JPH03260110A - Drawing of high-density polyethylene - Google Patents

Drawing of high-density polyethylene

Info

Publication number
JPH03260110A
JPH03260110A JP5751690A JP5751690A JPH03260110A JP H03260110 A JPH03260110 A JP H03260110A JP 5751690 A JP5751690 A JP 5751690A JP 5751690 A JP5751690 A JP 5751690A JP H03260110 A JPH03260110 A JP H03260110A
Authority
JP
Japan
Prior art keywords
stretching
temperature
density polyethylene
section
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5751690A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahashi
哲也 高橋
Takeshi Sano
毅 佐野
Toyoaki Tanaka
豊秋 田中
Takamitsu Wada
隆光 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5751690A priority Critical patent/JPH03260110A/en
Publication of JPH03260110A publication Critical patent/JPH03260110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain a fiber having high strength and density in one drawing stage by preheating a raw fiber made of a specific high-density PE without drawing and continuously drawing the treated fiber in a liquid thermal medium for drawing. CONSTITUTION:A raw fiber made of a high-density PE having a weight-average molecular weight of 100,000-400,000 (preferably 130,000-400,000), a ratio of weight- average molecular weight/number-average molecular weight of 2-7 (preferably 3-4) and a density of >=0.940 is preheated without drawing and the treated fiber is continuously drawn in a drawing zone of <=30cm long in a liquid thermal medium heated at >=100 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度ポリエチレンの原繊維を延伸して、高
強度の繊維にする延伸方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for drawing high-density polyethylene raw fibers into high-strength fibers.

〔従来の技術〕[Conventional technology]

従来、中高分子量の高密度ポリエチレンの原繊維を延伸
して、分子を配向し、良好な物性の繊維を得るには、押
出機によって熔融、押出された原繊維を、低速で引取る
二、ブロールを通して、2〜3mの長さの水槽に貯留さ
れている高温の水に導入し、この高温の水に浸漬されて
いる繊維を高速の引取りニップロールによって引取って
延伸を行っている。
Conventionally, in order to orient the molecules and obtain fibers with good physical properties by drawing fibrils of high-density polyethylene with medium-high molecular weight, the fibrils melted and extruded by an extruder are drawn at a low speed. The fibers are introduced into high-temperature water stored in a water tank with a length of 2 to 3 m through the fibers, and the fibers immersed in the high-temperature water are drawn by high-speed take-up nip rolls.

しかし熱媒体として水が使用されているため100℃以
上に加熱することが出来ない。この100′C以下の温
度は、高密度ポリエチレンを延伸するには低く、延伸倍
率も10倍程度にしかならないため良好な物性のものは
得られなかった。
However, since water is used as a heat medium, it is not possible to heat it above 100°C. This temperature of 100'C or lower is too low to stretch high-density polyethylene, and the stretching ratio is only about 10 times, so that good physical properties could not be obtained.

これを解決するため、本出願人は先に高温水を熱媒体と
して高密度ポリエチレン繊維を延伸した後、さらに熱ロ
ール間延伸によって多段延伸し、延伸倍率を16倍程度
として、湿式1段で延伸したものより良好な物性の高密
度ポリエチレン繊維が得られる方法を提案した(特開昭
58−41908号公報)。
In order to solve this problem, the applicant first stretched high-density polyethylene fibers using high-temperature water as a heating medium, and then stretched the fibers in multiple stages by stretching between hot rolls, set the stretching ratio to about 16 times, and stretched the fibers in one wet stage. proposed a method for obtaining high-density polyethylene fibers with better physical properties than those obtained using conventional methods (Japanese Patent Application Laid-Open No. 58-41908).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記方法は、工程が長くなり人手を要し
、コスト高となる不都合があった。
However, the above method has the disadvantage that the process is long, requires manpower, and costs are high.

本発明者等は、上記の問題を解決し、熱媒体による延伸
工程のみで、良好な物性の高密度ポリエチレン繊維を得
べく鋭意研究を行なった結果、延伸区間を短くすると変
形速度が高くなり、延伸した高密度ポリエチレン繊維の
物性がよくなることを発見した。
The inventors of the present invention have conducted intensive research to solve the above problem and obtain high-density polyethylene fibers with good physical properties only by a drawing process using a heating medium. We have discovered that the physical properties of stretched high-density polyethylene fibers are improved.

