JPS63303304A - Production of plastic optical fiber - Google Patents

Production of plastic optical fiber

Info

Publication number
JPS63303304A
JPS63303304A JP62138161A JP13816187A JPS63303304A JP S63303304 A JPS63303304 A JP S63303304A JP 62138161 A JP62138161 A JP 62138161A JP 13816187 A JP13816187 A JP 13816187A JP S63303304 A JPS63303304 A JP S63303304A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
stretching
zone
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138161A
Other languages
Japanese (ja)
Other versions
JPH0782130B2 (en
Inventor
Isao Fujita
勲 藤田
Hisashi Tazawa
田沢 壽
Heiroku Suganuma
菅沼 平六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62138161A priority Critical patent/JPH0782130B2/en
Publication of JPS63303304A publication Critical patent/JPS63303304A/en
Publication of JPH0782130B2 publication Critical patent/JPH0782130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To improve bending resistance, light transmittability, etc., and to decrease the fluctuation in fiber diameter by heating and stretching a plastic optical fiber under specific conditions. CONSTITUTION:While the unstretched plastic optical fiber 1 discharged from a composite spinning mouth piece 2 and cooled 3 is destaticized 5, the fiber is guided to a stretching zone 6 at a speed V1m/sec (speed of rollers 4). Heating air flow is then blown from an introducing part 9 oppositely to the traveling direction of the fiber 1 and the fiber is stretched to a prescribed magnification by the pulling force of stretching rollers 10 at a speed V2m/sec on the rear side. The fiber is in succession subjected to destaticizing 5 and to a heat treatment 11 for a fixed length without contact in a similar device 6. The fiber is taken up 12 after sufficient cooling. The conditions of the roller speed are so selected as to satisfy 15A<=2L/(V1+V2)<=15A+16 where the sectional area of the stretched fiber 1 is designated as Amm<2> and the length of the zone 6 is designated as Lm. The more uniform optical fiber 1 is obtd. if -10<=P<=10 (P: the distance cm from the outlet of the heating air flow in the outlet of the zone 6 up to the completion point of the fining by the stretching) is set.

Description

【発明の詳細な説明】 [産業上の利用分野」 本発明は機械的強度、特に耐屈曲性、透光性および寸法
安定・1(1に優れ、線径変動の小さい高品位なプラス
チック光ファイバーの製造方法に関Jる。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the development of high-quality plastic optical fibers with excellent mechanical strength, especially bending resistance, translucency, and dimensional stability. Regarding manufacturing methods.

[従来の技術] 通信技術分野の技術午新の中核をなす光学繊維の発展I
J1、ガラス系光学繊組をベースとして著しいものかあ
り、コスト並びに7JO工性の重要視される短距離伝送
分野においては有機系光学繊維の活用が注目されている
[Prior art] Development of optical fibers that form the core of technology innovation in the field of communication technology I
J1, there are remarkable results based on glass-based optical fiber assemblies, and the use of organic optical fibers is attracting attention in the field of short-distance transmission where cost and 7JO workability are important.

有機系光学繊維、′?l−なわちプラスデック光フフイ
ハ−は、カラス系光学繊組に比較して透光性には劣るが
、安価で、取り扱い性に侵れているために、短距離伝送
用として広く利用されようとしている。
Organic optical fiber, ′? The L-, or Plus Deck optical fiber, has inferior translucency compared to glass-based optical fibers, but it is inexpensive and easy to handle, so it will be widely used for short-distance transmission. It is said that

しかしながら、このプラスチック光ノア’フィバ−は、
通常、一般的な合成繊維の製造法である溶融紡糸法を適
用して製造されるか、通常の合成繊維とは異なり、使用
覆る重合体か結晶性を有しないこと、光学繊組特性の上
から使用する重合体の紳麻か極度に高純度であり、繊維
製造工程での異物や不純物の混入を完全に防止する必要
があり、加えて複合される芯および鞘両成分間界面に不
整がないことなど極めてシビアな製造プロセスおよび条
1′−1を採用されねばならないという工業的実施に際
しての技術的困難性かある。
However, this plastic light Noah'fiber is
Usually, it is manufactured by applying the melt spinning method, which is a general synthetic fiber manufacturing method, or unlike ordinary synthetic fibers, it is made of a polymer that is used, has no crystallinity, and has optical fiber assembly characteristics. The polymer used in the fiber manufacturing process must be extremely pure and completely free from foreign substances and impurities during the fiber manufacturing process. There are technical difficulties in industrial implementation, such as extremely severe manufacturing processes and the adoption of Article 1'-1.

このような技術的困難性の中でも、該プラスチック光フ
ァイバーの機械的性質、特に耐屈曲性および可撓性を改
良するために、溶融紡糸された未延伸繊維を延伸し、繊
維軸方向に高分子鎖を配向させることか必要であるか、
この延伸工程では、該プラスチック光ファイバーを構成
する芯成分と鞘成分との界面不整や界面剥因1が生じる
。このため1■られるプラスチック光ファイバーの透光
損失を低下させたり、線径変動を小さくするといった問
題の解決か極めて重要である。
Despite these technical difficulties, in order to improve the mechanical properties of the plastic optical fiber, especially its bending resistance and flexibility, we drew the melt-spun undrawn fibers to form polymer chains in the fiber axis direction. Is it necessary to orient the
In this drawing step, interface irregularities and interface peeling 1 occur between the core component and the sheath component constituting the plastic optical fiber. Therefore, it is extremely important to solve the problems of reducing the transmission loss of plastic optical fibers and reducing the variation in wire diameter.

このような技術的困難性を解決するために、従来該プラ
スチック光ファイバーの延伸には、加熱ロールや加熱板
などのように、延伸過程の擦過によって鞘成分か損傷、
脱落を生じ易い。この結果として透光性および機械的強
度を低下させる接触延伸ではなくて、非接触加熱延伸、
たとえば加熱空気や窒素などの加熱雰囲気中で間接的に
繊維を加熱しながら延伸する手段か採用されている。
In order to solve such technical difficulties, conventionally, the plastic optical fibers are stretched using heating rolls, heating plates, etc., which damage the sheath components due to abrasion during the stretching process.
Easy to fall off. As a result, non-contact heating stretching is used instead of contact stretching, which reduces translucency and mechanical strength.
For example, a method is employed in which the fibers are stretched while being indirectly heated in a heated atmosphere such as heated air or nitrogen.

