] …(8) Then, V eu =k 2 (|V 12 | 2 − | V 23 | 2 ) V ev = k 2 ( | V 23 | 2 − | V 31 | 2 ) V ew = k 2 ( | V 31 | 2 − | V 13 | 2 ) …(9) By defining V eu , V ev , and V ew respectively by and substituting equation (8) into equation (9), the following equation is obtained.

なお、k2は定数である。Note that k 2 is a constant.

Veu=(√ 3/2)k2 1k2 ・cos{(4π/P)z+(π/6)} Vev=(√ 3/2)k2 1k2 ・cos{(4π/P)z+(π/6) −(2π/3)} Vew=(√ 3/2)k2 1k2 ・cos{(4π/P)z+(π/6) +(2π/3)} …(10) ここで、新たな搬送波ej〓′tをVeu、Vev、Vew
再び変調し、これをそれぞれVu、Vv、Vwとする
と、 次式が得られる。
V eu = (√ 3/2)k 2 1 k 2・cos {(4π/P)z+(π/6)} V ev = (√ 3/2)k 2 1 k 2・cos {(4π/P )z+(π/6) −(2π/3)} V ew =(√ 3/2)k 2 1 k 2・cos{(4π/P)z+(π/6) +(2π/3)}... (10) Now, if we modulate the new carrier wave e j 〓′ t again with V eu , V ev , and V ew and let these be V u , V v , and V w , respectively, we obtain the following equation.

Vu=(√ 3/2)k2 1k2・cos{(4π/P)z+(
π/6)}・ej〓′t Vv=(√ 3/2)k2 1k2・cos{(4π/P)z+(
π/6)−(2π/3)}・ej〓′t Vw=(√ 3/2)k2 1k2・cos{(4π/P)z+(
π/6)+(2π/3)}・ej〓′t…(11) Vu、Vv、Vwについての正相電圧Vpおよび逆相
電圧Voを、 Vp=Vu+e-j2/3Vv+ej2/3Vw Vo=Vu+ej2/3Vv+e-j2/3Vw …(12) により定義し、(11)式を(12)式に代入すると次式が得
られる。
V u = (√ 3/2)k 2 1 k 2・cos {(4π/P)z+(
π/6)}・e j 〓′ t V v = (√ 3/2)k 2 1 k 2・cos {(4π/P)z+(
π/6)−(2π/3)}・e j 〓′ t V w = (√ 3/2)k 2 1 k 2・cos {(4π/P)z+(
π/6) + (2π/3)}・e j 〓′ t …(11) The positive sequence voltage V p and negative sequence voltage Vo for V u , V v , and V w are expressed as V p =V u +e -j2/3 V v +e j2/3 V w V o =V u +e j2/3 V v +e -j2/3 V w …Defined by (12), and convert formula (11) into (12) By substituting into the equation, the following equation is obtained.

Vp=(3√ 3/4)k2 1k2・e-j[(4/P)z+(/6)]
・ej〓′t Vo=(3√ 3/4)k2 1k2・ej[(4/P)z+(/6)]・
ej〓′t…(13) 正相電圧Vpと搬送波ej〓′tとの位相差∠Vpおよ
び逆相電圧Voと搬送波ej〓′tとの位相差∠Voを求
めると、次のような関係が得られる。
V p = (3√ 3/4)k 2 1 k 2・e -j [ (4/P)z+(/6) ]
・e j 〓′ t V o = (3√ 3/4)k 2 1 k 2・e j [ (4/P)z+(/6) ]・
e j 〓′ t …(13) Find the phase difference ∠V p between the positive sequence voltage V p and the carrier wave e j 〓′ t and the phase difference ∠V o between the negative sequence voltage Vo and the carrier wave e j 〓′ t The following relationship is obtained.

−∠Vp=∠Vo=(4π/P)z+(π/6)
…(14) すなわち、zがP/2増加する毎に∠Vpおよ
び∠Voは2πの変化を示すので、∠Vpまたは∠Vo
の測定により移動体の位置をP/2の周期で周期
的かつ連続的に検知することができる。
−∠V p =∠V o = (4π/P)z+(π/6)
...(14) In other words, ∠V p and ∠V o show a change of 2π every time z increases by P/2, so ∠V p or ∠V o
By measuring this, the position of the moving object can be detected periodically and continuously at a period of P/2.