本発明は上記の発見に基づいてなされたもので、熱媒体
中の湿式延伸のみによって優れた物性の繊維が得られる
高密度ポリエチレンの延伸方法を提供することを目的と
する。
The present invention was made based on the above discovery, and an object of the present invention is to provide a method for stretching high-density polyethylene that allows fibers with excellent physical properties to be obtained only by wet stretching in a heat medium.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る高密度ポリエチレンの延伸方法においては
、 重量平均分子量が10万〜40万、重量平均分子量/数
平均分子量が2〜7、密度が0.940以上の高密度ボ
リュチレン製の原繊維を、延伸することなく、予熱工程
によって予熱したのち、100℃以上の液体熱媒体中で
、30cm以下の延伸区間で連続的に延伸することを解
決手段とした。
In the method for stretching high-density polyethylene according to the present invention, fibrils made of high-density volutelene having a weight average molecular weight of 100,000 to 400,000, a weight average molecular weight/number average molecular weight of 2 to 7, and a density of 0.940 or more are used. The solution was to preheat in a preheating step without stretching, and then continuously stretch in a stretching section of 30 cm or less in a liquid heat medium at 100° C. or higher.

〔作用〕[Effect]

本発明は上記の構成となっているので、延伸区間が短い
のにかかわらず予熱工程が設けられているので、延伸区
間の熱媒に導入された原繊維はただちに熱媒体と同じ温
度に達して延伸され、変形速度が高く、特性の優れた繊
維が得られる。
Since the present invention has the above-mentioned configuration, the preheating process is provided even though the drawing section is short, so that the fibrils introduced into the heating medium in the drawing section immediately reach the same temperature as the heating medium. Fibers can be drawn, have a high deformation rate, and have excellent properties.

〔実施例〕〔Example〕

本発明に用いられる高密度ポリエチレンは、重量平均分
子量(Mw)が10万〜40万、好ましくは13万〜4
0万、Mwと数平均分子量(Mn)の比M w / M
 nが2〜7、好ましくは3〜4、密度が0.940以
上の高密度ポリエチレンである。
The high density polyethylene used in the present invention has a weight average molecular weight (Mw) of 100,000 to 400,000, preferably 130,000 to 400,000.
00,000, the ratio of Mw and number average molecular weight (Mn) M w / M
It is high-density polyethylene in which n is 2 to 7, preferably 3 to 4, and the density is 0.940 or more.

上記Mwが10万未満、或いはM w / M nが2
未満では、延伸による特性の改善が充分に行なわれず、
Mwが40万を越え、或いはM w / M nが7を
越えると充分な延伸倍率が得られず、特性の改善程度が
低い。
The above Mw is less than 100,000, or Mw / Mn is 2
If it is less than that, the properties will not be improved sufficiently by stretching.
If Mw exceeds 400,000 or Mw/Mn exceeds 7, a sufficient stretching ratio cannot be obtained and the degree of improvement in properties is low.

第1図は、本発明に係る高密度ポリエチレンの延伸方法
に用いられる装置の一例を示すもので図中符号1は、原
繊維2を押出す押出機である。
FIG. 1 shows an example of an apparatus used in the method of drawing high-density polyethylene according to the present invention, and reference numeral 1 in the figure is an extruder for extruding fibrils 2. As shown in FIG.

押出機1より押出され成形された原繊維2は冷却槽1a
に導入され、冷却固化された後、ガイドロール3(以下
説明を省略する)を経て、押出される原繊維2と同じ速
度で引出す第10−ル4によって引出され、所定の温度
に保持された液状の予熱用熱媒体5aが充填されている
予熱槽5に導かれる。熱媒体5aによって予熱された原
繊維2は、第10−ルと同じ速度で原繊維を引出す第2
0−ル6によって引出される。
The fibril 2 extruded and molded from the extruder 1 is placed in a cooling tank 1a.
After being cooled and solidified, it was pulled out through a guide roll 3 (description will be omitted below) by a 10-th wheel 4 that pulled out at the same speed as the fibril 2 to be extruded, and was maintained at a predetermined temperature. It is led to a preheating tank 5 filled with a liquid preheating heat medium 5a. The fibril 2 preheated by the heating medium 5a is moved to the second stage which pulls out the fibril at the same speed as the tenth stage.
It is drawn out by the 0-rule 6.