しかるに、この非接触加熱延伸の場合は、繊維の均一加
熱か困難となり易く、不均一な状態で延伸による変形を
受【プると界面不整を生じ、プラスチック光ファイバー
の透光性を低下させ、かつ延伸も不安定になって線径変
動を十分に小さくできないという問題かある。
However, in the case of non-contact heating and stretching, it is often difficult to uniformly heat the fibers, and if the fibers are deformed by stretching in an uneven state, interface irregularities will occur, reducing the translucency of the plastic optical fiber, and There is also the problem that the drawing becomes unstable and fluctuations in wire diameter cannot be sufficiently reduced.

[発明が解決しようとする問題点コ 本発明の目的は、機械的強度、特に耐屈曲性、透光性お
よび寸法安定性に優れ、線径変動の小さい高品位なプラ
スチック光ファイバーを提供することにある。他の目的
は上記プラスチック光フアイバー製造にあける技術上の
問題点である芯、鞘成分間の界面不整かなく、均一な延
伸を可能とするプラスチック光ファイバーの延伸法を提
供するにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a high-quality plastic optical fiber that has excellent mechanical strength, particularly bending resistance, translucency, and dimensional stability, and has small wire diameter fluctuations. be. Another object of the present invention is to provide a method for drawing plastic optical fibers that enables uniform drawing without the irregular interface between the core and sheath components, which is a technical problem in the production of plastic optical fibers.

[問題点を解決するための手段] このような本発明の目的は、上記特許請求の範囲に記載
した如く、プラスチック光ファイバーを非接触下で加熱
延伸するに際して、下記の式で示される条件下にd3い
て延伸することによって達成づることができる。
[Means for Solving the Problems] As stated in the claims above, the object of the present invention is to draw plastic optical fibers under the conditions expressed by the following formula when heating and stretching them in a non-contact manner. This can be achieved by stretching in d3.

ただし、A:延伸ファイバーの断面積 (mm2) Vl :加熱延伸帯域へのプラスチッ ク光−ファイバーの供給ローラー 速度(m7秒) V2:加熱延伸帯域からのプラスチ ック光ファイバーの引出ローラ ー速麻(m7秒) 1−:加熱延伸帯域の長さ(m) 本発明の非接触加熱延伸において、未延伸プラスチック
光ファイバーを加熱延伸する帯域へ供給覆るローラー速
度をVl (m7秒)、延伸されたプラスブック九ノj
・イパ−を加熱延伸帯域から引= 5− 出すローラー速l宴をV2 (m7秒)とするとき、加
熱延伸帯域中でのファイバーの平均速度として相加平均
である(V1+V2 >/2を用いることかできる。し
たがって長さl  (m)の加熱延伸帯域を走行すると
きのファイバーの平均通過時間丁(秒)は、T=21 
/ (Vl +V2 >で表わされる。該加熱延伸帯域
を走行するファイバーの平均通過時間として好ましい範
囲を種々の線径を有刃るプラスチック光ファイバーにつ
いて鋭意検問したところ、延伸されたプラスチック光フ
ァイバーの断面積をA (mm2 >とするとき、第4
図に示しの斜線の範囲にある場合は、透光性ヤ)耐屈曲
性の良好な線径変動も小さい高品位なプラスチック光フ
ァイバーか得られることを見出し、本発明に到達したも
のである。
However, A: Cross-sectional area of the drawn fiber (mm2) Vl: Roller speed for supplying the plastic optical fiber to the heated drawing zone (m7 seconds) V2: Roller speed for drawing out the plastic optical fiber from the heated drawing zone (m7 seconds) 1 -: Length of the heating stretching zone (m) In the non-contact heating stretching of the present invention, the roller speed for supplying the unstretched plastic optical fiber to the heating stretching zone is set to Vl (m7 seconds), and the stretched Plus Book 9 no.
・When the roller speed at which the fiber is pulled out from the heated drawing zone is V2 (m7 seconds), the average speed of the fiber in the heated drawing zone is an arithmetic mean (using V1 + V2 >/2 Therefore, the average transit time of the fiber when traveling through a heated drawing zone of length l (m) is T = 21
/ (Vl + V2 >).We carefully investigated the preferred range for the average transit time of the fiber traveling through the heated drawing zone for plastic optical fibers with various wire diameters, and found that the cross-sectional area of the drawn plastic optical fiber was When A (mm2 >), the fourth
The present invention has been achieved based on the discovery that, in the shaded range shown in the figure, a high-quality plastic optical fiber with good light transmittance, bending resistance, and small wire diameter variation can be obtained.