上記操作においては、導体間電圧の振幅のみに
依存し、誘導無線線路の位相定数βには無関係に
なるので、誤差のない位置検知が可能となる。
In the above operation, since it depends only on the amplitude of the inter-conductor voltage and is independent of the phase constant β of the guided radio line, error-free position detection is possible.

次に第3図に示すように、周期Paの誘導無線
線路4aと周期Pbの誘導無線線路4bを利用し
た場合について説明する。
Next, as shown in FIG. 3, a case will be described in which a guided radio line 4a with a period P a and a guided radio line 4 b with a period P b are used.

誘導無線線路4a,4bそれぞれの各導体間に
誘起される電圧について、前述と同様な信号処理
を施し、誘導無線線路4aの系統の電圧Va u、Va v
Va wについての正相電圧Va pおよび逆相電圧Va oを次
式により定義する。
The voltages induced between the respective conductors of the guided radio lines 4a and 4b are subjected to the same signal processing as described above, and the voltages V au , V av , of the system of the guided radio lines 4a are determined.
The positive sequence voltage V a p and the negative sequence voltage V a o for V a w are defined by the following equations.

Va p=Va u+e-j2/3Va v+ej2/3Va w Va o=Va u+ej2/3Va v+e-j2/3Va w …(15) また、誘導無線線路4bの系統の電圧Vb u、Vb v
Vb wについての正相電圧Vb pおよび逆相電圧Vb oを次
式により定義する。
V a p =V a u +e -j2/3 V a v +e j2/3 V a w V a o =V a u +e j2/3 V a v +e -j2/3 V a w …( 15) In addition, the system voltages V b u , V b v ,
The positive sequence voltage V b p and the negative sequence voltage V b o with respect to V b w are defined by the following equations.

Vb p=Vb u+e-j2/3Vb v+ej2/3Vb w Vb o=Vb u+ej2/3Vb v+erj2/3Vb w …(16) 誘導無線線路4aの系統についての逆相電圧
Va oと誘導無線線路4bの系統についての逆相電
圧Vb oの位相差をとると次のようになる。
V b p =V b u +e -j2/3 V b v +e j2/3 V b w V b o =V b u +e j2/3 V b v +e rj2/3 V b w …(16 ) Negative phase voltage for the system of the guided radio line 4a
Taking the phase difference between V a o and the negative phase voltage V b o for the system of the guided radio line 4b is as follows.

∠Va o−∠Vb o=(4π/Pa)z−(4π/Pb)z=(2
π/Pc)z…(17) ここでPc=PaPb/2(Pa−Pb)である。
∠V a o −∠V b o = (4π/P a )z − (4π/P b )z = (2
π/P c )z...(17) Here, P c =P a P b /2(P a −P b ).

従つて、∠Voa−∠Vobの測定によりPcの周期
で移動体の位置を周期的かつ連続的に検知するこ
とができる。また、誘導無線線路4aと4bの両
系統間に位相定数の差があつても測定精度には何
らの悪影響も現われない。
Therefore, by measuring ∠V oa −∠V ob , the position of the moving body can be periodically and continuously detected with a period of P c . Further, even if there is a difference in phase constant between the two systems of guided radio lines 4a and 4b, no adverse effect appears on measurement accuracy.

なお、正相電圧同志の位相差∠Va p−∠Vb pによ
つても同様の結果が得られる。
Note that similar results can be obtained by using the phase difference ∠V a p −∠V b p between the positive-sequence voltages.

第4図は、誘導無線線路の端末に接続される信
号処理回路の一例を示したものである。
FIG. 4 shows an example of a signal processing circuit connected to the terminal of the guided radio line.

6a,6b,6cは誘導無線線路の各導体1,
2,3にそれぞれ接続される端子、7a,7b,
7cは緩衝増幅器、8a,8b,8cは帯域通過
フイルタ、9a,9b,9cは自乗検波回路、1
0a,10b,10cは減算回路、11a,11
b,11cは変調回路、12bは+120゜位相回
路、12cは−120゜位相回路、13は加算回路、
14は搬送波電源、15は位相計である。
6a, 6b, 6c are each conductor 1 of the guided radio line,
Terminals 7a, 7b, connected to 2 and 3, respectively.
7c is a buffer amplifier, 8a, 8b, 8c are band pass filters, 9a, 9b, 9c are square law detection circuits, 1
0a, 10b, 10c are subtraction circuits, 11a, 11
b, 11c are modulation circuits, 12b is a +120° phase circuit, 12c is a -120° phase circuit, 13 is an adder circuit,
14 is a carrier wave power supply, and 15 is a phase meter.