第20−ル6によって引出された原繊維2は第2図に詳
細図を示す延伸部7に導かれる。
The fibril 2 drawn out by the 20-th rule 6 is guided to a drawing section 7, a detailed view of which is shown in FIG.

延伸部7には、高い沸点の液状延伸用熱媒体7aが充填
されており、30cm以下の間隔をおいて、上記第20
−ルから引出される速度とほぼ同じ速度で原繊維を送り
出す回転駆動される送り出しニップロール8および送り
出しニップロール8より早い速度で繊維を引取って原繊
維2を延伸繊維2′とする回転駆動される引取りニップ
ロール9が設けられている。また上記延伸用熱媒体7a
は、PID制御10aによって調整されるヒータ10に
よって加熱され、撹拌機11によって撹拌され、所定温
に均一に保持される。
The stretching section 7 is filled with a liquid stretching heating medium 7a having a high boiling point, and the above-mentioned 20th
- A rotatably driven delivery nip roll 8 that sends out the fibrils at approximately the same speed as the speed at which the fibrils are pulled out from the roll, and a rotationally driven delivery nip roll 8 that takes the fibers at a faster speed than the delivery nip roll 8 and turns the fibrils 2 into drawn fibers 2'. A take-off nip roll 9 is provided. In addition, the heating medium for stretching 7a
is heated by a heater 10 adjusted by a PID control 10a, stirred by a stirrer 11, and maintained uniformly at a predetermined temperature.

上記送り出しニップロール8および引取りニップロール
9によって所定の倍率に延伸された繊維2′は、第30
−ル12を通って超音波洗浄槽13に導かれ、付着して
いる熱媒体が洗浄、除去された後、巻取部14において
巻取られる。
The fiber 2' stretched to a predetermined magnification by the delivery nip roll 8 and take-up nip roll 9 is
- It is guided to the ultrasonic cleaning tank 13 through the tube 12, and after the adhering heat medium is cleaned and removed, it is wound up in the winding section 14.

上記送り出しニップロール8と引取りニップロール9と
の間隔である延伸区間15の長さは30cmm以下、特
にlQcm以下が望ましい。延伸区間15が30cmを
越えると、変形速度の増大が少なく、延伸区間15を短
くした効果があまり発現されない。
The length of the stretching section 15, which is the distance between the delivery nip roll 8 and the take-up nip roll 9, is preferably 30 cm or less, particularly 1Q cm or less. If the length of the stretched section 15 exceeds 30 cm, the deformation rate will not increase much, and the effect of shortening the stretched section 15 will not be exhibited much.

また、高密度ポリエチレンを延伸する場合、その結晶分
散温度域である100℃以上の温度で行なうことが必要
で、かつ超音波洗浄槽13で水の使用が可能なため、例
えばグセリン、各種グリコール等、沸点が高くかつ水溶
性のものが用いられる。また予熱用熱媒体5aは、繊維
に付着して延伸部7に移動するので、延伸用熱媒体と同
じものが用いられる。
In addition, when drawing high-density polyethylene, it is necessary to carry out the drawing at a temperature of 100°C or higher, which is the crystal dispersion temperature range, and since water can be used in the ultrasonic cleaning tank 13, for example, glycol, various glycols, etc. , those having a high boiling point and being water-soluble are used. Further, since the preheating heat medium 5a adheres to the fibers and moves to the stretching section 7, the same heat medium as the stretching heat medium is used.

上記延伸部7の延長区間15は短かいが、延伸部7に導
入される原繊維2は予熱槽5によって予熱されているの
で、すくに延伸熱媒体7aの温度となり、はぼ延伸区間
15全体にわたって延伸され短い延伸区間での延伸が可
能となる。
Although the extension section 15 of the drawing section 7 is short, since the fibril 2 introduced into the drawing section 7 has been preheated by the preheating tank 5, it quickly reaches the temperature of the drawing heating medium 7a, and the entire drawing section 15 is heated. Stretching is possible over a short stretching section.