すなわち、  21−  <15A Vl +V2 では、ファイバーの加熱か不十分で、変形を受(ブー 
6 = るファイバーの粘度が高かったり、または、ファイバー
の単位長さあたりの変型速度が高まったりするために、
変形応力が大きくなり、高張力延伸となる結果、大きな
歪が生じ易くなり、不均一延伸を起しやすい。特に、一
般的な溶融紡糸においては、融液輸送時の計量手段とし
てギアポンプが用いられるため、その回転変動やギアー
の刃ごとのクリアランス変動に基く線径変動や口金孔か
ら吐出される際の吐出孔導入部でのメルトフラクチャー
や、吐出孔内壁でのスティック−スリップによるメルト
フラクチャー等に基く線径変動を未延伸プラスチック光
ファイバーは有している。このため、上記のような高張
力延伸作用を受けると、未延伸プラスチック光ファイバ
ーの細径部分に先ず応力集中する。次いで大径部分に応
力伝搬していくために、延伸プラスチック光ファイバー
は線径変動が増幅され、平均線径が延伸により細くなっ
たにもかかわらず未延伸プラスチック光ファイバーの有
していた線径変動の数倍以上、極端な場合は10倍以上
にも達してしまう。線径変動の目標は中心線径に対して
±2%以下である。あるいは、一般的にプラスチック光
ファイバーを構成する芯成分重合体と鞘成分重合体とは
異種の重合体を用いる。特に、鞘成分重合体としては低
屈折率であることが要求されるので、フッ素含有手合体
がよく用いられるために、 ったり、加熱が不十分なまま延伸による変形を受けると
界面不整を生じ、プラスチック光ファイバーの透光性を
低下させてしまう。また 法安定性の悪いプラスチック光ファイバーしか得られな
い。
In other words, when 21-<15A Vl +V2, the fiber is not heated enough and undergoes deformation (boot
6 = Due to the high viscosity of the fiber or the high deformation rate per unit length of the fiber,
As a result of increased deformation stress and high-tension stretching, large distortions tend to occur and non-uniform stretching tends to occur. In particular, in general melt spinning, a gear pump is used as a metering means when transporting the melt, so the wire diameter changes due to rotational fluctuations and clearance fluctuations for each gear blade, and the wire diameter when discharged from the spinneret hole. Undrawn plastic optical fibers have wire diameter fluctuations due to melt fractures at the hole introduction part, melt fractures due to stick-slip on the inner wall of the discharge hole, and the like. Therefore, when subjected to the above-described high-tension stretching action, stress is first concentrated in the narrow diameter portion of the unstretched plastic optical fiber. Next, as the stress propagates to the large diameter portion, the wire diameter fluctuations in the drawn plastic optical fiber are amplified, and even though the average wire diameter has become thinner due to drawing, the wire diameter fluctuations that the undrawn plastic optical fiber had are reduced. It can reach several times or more, and in extreme cases, it can reach 10 times or more. The target wire diameter variation is ±2% or less with respect to the center wire diameter. Alternatively, different types of polymers are generally used for the core component polymer and the sheath component polymer that constitute the plastic optical fiber. In particular, since the sheath component polymer is required to have a low refractive index, fluorine-containing polymers are often used, and interfacial irregularities may occur if the polymer is deformed by stretching without sufficient heating. , which reduces the light transmittance of plastic optical fibers. Moreover, only plastic optical fibers with poor legal stability can be obtained.

過多となり延伸による分子鎖の配向度が低くなるために
耐屈曲性等の機械的強度が弱いファイバーしか得られな
く、延伸操作上からも問題である。
If the amount is too large, the degree of orientation of the molecular chains due to stretching becomes low, resulting in a fiber with weak mechanical strength such as bending resistance, which is also a problem from the viewpoint of the stretching operation.

本発明の非接触加熱延伸においては、未延伸プラスチッ
ク光ファイバーを加熱延伸する帯域(以下、延伸帯域と
いう)出口付近で該プラスチック光ファイバーの周囲か
ら、加熱気流を当てると共に、光ファイバーの走行方向
に対して該加熱気流が向流になるように該加熱気流を前
記の延伸帯域に導入することが好ましい。このような加
熱流体の延伸帯域への導入および光ファイバーへの加熱
流体の付与によって、該光ファイバーの延伸による細化
完了点を該延伸帯域出口部分の加熱気流出口付近に固定
することが可能になるのである。
In the non-contact heating stretching of the present invention, a heated air stream is applied from around the plastic optical fiber near the exit of the zone (hereinafter referred to as the stretching zone) in which the unstretched plastic optical fiber is heated and stretched, and the heating air is applied in the running direction of the optical fiber. Preferably, the heated air currents are introduced into the stretching zone in a countercurrent manner. By introducing the heating fluid into the drawing zone and applying the heating fluid to the optical fiber, it is possible to fix the point at which thinning of the optical fiber is completed near the heated air outlet at the exit of the drawing zone. be.

すなわち、耐屈曲性などの力学特性に優れ、かうより均
一、高度に延伸された、芯、鞘両成分の界面不整または
界面剥離がなく、線径変動も小さい透光性に優れた光フ
ァイバーを得るためには、該上記非接触加熱延伸条件下
においてさらに光ファイバーの延伸による細化完了点を
延伸帯域出口部分の加熱気流出口付近に固定するのであ
る。つまり、光ファイバーのプロフィールの変化の完結
点をできる限り短い領域に存在させ、かつ加熱帯−〇 
− 域から冷却帯域に移行する直前で延伸力と繊維内部応力
とを均衡させることによって、未延伸プラスチック光フ
ァイバーを分子鎖が繊維軸方向に配向し、同時に安定し
た繊維構造を有する延伸プラスチック光ファイバーに転
換せしめることができるのである。次いで、冷却領域を
経由したプラスチック光ファイバーは該冷却領域で十分
に冷却された、耐屈曲性を有する延伸繊維になっている
から、以後の工程では通常の合成繊維と同様に取り扱う
ことが可能である。
In other words, we obtain an optical fiber that has excellent mechanical properties such as bending resistance, is more uniform and highly stretched, has no interfacial irregularities or interfacial peeling of both the core and sheath components, and has excellent translucency with small wire diameter fluctuations. In order to do this, under the non-contact heated stretching conditions, the point at which thinning of the optical fiber is completed by stretching is fixed near the heated air outlet at the exit of the stretching zone. In other words, the end point of the change in the profile of the optical fiber should exist in the shortest possible region, and the heating zone -
- By balancing the drawing force and fiber internal stress just before the transition from the zone to the cooling zone, undrawn plastic optical fibers are transformed into drawn plastic optical fibers with molecular chains oriented in the fiber axis direction and at the same time having a stable fiber structure. It is possible to force it. Next, the plastic optical fiber that has passed through the cooling area is sufficiently cooled in the cooling area and has become a stretched fiber with bending resistance, so it can be handled in the same way as ordinary synthetic fiber in the subsequent process. .

ここで、延伸による細化完了点とは、必ずしもポリエス
テル繊維などで見られるようなネッキング部分ではない
。この点を第2図に基いて説明する。すなわち、第2図
はプラスチック光ファイバーの延伸による細化完了点を
示す側面図であるか、図に示したように、設定繊維径(
Dl)の未延伸プラスチック光ファイバーか点(Pl)
から細化を開始し、延伸プラスチック光ファイバーの目
標繊維径(D3)の103%に細化された繊維径(D2
)の点(P2)を延伸による細化完了点と−10= するものである。100%としないのは線径変動による
誤差を考慮したためである。
Here, the point at which thinning is completed by stretching is not necessarily a necking portion as seen in polyester fibers. This point will be explained based on FIG. That is, FIG. 2 is a side view showing the point at which the thinning of the plastic optical fiber is completed by drawing, or as shown in the figure, the set fiber diameter (
Dl) undrawn plastic optical fiber point (Pl)
The fiber diameter (D2) is reduced to 103% of the target fiber diameter (D3) of the drawn plastic optical fiber.
) is set as the point (P2) of completion of thinning by stretching by -10=. The reason why it is not 100% is to take into account errors due to variations in wire diameter.

