JPS63302518A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63302518A
JPS63302518A JP13939387A JP13939387A JPS63302518A JP S63302518 A JPS63302518 A JP S63302518A JP 13939387 A JP13939387 A JP 13939387A JP 13939387 A JP13939387 A JP 13939387A JP S63302518 A JPS63302518 A JP S63302518A
Authority
JP
Japan
Prior art keywords
impurity
conductivity type
source
region
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13939387A
Other languages
Japanese (ja)
Inventor
Michiko Takei
美智子 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13939387A priority Critical patent/JPS63302518A/en
Publication of JPS63302518A publication Critical patent/JPS63302518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method, through which n-type and p-type-source drain regions are formed simultaneously, heat treatment is unnecessitated and the source-drain regions can be shaped finely with high accuracy, by diffusing impurities having conductivity types of a different kind at the same time from a solid impurity source and a gas impurity source or two solid impurity sources by applying a laser. CONSTITUTION:One conductivity type solid impurity source 10 is arranged onto one conductivity type impurity forming region, the other conductivity type impurity forming region is exposed into an atmosphere containing the other conductivity type impurity gas, and the whole surface is irradiated with a laser and impurities are diffused simultaneously from said solid impurity source 10 and a gas impurity source, thus shaping one conductivity type impurity regions 15 and the other conductivity type impurity regions 16. Or one conductivity type solid impurity sources 10 are disposed onto one conductivity type impurity forming region, and the other conductivity type solid impurity source 11 is arranged onto the other conductivity type impurity forming region, and the whole surface is irradiated with the laser and the impurities are diffused at the same time from said two solid impurity sources 10, 11, thus forming one conductivity type impurity regions 15 and the other conductivity type impurity regions 16. B2H6, etc., are used as said gas impurity source.

Description

【発明の詳細な説明】 [概要] 一導電型不純物領域と異種導電型不純物領域とを同時に
画定する形成方法であって、一方を面体不純物源とし、
他方をガス不純物源とするか、あるいは、両方を面体不
純物源にして、上面からレーザを照射して両方の不純物
領域を同時に画定する。そうすれば、処理工程が節単に
なり、短縮されて、且つ、微細領域を高精度に形成でき
る。
[Detailed Description of the Invention] [Summary] A formation method for simultaneously defining an impurity region of one conductivity type and an impurity region of a different conductivity type, in which one is used as a planar impurity source,
The other is used as a gas impurity source, or both are used as a surface impurity source, and both impurity regions are defined simultaneously by irradiating a laser from the top surface. In this way, the processing steps can be simplified and shortened, and fine regions can be formed with high precision.

[産業上の利用分野] 本発明は半導体装置の製造方法に係り、特に、2つの異
種導電型不純物領域を同゛時に形成する形成方法に関す
る。
[Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming two impurity regions of different conductivity types at the same time.

ICやLSIなどの半導体装置は複雑で長い処理工程か
らなるウェハープロセスを経て半導体チップが作製され
ている。
Semiconductor chips of semiconductor devices such as ICs and LSIs are fabricated through a wafer process that includes complicated and long processing steps.

しかし、処理工程が長くなるほど、ハンドリング回数が
増加するために品質や収率(歩留)が低下し、また、工
数増加によるコストアップに繋がって、出来るだけ短縮
した簡略な処理工程による形成方法が望ましい。
However, as the treatment process becomes longer, the quality and yield decrease due to the increased number of handling steps, and the cost increases due to the increase in man-hours. desirable.

[従来の技術] 第3図はC−MOS)ランジスタ(相補型電界効果形ト
ランジスタ)の断面概要図を示しており、このようなC
−MOS )ランジスタは消費電力が少ない等の利点が
あって、広く利用されている構造である。図において、
1はp−シリコン基板(p型不純物を含むシリコン基板
)、2はn−ウェル領域、3はフィールド絶縁膜(Si
 O2膜)、4は多結晶シリコン膜からなるゲート電極
、5はnチャネルトランジスタのn−ソース領域および
ドレイン領域、6はpチャネルトランジスタのp−ソー
ス領域およびドレイン領域である。
[Prior Art] Figure 3 shows a schematic cross-sectional view of a C-MOS transistor (complementary field effect transistor).
-MOS) transistors have advantages such as low power consumption, and are a widely used structure. In the figure,
1 is a p-silicon substrate (silicon substrate containing p-type impurities), 2 is an n-well region, and 3 is a field insulating film (Si
4 is a gate electrode made of a polycrystalline silicon film, 5 is an n-source region and a drain region of an n-channel transistor, and 6 is a p-source region and a drain region of a p-channel transistor.