次に実験例を示して本発明の延伸方法を説明する。Next, the stretching method of the present invention will be explained with reference to experimental examples.

実験においては、第1図の装置を用い、予熱および延伸
用の熱媒体としてグリセリン(沸点290℃)を用い、
予熱用熱媒体の温度を延伸熱媒体の温度より5〜10℃
低い温度に保持した。
In the experiment, the apparatus shown in Figure 1 was used, and glycerin (boiling point 290°C) was used as a heating medium for preheating and stretching.
The temperature of the preheating heat medium is 5 to 10°C lower than the temperature of the drawing heat medium.
The temperature was kept low.

また、原料の高密度ポリエチレンは、Mwが15万、M
 w / M nが3〜4、密度が0.952〜0.9
55g/cm3、融点が138°Cのものを用い、これ
を押出機によって1.Qmmの原繊維に底形し、延伸に
供した。
In addition, the raw material high-density polyethylene has an Mw of 150,000 and an Mw of 150,000.
w/Mn is 3-4, density is 0.952-0.9
55g/cm3 and a melting point of 138°C was used, and it was extruded into 1. A fibril of Q mm was shaped into a bottom shape and subjected to stretching.

実験例 1 送り出しニップロールの原繊維の送り出し速度を1.1
m/分、延伸部の延伸区間の長さを5cmとし、延伸熱
媒体の温度を種々変え、それぞれの延伸温度における、
白化を生ずる延伸倍率、および破断する延伸倍率を測定
した。
Experimental example 1 The feeding speed of the fibril from the feeding nip roll was set to 1.1.
m/min, the length of the stretching section of the stretching section was 5 cm, the temperature of the stretching heating medium was varied, and at each stretching temperature,
The stretching ratio at which whitening occurs and the stretching ratio at which breakage occurs were measured.

結果を第3図に示す。第3図より明らかなように、白化
、破断ともに、延伸温度が高い方が延伸特性がよくなり
、120℃前後が延伸特性のすぐれていることがわかる
。この高密度ポリエチレンの融点は138℃で、これ以
上延伸温度を高くすることは出来ない。
The results are shown in Figure 3. As is clear from FIG. 3, the higher the stretching temperature, the better the stretching properties in terms of both whitening and breakage, and it can be seen that the stretching properties are excellent at around 120°C. The melting point of this high-density polyethylene is 138°C, and the stretching temperature cannot be increased any higher.

実験例 2 送り出しニップロールの原繊維送り出し速度、延伸区間
の長さを実験例jと同じとして、延伸温度が100℃、
120℃、125℃の場合について、それぞれの温度に
おける延伸倍率と引張弾性率との関係を求めた。結果を
第4図に示す。
Experimental Example 2 The fibril delivery speed of the delivery nip roll and the length of the drawing section were the same as in Experimental Example J, and the drawing temperature was 100°C.
For the cases of 120°C and 125°C, the relationship between the stretching ratio and the tensile modulus at each temperature was determined. The results are shown in Figure 4.

第4図より明らかなように、延伸温度が120°Cの場
合が最もよく、100 ’Cでは物性、延伸特性が共に
劣る。
As is clear from FIG. 4, a stretching temperature of 120°C is best, and a stretching temperature of 100'C is poor in both physical properties and stretching characteristics.

実験例 3 送り出しニップロールの原繊維送り出し速度、延伸区間
の長さを実験例1と同じにし、延伸温度が100℃、1
20℃、125℃の場合について、それぞれの温度にお
ける延伸倍率と破断強度の関係を求めた。結果を第5図
に示す。第5図より明らかなように、120℃がよいこ
とがわかる。
Experimental Example 3 The fibril delivery speed of the delivery nip roll and the length of the stretching section were the same as in Experimental Example 1, and the stretching temperature was 100°C.
Regarding the cases of 20° C. and 125° C., the relationship between the stretching ratio and the breaking strength at each temperature was determined. The results are shown in Figure 5. As is clear from FIG. 5, it can be seen that 120°C is good.