このような延伸方法において、前記の延伸帯域および冷
却領域におりる加熱温度、熱供給量あるいは冷却速度は
、該延伸領域を走行する光ファイバーの走行速度、繊維
直径d3よび加熱帯域の長さによって相違−clるが、
上記の通り、を満足し、かつ、好ましくは式IPI≦1
0(cm)の関係をも満足づる条件を設定して延伸覆る
のかよい。
In such a drawing method, the heating temperature, heat supply amount, or cooling rate in the drawing zone and cooling zone vary depending on the running speed of the optical fiber running in the stretching zone, the fiber diameter d3, and the length of the heating zone. -cl, but
As above, satisfies and preferably formula IPI≦1
It is better to set conditions that satisfy the relationship of 0 (cm) and then stretch the film.

」1式中、Pは延伸帯域出口の71[]熱気流出口から
延伸による細化完了点までの距離(cm)であり、ここ
でいう延伸による細化完了点の測定法の1例としては、
延伸中のプラスチック光ファイバーを加熱延伸帯域の入
口と延伸ロールの直前で同時に把持しつつ切断し、実質
的に引張ヤ収縮を匂えないで加熱延伸帯域からずばやく
取除き1〜5Cm間隔にマーキングし、マイクロメータ
ー等でその繊組径変化、つまり細化プ[1フイールを調
へる方法かあり、このような方法によって、前述した定
義に基づいた延伸点を求めることかできる。また、Pの
値の正負については、次のように定義することができる
1, where P is the distance (cm) from the 71[] hot air outlet at the exit of the stretching zone to the point at which thinning is completed by stretching, and an example of the method for measuring the point at which thinning is completed by stretching is ,
The plastic optical fiber being stretched is simultaneously gripped and cut at the entrance of the heated drawing zone and immediately before the drawing rolls, and quickly removed from the heated drawing zone without causing any substantial tensile shrinkage, and marked at intervals of 1 to 5 cm. There is a method of measuring the fiber diameter change, that is, the thinning film, using a micrometer or the like, and by such a method, the drawing point based on the above definition can be determined. Further, the sign of the value of P can be defined as follows.

すなわち、該延伸帯域出口部分の加熱気流出口の位置か
P=Oてあり、延伸による細化完了点か延伸帯域内方向
にある場合(ユ、Pの値はマイナス(−)値、延伸によ
る細化完了点か延伸帯域出口から外の方向にある場合は
Pの値はプラス(+)値で表すことかでき、P値か一1
0rP≦−1−10の範囲内にある時に、繊維直径の変
動か小さくて、界面不整などに起因する透光損失の少な
い耐屈曲性などの機械的・[)4質に優れた高品位なプ
ラスチック光ファイバーを1■ることかできるのである
In other words, if the position of the heated air outlet at the outlet of the stretching zone is P=O, and the point where thinning by stretching is completed is in the direction of the stretching zone (U, the value of P is a negative (-) value, the thinning by stretching is If the point of completion of conversion is in the direction outward from the exit of the drawing zone, the value of P can be expressed as a plus (+) value, and the value of P can be expressed as -1.
When it is within the range of 0rP≦-1-10, the fiber diameter is small, the fiber diameter is small, the transmission loss due to interface irregularities is small, the mechanical properties such as bending resistance are excellent, and the fibers are of high quality. It is possible to make one plastic optical fiber.

P値か一10Cmよりも小、つまり、延伸帯域の内部側
に延伸による細化完了点かある場合は、耐屈曲性の良好
な光ファイバーが1斤られない。また、P値が+1Qc
mよりも人、すなわち、延伸帯域出口からかなり離れた
領域に延伸による細化完了点かある場合は、繊維直径の
変動の大きい、品位の劣った光ファイバーしか得られな
くなるのである。
If the P value is less than -10 cm, that is, if the thinning completion point due to stretching is located inside the stretching zone, one loaf of optical fiber with good bending resistance cannot be produced. Also, the P value is +1Qc
If the point at which thinning is completed by drawing is located in a region far away from the exit of the drawing zone, only optical fibers of poor quality with large fluctuations in fiber diameter will be obtained.

このような非接触加熱延伸にJ−3いて、延伸帯域出口
付近に光ファイバーの延伸による細化完了点を固定する
上で望ましいことは、延伸帯域出口に加熱流体を吹き込
み、他方、吹き込まれた加熱流体を延伸帯域人口付近か
ら、例えばエゼクタ−などを用いて積極的に排出し、延
伸帯域を流れる加熱流体の流れを安定化することである
。このような加熱流体の導入および排出手段を適用する
ことによって延伸帯域を走行する光フアイバー表面の伝
熱境膜を常時更新することができ、均一な延伸を助長す
ることかできるのである。なa3、熱効率を高め、熱エ
ネルギーを再利用する点から、一般的には排気加熱流体
は循環使用することか望ましい。
In J-3 such non-contact heating stretching, it is desirable to fix the point at which the thinning of the optical fiber is completed near the exit of the stretching zone by blowing a heating fluid into the exit of the stretching zone, and on the other hand, The purpose of this method is to actively discharge the fluid from the vicinity of the drawing zone using, for example, an ejector to stabilize the flow of the heated fluid flowing through the drawing zone. By applying such heating fluid introduction and discharge means, it is possible to constantly renew the heat transfer film on the surface of the optical fiber running in the drawing zone, thereby promoting uniform drawing. A3: From the viewpoint of increasing thermal efficiency and reusing thermal energy, it is generally desirable to circulate the exhaust heating fluid.