各導体1−2,2−3,3−1に誘起された電
圧V12、V23、V31はそれぞれ緩衝増幅器7a,7
b,7cを経てフイルタ8a,8b,8cで雑音
電圧が除去され、自乗検波回路9a,9b,9c
に達する。
The voltages V 12 , V 23 , and V 31 induced in each conductor 1-2, 2-3, and 3-1 are applied to buffer amplifiers 7a and 7, respectively.
b, 7c, the noise voltage is removed by filters 8a, 8b, 8c, and square law detection circuits 9a, 9b, 9c
reach.

自乗検波回路9a,9b,9cの出力電圧はそ
れぞれ|V122、|V232、|V312に比例し、次
の減算回路10a,10b,10cに導かれ、こ
の回路からそれぞれ|V122−|V232、|V23
−|V312、|V312−|V122に比例した電圧
が出力される。
The output voltages of the square law detection circuits 9a, 9b, and 9c are proportional to |V 12 | 2 , |V 23 | 2 , and |V 31 | 2, respectively, and are led to the next subtraction circuits 10a, 10b, and 10c, and from this circuit |V 12 | 2 − |V 23 | 2 , |V 23 |
A voltage proportional to 2 −|V 31 | 2 , |V 31 | 2 −|V 12 | 2 is output.

変調回路11a,11b,11cにおいて、搬
送波電源から導かれる搬送波ej〓′tを再度変調し、
変調回路11aからの出力はそのまま加算回路1
3に入力され、変調回路11b,11cからの出
力はそれぞれ位相回路12a,12Cにおいて
120゜、−120゜の位相変移を受けてから加算回路1
3に入力される。
In the modulation circuits 11a, 11b, and 11c, the carrier wave e j 〓′ t guided from the carrier wave power source is modulated again,
The output from the modulation circuit 11a is sent directly to the addition circuit 1.
3, and the outputs from modulation circuits 11b and 11c are input to phase circuits 12a and 12C, respectively.
After receiving a phase shift of 120° and -120°, adder circuit 1
3 is input.

加算回路13からは逆相電圧Voが出力され、
位相計15において搬送波電源14からの搬送波
ej〓′tと逆相電圧Voとの位相差をとることにより移
動体位置zを知ることができる。
The adder circuit 13 outputs a negative phase voltage V o ,
The carrier wave from the carrier wave power supply 14 in the phase meter 15
The moving body position z can be determined by taking the phase difference between e j 〓′ t and the negative phase voltage Vo .

本発明の方式を誘導雑音が甚甚だしい場所で使
用する場合は、フイルタ8a,8b,8cを入力
側に挿入することが必要になるが、この場合従来
のような受信電圧を直接処理する方式ではフイル
タ8a,8b,8cの位相特性が周囲温度あるい
は経年的変化によつて変動すると、位相変動が直
接位置検知誤差の原因となる。
When the method of the present invention is used in a place where there is severe inductive noise, it is necessary to insert filters 8a, 8b, and 8c on the input side, but in this case, the conventional method that directly processes the received voltage is When the phase characteristics of the filters 8a, 8b, and 8c change due to ambient temperature or changes over time, the phase changes directly cause position detection errors.

しかし、本発明方式では、フイルタ8a,8
b,8cを用いても各電圧の振幅の変動は微小で
あるから、殆ど誤差のない位置検知が可能とな
る。
However, in the method of the present invention, the filters 8a, 8
Even if voltages b and 8c are used, the fluctuations in the amplitude of each voltage are minute, so position detection with almost no error is possible.

なお、本発明において使用される誘導無線線路
の構造は第1図あるいは第3図に示すような梯形
波状形状に限られるものではなく、矩形波状ある
いは三角波状の導体形状でもよく、また、平形の
もののみならず螺旋状の導体構造であつてもよ
い。
Note that the structure of the guided radio line used in the present invention is not limited to the trapezoidal wave shape as shown in FIG. It may be a spiral conductor structure.

導体数は3本に限るものではなく、3本以上の
奇数であれば各隣接導体間に誘起される電圧につ
いて同様の処理を行うことにより同一の結果が得
られる。
The number of conductors is not limited to three, but as long as it is an odd number of three or more, the same result can be obtained by performing the same process on the voltage induced between each adjacent conductor.