実験例 4 送り出しニップロールの原繊維送り出し速度を1.1m
/分、延伸温度を120°C1延伸倍率15として、延
伸区間の長さと引張り弾性率との関係を求めた。結果を
第5図に示す。第5図より明らかなように、延伸区間の
短い方が優れていることがわかる。
Experimental example 4 Fibril feeding speed of the feeding nip roll was set to 1.1 m.
/min, the stretching temperature was 120° C., and the stretching ratio was 15, and the relationship between the length of the stretching section and the tensile modulus was determined. The results are shown in Figure 5. As is clear from FIG. 5, it can be seen that the shorter the stretching section, the better.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の延伸方法は、予熱槽が設
けられているので、延伸部に導入された原繊維の温度は
、すぐに延伸熱媒体温度とほぼ同じになるので、短い延
伸区間で大きな変形速度で延伸され、また熱媒は、沸点
が高く、水溶性の液状熱媒を用いているので、100℃
より高い所望の温度で延伸でき、しかも水が充填されて
いる超音波洗浄槽によって完全に除去され、1段の延伸
によって、物性の優れた高密度ポリエチレン繊維が得ら
れる。
As explained above, in the drawing method of the present invention, since the preheating tank is provided, the temperature of the fibril introduced into the drawing section immediately becomes almost the same as the temperature of the drawing heating medium, so that the drawing method can be used for a short drawing period. It is stretched at a high deformation rate at 100℃, and since a water-soluble liquid heating medium with a high boiling point is used,
It can be drawn at a higher desired temperature, and is completely removed by an ultrasonic cleaning tank filled with water, resulting in high-density polyethylene fibers with excellent physical properties after one stage of drawing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る延伸方法を実施する装置の一例
を示す図、第2図は延伸部の詳細を示す図、第3図は、
延伸温度を変えた場合の白化、および破断する延伸倍率
を示す図、第4図は延伸温度が異なる場合の延伸倍率と
引張弾性率との関係を示す図、第5図は延伸温度が異な
る場合の延伸倍率と破断強度との関係を示す図、第6図
は延伸温度120’C1延伸倍率15の場合の延伸区間
の長さと引張弾性率との関係を示す図である。 l・・・・・・押出機、la・・・・・・冷却槽、2・
・・・・・原繊維、2′・・・・・・延伸された繊維、
3・・・・ガイトロール、4・・・・・・第10−ル、
5・・・・・・予熱槽、5a・・・・・・予熱用熱媒体
、6・・・・・・第20−ル、7・・・・・延伸部、7
a・・・・・・延伸用熱媒体、8・・・・・・送り出し
ニップロール、9・・・・・・引取りニップロール、1
0・・・ ヒータ、10a・・・・・・PID制御、1
1・・・・・撹拌機、12・・・第30−ル、 1 3・・・・・ 超音波洗浄槽、 巻取部、 5・・・ ・延伸区間。
FIG. 1 is a diagram showing an example of an apparatus for implementing the stretching method according to the present invention, FIG. 2 is a diagram showing details of the stretching section, and FIG.
Figure 4 shows the relationship between stretching ratio and tensile modulus at different stretching temperatures. Figure 5 shows the relationship between stretching ratio and tensile modulus at different stretching temperatures. FIG. 6 is a diagram showing the relationship between the length of the stretching section and the tensile modulus when the stretching temperature is 120'C1 and the stretching ratio is 15. l...Extruder, la...Cooling tank, 2.
...Standard fiber, 2'...Stretched fiber,
3... Guy Troll, 4... Chapter 10-ru,
5... Preheating tank, 5a... Heat medium for preheating, 6... 20th rule, 7... Stretching section, 7
a... Heat medium for stretching, 8... Delivery nip roll, 9... Take-up nip roll, 1
0... Heater, 10a... PID control, 1
1... Stirrer, 12... 30th rule, 1 3... Ultrasonic cleaning tank, winding section, 5... - Stretching section.