また、プラスチック光ファイバーを構成する芯成分重合
体のカラス転移点を丁qとするとぎ、非接触加熱延伸温
度をO(°C)として、Tg−10≦θ≦TO+80の
範囲内の温度下に非接触延伸することか好ましい。ここ
で、θとしてT 0−10以上としたのは、延伸張力下
ではDSC等で10 ’C/分ずつ昇高して静的に測定
した場合よりもカラス転移点は低下することか一般的に
知られており、実際の非接触加熱延伸においても、線径
変動もさほど大きくなく、透光性もほとんど悪化しない
ことから採用できる。それ未満ては、延伸張力が高まり
、線径変動か大きくなったり、透光性の悪化か生じる。
In addition, assuming that the glass transition point of the core component polymer constituting the plastic optical fiber is q, and the non-contact heating stretching temperature is O (°C), it is heated non-contactly at a temperature within the range of Tg-10≦θ≦TO+80. Contact stretching is preferred. Here, the reason why θ is set to T 0-10 or more is because under the stretching tension, the glass transition point is generally lower than when measured statically by increasing the height by 10'C/min using DSC etc. This method can be used because even in actual non-contact heating stretching, the wire diameter variation is not so large and the translucency is hardly deteriorated. If it is less than that, the drawing tension will increase, and the wire diameter will fluctuate greatly and the translucency will deteriorate.

一方、Tg+80(°C)以上では変形応力か低いため
に分子鎖配向が不十分となり、耐層[1旧(1等の機械
的性質か劣る。
On the other hand, at Tg+80 (°C) or higher, the deformation stress is low, resulting in insufficient molecular chain orientation, and the mechanical properties of the durable layer are inferior to those of 1st class.

次に、延伸された光ファイバーに寸法安定性を付与する
ために、熱安定化処理として、非接触延伸温度範囲から
選定した温度下て、伸長d3よび収縮を行なわせること
なく非接触定長熱処理を1Mりことか好ましい。
Next, in order to impart dimensional stability to the drawn optical fiber, non-contact constant length heat treatment is performed as a thermal stabilization treatment at a temperature selected from the non-contact stretching temperature range without elongation d3 or contraction. 1M Riko is preferable.

すなわち、上記非接触加熱延伸法の条件を選択すること
によって、得られる延伸光ファイバーの収縮率をかなり
の程度まで減少させ、寸法安定性−14= を’l”J”jすることかできるか、延伸速度か高かっ
たり、または機械的強度をざらに向上させるために高倍
率延伸を施す−場合などには、該非接触加熱延伸条件の
選択だけで1は、十分に延伸光ファイバーの収縮率を減
少させ、良好な寸法安定性を(=l与することが困難に
なることかある。
That is, by selecting the conditions of the non-contact heated drawing method, it is possible to reduce the shrinkage rate of the obtained drawn optical fiber to a considerable extent and improve the dimensional stability -14=. In cases where the drawing speed is high or high-magnification drawing is performed to significantly improve mechanical strength, selecting the non-contact heated drawing conditions alone can sufficiently reduce the shrinkage rate of the drawn optical fiber. , it may be difficult to provide good dimensional stability (=l).

このような場合あるいはより寸法安定性の向上した光フ
ァイバーを得るための寸法安定化処理として、該延伸完
了後の光ファイバーを延伸帯域の延伸温度範囲より選択
して熱処理するのか好ましく、特に定長熱処理するのが
好ましい。
In such cases, or as a dimensional stabilization treatment to obtain an optical fiber with improved dimensional stability, it is preferable to heat-treat the optical fiber after the stretching is completed at a temperature selected from the stretching temperature range of the stretching zone, and in particular, to perform a fixed-length heat treatment. is preferable.

非結晶性の重合体からなる光ファイバーの熱処理におい
ては、通常の合成繊維のような結晶性重合体からなる繊
維の熱処理にお(プる熱固定とは異なり、延伸工程で与
えられた繊維軸方向にお(プる高分子鎖の配向をてきる
限り維持して、繊維内部の歪みを均一化し、寸法安定性
を付与することを意図して施されるのであり、その点か
ら定長下で熱処理するのである。この寸法安定性イqり
のための熱処理に際しても、非接触加熱延伸手段と同様
に、加熱流体が循環する加熱帯域内に光ファイバーを通
過させて定長下に熱処理し、目的とする光ファイバーの
最高使用温度の乾熱下で24時間の熱処理した後の光フ
ァイバーの収縮率が2%以下、好ましくは1%以下にな
るように熱処理を施すのかよい。
In the heat treatment of optical fibers made of amorphous polymers, unlike the heat treatment of fibers made of crystalline polymers such as ordinary synthetic fibers (heat setting), the fiber axis direction given during the drawing process is It is applied with the intention of maintaining the orientation of the polymer chains as much as possible, equalizing the distortion inside the fiber, and imparting dimensional stability. During the heat treatment for achieving dimensional stability, the optical fiber is passed through a heating zone in which a heating fluid circulates and heat-treated to a fixed length, similar to the non-contact heating and stretching method. The heat treatment may be performed so that the shrinkage rate of the optical fiber after 24 hours of heat treatment under dry heat at the maximum operating temperature of the optical fiber is 2% or less, preferably 1% or less.

本発明の光ファイバーを構成する芯成分重合体としては
、特に限定されるものではなく、各種の優れた光透過性
を有するもの、例えば、メチルメタクリレートを主成分
と覆る単独重合体または共重合体やポリカーボネ−1〜
、小ルニル系単独手合体または共重合体、スチレンヤ)
マレイミドを主成分とする単独重合体または共重合体な
どを挙げることかできるし、同様に鞘成分を構成リ−る
重合体としては、含弗素メタクリレ−1へ系手合体や弗
化ビニリデンとテトラフルA口Tチレンとの共重合体、
含弗素オレフィン系共重合体などを例示することかでき
る。
The core component polymer constituting the optical fiber of the present invention is not particularly limited, and may include a variety of materials having excellent light transmittance, such as homopolymers or copolymers containing methyl methacrylate as the main component, Polycarbonate 1~
, small lunyl homopolymer or copolymer, styrene)
Homopolymers or copolymers containing maleimide as a main component can be mentioned, and similarly polymers constituting the sheath component include a combination of fluorine-containing methacrylate-1 and vinylidene fluoride with tetrafluoride. A copolymer with T tyrene,
Examples include fluorine-containing olefin copolymers.

また、これらの芯、鞘筒重合体成分の組み合わせの例と
しては、両者に屈折率差かあることは当−16= 然であるが、複合紡糸を行なう点から、両型合体成分の
融点はできるだり近いことが望ましい。
In addition, as an example of a combination of these core and sheath-tube polymer components, it is natural that there is a difference in refractive index between the two, but from the point of view of composite spinning, the melting point of both types of combined components is It is desirable that it is possible or close.