以上説明してきた通り、本発明は振幅情報のみ
に基づいて位置を検知するものであるため、誤差
のない位置検知が可能となる。また、異なる周期
構造の2組の誘導無線線路を使用することにより
測定範囲を拡大することが可能になる。
As explained above, since the present invention detects the position based only on amplitude information, it is possible to detect the position without error. Furthermore, by using two sets of guided radio lines with different periodic structures, it is possible to expand the measurement range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1組の誘導無線線路を用いた位置検知
方式の説明図、第2図は移動体位置zと∠Vp
∠Voの関係を示すグラフ、第3図は2組の誘導
無線線路を用いた位置検知方式の説明図、第4図
は本発明において使用される信号処理回路の一例
の説明図である。 1,2,3…導体、4,4a,4b…誘導無線
線路、5…移動体搭載アンテナ。
Figure 1 is an explanatory diagram of a position detection method using a set of guided radio lines, and Figure 2 is a diagram showing the position of the moving object z and ∠V p
A graph showing the relationship of ∠V o , FIG. 3 is an explanatory diagram of a position detection method using two sets of guided radio lines, and FIG. 4 is an explanatory diagram of an example of a signal processing circuit used in the present invention. 1, 2, 3... Conductor, 4, 4a, 4b... Guided radio line, 5... Mobile body mounted antenna.

Claims (1)

【特許請求の範囲】 1 移動体の位置変化に伴い各導体間に正弦波状
の導体間電圧が誘起されるように繰り返し周期P
を有する3本の導体をP/3ずつずらして配置し
てなる誘導無線線路が移動体走行路に沿つて布設
されており、この誘導無線線路を移動体搭載アン
テナで励振することにより上記各導体間に移動体
の走行に伴つて正弦波状に変化し、かつ2π/3
の位相差を有する3個の電圧を発生させ、これら
各電圧について包絡線の自乗値を求め、この自乗
値の相互間の差に比例した3個の電圧を得、これ
ら3個の電圧によつて新たな搬送波を再度変調し
て得られる3個の電圧Vu、Vv、Vwについての正
相電圧Vpおよび逆相電圧Voを次式により定義し
たとき、 Vp=Vu+e-j2/3Vv+ej2/3Vw Vo=Vu+ej2/3Vv+e-j2/3Vw 正相電圧Vpまたは逆相電圧Voと、搬送波電源よ
り導かれる基準位相信号との位相差に基づいて移
動体の位置を検知することを特徴とする移動体位
置検知方式。 2 移動体の位置変化に伴い各導体間に正弦波状
の導体間電圧が誘起されるように繰り返し周期P
を有する3本の導体をP/3ずつずらして配置し
てなる第1の誘導無線線路と、この第1の誘導無
線線路とは繰り返し周期のみが異なる第2の誘導
無線線路とが移動体走行路に沿つて布設されてお
り、この第1および第2の誘導無線線路を移動体
搭載アンテナで励振することにより上記第1およ
び第2の誘導無線線路の系統毎の各導体間に移動
体の走行に伴つて正弦波状に変化し、かつ2π/
3の位相差を有する3個の電圧を発生させ、これ
ら各電圧について包絡線の自乗値を求め、第1お
よび第2の誘導無線線路の系統毎にこれら自乗値
の相互間の差に比例した3個の電圧を得、これら
3個の電圧によつて新たな搬送波を再度変調して
得られる第1の誘導無線線路の系統の電圧Va u
Va v、Va wについての正相電圧Va pおよび逆相電圧Va o
を次式により定義し、 Va p=Va u+e-j2/3Va v+ej2/3Va w Va o=Va u+ej2/3Va v+e-j2/3Va w また、第2の誘導無線線路の系統の電圧Vb u
Vb v、Vb wについての正相電圧Vb pおよび逆相電圧Vb o
を次式により定義したとき、 Vb p=Vb u+e-j2/3Vb v+ej2/3Vb w Vb o=Vb u+ej2/3Vb v+e-j2/3Vb w 第1と第2の誘導無線線路の系統についての正
相電圧同志または逆相電圧同志の位相差に基づい
て移動体の位置を検知することを特徴とする移動
体位置検知方式。
[Claims] 1. The repetition period P is set so that a sinusoidal inter-conductor voltage is induced between each conductor as the position of the moving body changes.
A guided radio line consisting of three conductors shifted by P/3 is laid along the moving route, and by exciting this guided radio line with an antenna mounted on the moving body, each of the above-mentioned conductors In between, it changes in a sinusoidal manner as the moving object moves, and 2π/3
Generate three voltages with a phase difference of When the positive-sequence voltage V p and the negative-sequence voltage V o for the three voltages V u , V v , and V w obtained by modulating the new carrier wave again are defined by the following formula, V p = V u + e -j2/3 V v +e j2/3 V w V o =V u +e j2/3 V v +e -j2/3 V wFrom positive sequence voltage V p or negative sequence voltage Vo and carrier wave power supply A moving body position detection method that detects the position of a moving body based on a phase difference with a reference phase signal that is guided. 2 The repetition period P is set so that a sinusoidal inter-conductor voltage is induced between each conductor as the position of the moving body changes.
A first guided radio line formed by arranging three conductors shifted by P/3, and a second guided radio line that differs only in repetition period from the first guided radio line, are used when a mobile object is running. By exciting the first and second guided radio lines with an antenna mounted on a mobile object, a moving object is generated between each conductor of each system of the first and second guided radio lines. It changes sinusoidally as it travels, and has a 2π/
Three voltages having a phase difference of 3 are generated, the squared value of the envelope is determined for each of these voltages, and the squared value is proportional to the difference between these squared values for each system of the first and second guided radio lines. The voltage V a u of the first guided radio line system obtained by obtaining three voltages and modulating a new carrier wave again with these three voltages,
Positive sequence voltage V a p and negative sequence voltage V a o for V a v , V a w
is defined by the following formula, V a p =V a u +e -j2/3 V a v +e j2/3 V a w V a o =V a u +e j2/3 V a v +e -j2/3 V a wAlso , the voltage V b u of the system of the second inductive radio line,
Positive sequence voltage V b p and negative sequence voltage V b o for V b v , V b w
When defined by the following formula, V b p =V b u +e -j2/3 V b v +e j2/3 V b w V b o =V b u +e j2/3 V b v +e -j2/3 V b wMoving object position detection characterized in that the position of the moving object is detected based on the phase difference between positive phase voltages or negative phase voltages of the first and second guided radio line systems. method.
JP56012023A 1981-01-29 1981-01-29 System for detecting position of moving material Granted JPS57125859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56012023A JPS57125859A (en) 1981-01-29 1981-01-29 System for detecting position of moving material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56012023A JPS57125859A (en) 1981-01-29 1981-01-29 System for detecting position of moving material