Claims (1)

【特許請求の範囲】[Claims] 重量平均分子量が10万〜40万、重量平均分子量/数
平均分子量が2〜7、密度が0.940以上の高密度ポ
リエチレン製の原繊維を、延伸することなく予熱工程に
よって予熱した後、100℃以上の液体延伸熱媒体中で
、30cm以下の延伸区間で連続的に延伸することを特
徴とする高密度ポリエチレンの延伸方法。
After preheating a raw fiber made of high-density polyethylene with a weight average molecular weight of 100,000 to 400,000, a weight average molecular weight/number average molecular weight of 2 to 7, and a density of 0.940 or more in a preheating process without stretching, 1. A method for stretching high-density polyethylene, which comprises continuously stretching in a stretching section of 30 cm or less in a liquid stretching heating medium at a temperature of 0.degree. C. or higher.
JP5751690A 1990-03-08 1990-03-08 Drawing of high-density polyethylene Pending JPH03260110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5751690A JPH03260110A (en) 1990-03-08 1990-03-08 Drawing of high-density polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5751690A JPH03260110A (en) 1990-03-08 1990-03-08 Drawing of high-density polyethylene

Publications (1)

Publication Number Publication Date
JPH03260110A true JPH03260110A (en) 1991-11-20

Family

ID=13057904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5751690A Pending JPH03260110A (en) 1990-03-08 1990-03-08 Drawing of high-density polyethylene

Country Status (1)

Country Link
JP (1) JPH03260110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085176A1 (en) * 2002-04-09 2003-10-16 Toyo Boseki Kabushiki Kaisha Polyethylene fiber and process for producing the same
WO2006006330A1 (en) * 2004-07-08 2006-01-19 Toyo Boseki Kabushiki Kaisha High-strength polyethylene fiber
KR101025038B1 (en) * 2009-05-07 2011-03-25 주식회사 엘지화학 Olefin-Based Polymers and Fibers Comprising the Same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085176A1 (en) * 2002-04-09 2003-10-16 Toyo Boseki Kabushiki Kaisha Polyethylene fiber and process for producing the same
US7247372B2 (en) 2002-04-09 2007-07-24 Toyo Boseki Kabushiki Kaisha Polyethylene filament and a process for producing the same
US7736564B2 (en) 2002-04-09 2010-06-15 Toyo Boseki Kabushiki Kaisha Process of making a high strength polyolefin filament
WO2006006330A1 (en) * 2004-07-08 2006-01-19 Toyo Boseki Kabushiki Kaisha High-strength polyethylene fiber
KR101025038B1 (en) * 2009-05-07 2011-03-25 주식회사 엘지화학 Olefin-Based Polymers and Fibers Comprising the Same
EP2428525A2 (en) * 2009-05-07 2012-03-14 LG Chem, Ltd. Olefin polymer and fiber including same
EP2428525A4 (en) * 2009-05-07 2013-10-02 Lg Chemical Ltd Olefin polymer and fiber including same

Similar Documents

Publication Publication Date Title
EP0585814B1 (en) Suture fabricated from syndiotactic polypropylene and process for its manufacture
US5076977A (en) Process for controlling curl in polyester film
JPH07205276A (en) Method and apparatus for producing synthetic resin stick
KR101798529B1 (en) Spinning apparatus for manufacturing of high strength fiber
JP2854290B2 (en) High strength polyester yarn
JPH03260110A (en) Drawing of high-density polyethylene
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
JPH08218216A (en) Production of biodegradable monofilament
JP2004537738A (en) Semi-crystalline polymer optical fiber manufacturing equipment
JPH07314552A (en) Production of thermoplastic resin film
JPS6059119A (en) Production of polyester fiber
JPS63303304A (en) Production of plastic optical fiber
JPS6215643B2 (en)
JPS6470748A (en) Manufacture of curled photographic film
JPH10219512A (en) Melt extrusion spinning and apparatus therefor
JPH02210013A (en) Dry and wet spinning process
JP2007056388A (en) Pulling-up spinning method
JP2009138322A (en) Method for producing monofilament
JPS62148245A (en) Continuous manufacture of high-strength shape
JP2000027029A (en) Production of low shrinkage polyester yarn having high toughness
JP4479067B2 (en) Method for producing polyamide fiber
JPS61182925A (en) Manufacture of spiral material made of synthetic resin
JPS5951603B2 (en) Method for producing polymeric filamentous material
JP2000345428A (en) Production of polyolefin-based fiber
JP2003041450A (en) Method for producing hollow fiber membrane