以下に、本発明の非接触FJO熱延伸−熱処理方法の一
例を図面に基いて具体的に説明する。
An example of the non-contact FJO hot stretching and heat treatment method of the present invention will be specifically explained below based on the drawings.

第1図は、本発明に使用する光ファイバーの延伸−熱処
理方法の一例を示す断面図である。図において、1はプ
ラスチック光ファイバー、2は紡糸口金、3は冷却ヂム
ニー、4は未延伸プラスチック光ファイバーの引取ロー
ラーであり、かつ、延伸帯域への供給ローラーも兼ねて
いる。このローラー速度がVl (m7秒)で必る。5
は除電装置、6はブロックビルターを装備する延伸帯域
、7は熱流体循環用フ7・ン、8は流体加熱用ヒーター
、9は加熱流体導入部、10は延伸ローラー、つまり延
伸されたプラスチック光ファイバーを延伸帯域から引出
づローラーであり、この速度がV2(m7秒)である。
FIG. 1 is a sectional view showing an example of the method of drawing and heat treating an optical fiber used in the present invention. In the figure, 1 is a plastic optical fiber, 2 is a spinneret, 3 is a cooling chimney, and 4 is a take-up roller for the undrawn plastic optical fiber, which also serves as a supply roller to the drawing zone. This roller speed is required at Vl (m7 seconds). 5
6 is a static eliminator, 6 is a stretching zone equipped with a block builder, 7 is a fan for hot fluid circulation, 8 is a heater for heating fluid, 9 is a heated fluid introduction part, 10 is a stretching roller, that is, the stretched plastic A roller pulls out the optical fiber from the drawing zone, and its speed is V2 (m7 seconds).

1月は熱処理ローラー、12は巻取り部を示づ−0 このように加熱帯域の中空部、すなわち糸通路内を向流
て循環させた場合は、糸通路内の温度か均一になり、上
述した通り光ファイバー表面の伝熱境膜を常時更新覆る
ことかできるから、熱伝達が良好であり、そのためにヒ
ーター長の短尺化を図ることか可能になる。ブロックヒ
ーター加熱だけでは温度か不均一になり、上記効果を期
待できない。
1 is a heat treatment roller, and 12 is a winding section.-0 When the hollow part of the heating zone, that is, the inside of the yarn passage is circulated countercurrently, the temperature inside the yarn passage becomes uniform, and as described above. As described above, since the heat transfer film on the surface of the optical fiber can be constantly renewed and covered, heat transfer is good, and it is therefore possible to shorten the length of the heater. If only the block heater is heated, the temperature will be uneven, and the above effect cannot be expected.

第1図において、複合紡糸口金2から吐出され冷却され
た未延伸プラスチック光ファイバー1を徐電しつつ速度
V1 (m7秒)で延伸帯[6に導き、光ファイバー1
の走行方向に対向して9から加熱気流を吹込み、後方の
速度V2 (m7秒)の延伸ロールの牽引力によって所
定の倍率に延伸を行ない、引続き徐電した後、同様の装
置で非接触定長熱処理を行ない、十分に冷却した後に巻
取られる。
In FIG. 1, an undrawn plastic optical fiber 1 discharged from a composite spinneret 2 and cooled is guided to a drawing zone [6] at a speed V1 (m7 seconds) while discharging the cooled optical fiber 1.
A heated air stream is blown from 9 facing the running direction of the paper, and stretched to a predetermined magnification by the traction force of a rear stretching roll at a speed of V2 (m7 seconds). After long heat treatment and sufficient cooling, it is rolled up.

第2図は延伸による細化完了点を示す図であり、前述の
通りである。
FIG. 2 is a diagram showing the point at which thinning by stretching is completed, as described above.

第3図は、本発明の製造方法を採用した場合の光ファイ
バーの延伸変形による細化プ[]フィルを示したもので
あり、ファイバーの断面積A (mm2 >=  18
 − と延伸加熱帯域の長さL (m)およびローラー速度条
件、つまり を満足するように選び、さらに−10≦P≦10の範囲
で延伸による細化完了点を前記の如く考慮すると、一層
均一な光ファイバーが得られる。その場合は中央のBC
のように冷却域における光ファイバーのプロフィルも乱
れず、線径変動が小さく、目的とする透光性や耐屈曲性
を付与することかできる。なJ5Aは加熱過多による場
合であり、機械的性質か劣る。またDの場合はFJO熱
不足て線径変動の大きなものになってしまう。
FIG. 3 shows the thinning film due to stretching deformation of the optical fiber when the manufacturing method of the present invention is adopted, and the cross-sectional area of the fiber A (mm2 >= 18
- The length L (m) of the stretching heating zone and the roller speed conditions, that is, are selected to satisfy the following conditions, and furthermore, if the thinning completion point by stretching is considered in the range of -10≦P≦10 as described above, the thinning will be more uniform. Optical fiber can be obtained. In that case, the central BC
As shown in the figure, the profile of the optical fiber in the cooling region is not disturbed, the wire diameter variation is small, and the desired light transmittance and bending resistance can be imparted. J5A is caused by excessive heating and has poor mechanical properties. In the case of D, the FJO heat is insufficient and the wire diameter fluctuates greatly.

第4図は光フッ・イバ−の断面積A(mm2>を横軸に
とり、延伸帯域の平均通過時間を表ずVl +V2  
を縦軸にとった場合に、本発明の目的を満足する延伸条
件の領域を斜線で図示したものである。
In Figure 4, the cross-sectional area A (mm2) of the optical fiber is plotted on the horizontal axis, and the average passing time of the stretching zone is expressed as Vl + V2.
When the vertical axis is taken as the vertical axis, the area of stretching conditions that satisfy the object of the present invention is shown with diagonal lines.

以下、実施例に基き、本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail based on Examples.

[実施例] なお、実施例において、透光性はタングステン−ハロゲ
ンランプを光源として使用し、回折格子分光器を用いて
波長特性を求めることによって確認した。通常は波長6
50nmでの値を用い、目標として、線径250ミクロ
ンでは300dB/km以下、500ミクロン以上では
180dB/km以下であることか好ましい。
[Example] In the Examples, translucency was confirmed by using a tungsten-halogen lamp as a light source and determining wavelength characteristics using a diffraction grating spectrometer. Usually wavelength 6
Using the value at 50 nm, the target is preferably 300 dB/km or less for a wire diameter of 250 microns, and 180 dB/km or less for a wire diameter of 500 microns or more.