Publications (2)

Publication Number Publication Date
JPS57125859A JPS57125859A (en) 1982-08-05
JPS6332155B2 true JPS6332155B2 (en) 1988-06-28

Family

ID=11793997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56012023A Granted JPS57125859A (en) 1981-01-29 1981-01-29 System for detecting position of moving material

Country Status (1)

Country Link
JP (1) JPS57125859A (en)

Also Published As

Publication number Publication date
JPS57125859A (en) 1982-08-05

Similar Documents

Publication Publication Date Title
JPS6332155B2 (en)
JPH0933204A (en) Measuring method surely measuring space between conductive reaction rail and functional surface relatively moved to conductive reaction rail and sensor fitted to measuring method thereof
JPH01161180A (en) Direction finder
JP2617324B2 (en) Insulation resistance measurement method
JPH07234102A (en) Displacement measuring apparatus
JPH0351748Y2 (en)
JPS6336471B2 (en)
JPH0543069B2 (en)
JPS6246828B2 (en)
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPS6246829B2 (en)
JPH0235268B2 (en)
JPH0235266B2 (en)
JPS6330587B2 (en)
SU1580570A1 (en) Device for measuring cable length
SU873166A1 (en) Device for measuring semiconductor electric physical characteristics
SU438981A1 (en) Amplitude Phase Detector
SU725033A2 (en) Device for comparing amplitudes of two harmonic voltages
SU650022A1 (en) Arrangement for measuring unstability
Watanabe et al. A cascade phase sensitive detector-phase response
SU1465812A1 (en) Device for measuring phase shift of four-pole network
RU1795384C (en) Device for contactless measurement of strength of current in underground pipe-line
JPS6048763B2 (en) Mobile object position detection method
JPS5855461B2 (en) How to detect the position of a moving object
SU624351A1 (en) Phase-shifting arrangement