実施例1〜13.比較例1〜10 市販のメチルメタクリレ−1〜を充分に精製した後、重
合槽に送液し、開始剤a3よび連鎖移動剤を添加して連
続塊状ラジカル重合を行ない、脱モノマ工程に導き、重
量平均分子量84000.残存モノマ含有率0.11車
量%のポリメチルメタクリレートを作成し、溶融複合紡
糸部の8側へ供給した。DSC法で10’C/分すつ昇
温して測定したTQは118°Cてあった。
Examples 1-13. Comparative Examples 1 to 10 After sufficiently purifying commercially available methyl methacrylate-1, the liquid was sent to a polymerization tank, and initiator A3 and chain transfer agent were added to carry out continuous bulk radical polymerization, leading to the demonomerization step. , weight average molecular weight 84,000. Polymethyl methacrylate having a residual monomer content of 0.11% by volume was prepared and supplied to side 8 of the melt composite spinning section. The TQ measured by DSC method by increasing the temperature at 10'C/min was 118°C.

他方、市販のビニリデンフルオライト−デトラフルオロ
エチレン系共重合体(80/20−[ル比)を前記複合
紡糸部の精側に供給し、紡糸温度24o ’c 、冷却
風速0.4m/秒で複合紡糸した。この際に、線径ごと
に8側と精側の吐出量を調整し、鞘部分の厚さとして、
線径250ミクロンの場合は5ミクロン、1000ミク
ロンおよび2000ミクロンの場合は10ミクロンにし
た。このようにして得られた未延伸プラスチック光ファ
イバーを連続して、第1図に示した非接触加熱延伸−非
接触定長熱処理装置へ導き、第1表に示ず条件下に延伸
、定長熱処理を行なった。
On the other hand, a commercially available vinylidene fluorite-detrafluoroethylene copolymer (80/20 ratio) was supplied to the fine side of the composite spinning section, and the spinning temperature was 24 o'c and the cooling air speed was 0.4 m/sec. Composite spinning was performed. At this time, adjust the discharge amount on the 8th side and fine side for each wire diameter, and set the thickness of the sheath part as follows:
In the case of a wire diameter of 250 microns, the diameter was 5 microns, and in the case of 1000 microns and 2000 microns, the diameter was 10 microns. The undrawn plastic optical fiber thus obtained is continuously guided to the non-contact heating stretching/non-contact constant length heat treatment apparatus shown in Fig. 1, where it is stretched and constant length heat treated under conditions not shown in Table 1. I did this.

延伸帯域中の光ファイパーを延伸帯域の入口と出口で把
持すると同時に両方で切断し、実質的に引張や収縮を与
えないで延伸帯域からすばヤ)く取除き、延伸帯域にお
(プる繊維径の変化をマイクロメーターで測定し、前j
ホの定義に基づいて延伸にJ、る細化完了点を求めた。
The optical fiber in the drawing zone is gripped at the entrance and exit of the drawing zone, simultaneously cut at both ends, quickly removed from the drawing zone without applying substantial tension or shrinkage, and then pulled into the drawing zone. Measure the change in fiber diameter with a micrometer and
Based on the definition of E, the thinning completion point of J during stretching was determined.

また、アンリツ製レーザー外径測定器により線径の変動
幅を求め、前述の方法で透光損失を測定した。ざらに対
向する10mm径の丸棒を3Qmmの間隔て設置し、そ
の間に光ファイバーを張力下に−21= S字状にか(プて交Rに連続的に屈曲を!jえて耐屈曲
性を測定した。また、80’Cの乾熱オーブン中で24
時間無拘束下に処理し、処理前後の長さの変化割合から
収縮率を求めた。これらの結果を第2表にまとめた。
In addition, the fluctuation range of the wire diameter was determined using an Anritsu laser outer diameter measuring device, and the light transmission loss was measured using the method described above. Two round rods with a diameter of 10 mm are placed facing each other at an interval of 3 Q mm, and between them the optical fiber is placed under tension and bent continuously in a -21 = S-shape. It was also measured in a dry heat oven at 80'C for 24 hours.
The treatment was carried out without any time constraints, and the shrinkage rate was determined from the rate of change in length before and after treatment. These results are summarized in Table 2.

本発明で測定する範囲内で延伸したプラスチック光ファ
イバーの特性は、すべて満足できるものであり、耐屈曲
性に優れた高品位なファイバーを得ることかできた。
All the properties of the plastic optical fiber drawn within the range measured by the present invention were satisfactory, and a high-quality fiber with excellent bending resistance could be obtained.

= 22 = 第2表 [発明の効果] 本発明に基づいて製造したプラスチック光ファイバーは
、線径変動か小さく、機械物性、特に耐屈曲性に優れ、
長手方向に亘って均一で品位か高く、透光性や寸法安定
性も良好である。
= 22 = Table 2 [Effects of the Invention] The plastic optical fiber manufactured according to the present invention has small wire diameter fluctuations, excellent mechanical properties, especially bending resistance,
It is uniform in the longitudinal direction, has high quality, and has good translucency and dimensional stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に使用する光ファイバーの延伸−熱処
理方法の一例を示す断面図である。 第2図はプラスデック光ファイバーの延伸による細化完
了点を示す側面図である。 第3図は本発明の製造方法を採用した場合の光ファイバ
ーの延伸による細化プロフィールを示づ説明図である。 第4図は光ファイバーの断面積A(mm2>を横軸にと
り、延伸帯域の平均通過時間を表す1+V2 を縦軸に
とった場合に、本発明の目的を満足する延伸条件の領域
を図示した関係図である。 1ニブラスブツク光フアイバー 2:紡糸口金 3:冷却ブムニー 4:未延伸プラスチック光ファイバーの引取ローラー、
かつ延伸帯域への供給ローラー5:除電装置 6:ブ[1ツクビータ−を装ω!i′TJる延伸帯域7
:1)[l熱流体循環用ファン 8:流体加熱用じ一ター 9:加熱流体導入部 ]O:延伸ローラー ]1:熱処理1]−ラ− 12:巻取部
FIG. 1 is a sectional view showing an example of the method of drawing and heat treating an optical fiber used in the present invention. FIG. 2 is a side view showing the point at which thinning of the PlusDeck optical fiber is completed by drawing. FIG. 3 is an explanatory diagram showing a thinning profile due to stretching of an optical fiber when the manufacturing method of the present invention is adopted. FIG. 4 is a relationship illustrating the range of stretching conditions that satisfy the object of the present invention, where the horizontal axis is the cross-sectional area A (mm2) of the optical fiber and 1+V2, which represents the average passing time of the stretching zone, is the vertical axis. Fig. 1: Nibrassbook optical fiber 2: Spinneret 3: Cooling boom 4: Undrawn plastic optical fiber take-up roller;
Also, supply roller 5 to the stretching zone: static eliminator 6: equipped with a beater! i'TJ stretching zone 7
:1) [1 Heat fluid circulation fan 8: Fluid heating regulator 9: Heating fluid introduction part] O: Stretching roller] 1: Heat treatment 1] - Roller 12: Winding part

Claims (1)

【特許請求の範囲】[Claims] (1)プラスチック光ファイバーを非接触下で加熱延伸
するに際して、下記式で示される条件下において延伸す
ることを特徴とするプラスチック光ファイバーの製造方
法。 15A≦2L/(V_1+V_2)≦15A+16 ただし、A:延伸ファイバーの目標断面積(mm^2) V_1:加熱延伸帯域へのプラスチック光ファイバーの
供給ローラー速度(m/秒) V_2:加熱延伸帯域からのプラスチック光ファイバー
の引出ローラー速度(m/秒) L:加熱延伸帯域の長さ(m)
(1) A method for producing a plastic optical fiber, which comprises heating and stretching the plastic optical fiber in a non-contact manner under conditions expressed by the following formula. 15A≦2L/(V_1+V_2)≦15A+16 Where, A: Target cross-sectional area of drawn fiber (mm^2) V_1: Speed of roller supplying plastic optical fiber to heated drawing zone (m/sec) V_2: Plastic from heated drawing zone Optical fiber drawing roller speed (m/sec) L: Length of heated stretching zone (m)
JP62138161A 1987-06-03 1987-06-03 Method for manufacturing plastic optical fiber Expired - Lifetime JPH0782130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138161A JPH0782130B2 (en) 1987-06-03 1987-06-03 Method for manufacturing plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138161A JPH0782130B2 (en) 1987-06-03 1987-06-03 Method for manufacturing plastic optical fiber

Publications (2)

Publication Number Publication Date
JPS63303304A true JPS63303304A (en) 1988-12-09
JPH0782130B2 JPH0782130B2 (en) 1995-09-06

Family

ID=15215447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138161A Expired - Lifetime JPH0782130B2 (en) 1987-06-03 1987-06-03 Method for manufacturing plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH0782130B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707564A (en) * 1994-11-28 1998-01-13 France Telecom Method for the manufacture of wires stretched according to a predetermined profile
US5916495A (en) * 1993-06-18 1999-06-29 Sumitomo Electric Industries, Ltd. Plastic optical fiber preform, and process and apparatus for producing the same
WO2001020376A1 (en) * 1999-09-09 2001-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable and plug-attached optical fiber cable and production methods therefor
KR20010025532A (en) * 2001-01-03 2001-04-06 김기웅 Bending method and apparatus of fiber in fiber ornaments
WO2006049266A1 (en) * 2004-11-01 2006-05-11 Fujifilm Corporation Method and apparatus for producing plastic optical fiber, and method and apparatus for coating the same
JP2006163007A (en) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd Manufacturing method of plastic optical fiber and manufacturing equipment thereof
JP2008158205A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916495A (en) * 1993-06-18 1999-06-29 Sumitomo Electric Industries, Ltd. Plastic optical fiber preform, and process and apparatus for producing the same
US5707564A (en) * 1994-11-28 1998-01-13 France Telecom Method for the manufacture of wires stretched according to a predetermined profile
WO2001020376A1 (en) * 1999-09-09 2001-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable and plug-attached optical fiber cable and production methods therefor
US6871000B1 (en) 1999-09-09 2005-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable, plugged optical fiber cable, and production methods thereof
JP4527921B2 (en) * 1999-09-09 2010-08-18 三菱レイヨン株式会社 Plastic optical fiber, optical fiber cable, optical fiber cable with plug, and manufacturing method thereof
KR20010025532A (en) * 2001-01-03 2001-04-06 김기웅 Bending method and apparatus of fiber in fiber ornaments
WO2006049266A1 (en) * 2004-11-01 2006-05-11 Fujifilm Corporation Method and apparatus for producing plastic optical fiber, and method and apparatus for coating the same
JP2006163007A (en) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd Manufacturing method of plastic optical fiber and manufacturing equipment thereof
JP2008158205A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber

Also Published As

Publication number Publication date
JPH0782130B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPS63303304A (en) Production of plastic optical fiber
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JP4527921B2 (en) Plastic optical fiber, optical fiber cable, optical fiber cable with plug, and manufacturing method thereof
US6818683B2 (en) Apparatus for manufacturing optical fiber made of semi-crystalline polymer
JPH05213636A (en) Method for coating optical fiber
EP0089912A2 (en) Process for the production of high-strength polyester yarn
JPS5921714A (en) Method for drawing polyester fiber
JPS62131206A (en) Production of plastic optical fiber having high bend resistance
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
CN111304759B (en) Stretching method of polyester industrial yarn
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
JPH0156164B2 (en)
JPS61194218A (en) Production of polyester fiber
JPH0511128A (en) Heat treatment of plastic optical fiber and device thereof
JP2000292626A (en) Manufacture of plastic optical fiber and manufacturing device
JP4217363B2 (en) Plastic optical fiber, plastic optical fiber cable, and manufacturing method of plastic optical fiber cable with plug
JPS5813718A (en) Polyester fiber
JPH0892813A (en) Production of multifilament
JP2001124938A (en) Manufacturing method of gi-type plastic optical fiber
JP2001305353A (en) Heat treatment method and heat treatment device for plastic optical fiber
JPH062209A (en) Production of polyester fiber for reinforcing rubber
JPH0136921Y2 (en)
JPH03260110A (en) Drawing of high-density polyethylene
KR0124996B1 (en) Process for manufacturing fine acrylic fibers for reinforcing materials
JP4624580B2 (en) Method for heating and stretching fibrous shaped articles