このようなC−MOS)ランジスタの従来の形成方法の
工程順断面図を第4図(a)〜(C1に示している。
Step-by-step sectional views of a conventional method for forming such a C-MOS transistor are shown in FIGS. 4(a) to (C1).

第4図(a)参照;p−シリコン基板1上にn−ウェル
領域2を画定し、次いで、フィールド絶縁膜3を形成し
た後、ゲート絶縁膜を、介してゲート電極4を形成する
Refer to FIG. 4(a); after an n-well region 2 is defined on a p-silicon substrate 1 and a field insulating film 3 is formed, a gate electrode 4 is formed via a gate insulating film.

第4図(b)参照;次いで、n−ウェル領域2 (pチ
ャネルトランジスタ形成領域)上にレジスト膜マスク7
を被覆し、露出させたnチャーネルトランジスタ形成領
域上から燐イオン(p+)または砒素イオン(八S+ 
)を注入し、熱処理してn−ソース領域およびドレイン
領域5を画定する。なお、この熱処理は、後記するpチ
ャネルトランジスタのp−ソース領域およびドレイン領
域6をイオン注入した後、同時に熱処理して画定する場
合が多い。
Refer to FIG. 4(b); Next, a resist film mask 7 is placed on the n-well region 2 (p-channel transistor formation region).
phosphorus ions (p+) or arsenic ions (8S+) from above the exposed n-channel transistor formation region.
) is implanted and heat treated to define n-source and drain regions 5. Note that this heat treatment is often performed at the same time after ion implantation into the p-source region and drain region 6 of a p-channel transistor to be described later.

第4図(C1参照;次いで、前工程で形成したnチャネ
ルトランジスタ領域上にレジスト膜マスク8を被覆し、
pチャネルトランジスタ形成領域を露出させて、その上
から硼素イオン(B+)を注入し、熱処理してp−ソー
ス領域およびドレイン領域6を画定する。
FIG. 4 (see C1; next, a resist film mask 8 is coated on the n-channel transistor region formed in the previous step,
The p-channel transistor forming region is exposed, boron ions (B+) are implanted thereon, and a p- source region and drain region 6 are defined by heat treatment.

なお、これらのソースおよびドレイン領域の形成工程に
おいては、ゲート電極4およびフィールド絶縁膜3がイ
オン注入を防止するマスクの役目を果たし、セルファラ
イン(自己整合)的にソース・ドレイン領域が形成され
るものである。
In the process of forming these source and drain regions, the gate electrode 4 and field insulating film 3 serve as a mask to prevent ion implantation, and the source and drain regions are formed in a self-aligned manner. It is something.

[発明が解決しようとする問題点] ところで、上記のようなC−MOS )ランジスタのソ
ースおよびドレイン領域の形成工程はレジスト膜マスク
7.8を2回パターンニングし、2回に分けてイオン注
入する形成方法であるから、それだけ処理工程が長くな
って工数が増加する問題がある。
[Problems to be Solved by the Invention] By the way, in the process of forming the source and drain regions of the C-MOS transistor as described above, the resist film mask 7.8 is patterned twice and ions are implanted in two steps. Therefore, there is a problem that the processing steps become longer and the number of man-hours increases accordingly.

且つ、従来のように、イオン注入によって形成する場合
は高温熱処理(900〜1000℃程度)が必要になる
ため、過度の熱拡散によって微細な領域を高精度に形成
できない欠点がある。
Moreover, when forming by ion implantation as in the past, high temperature heat treatment (approximately 900 to 1000° C.) is required, which has the disadvantage that fine regions cannot be formed with high precision due to excessive thermal diffusion.

本発明はこのような問題点を除去して、nチャネルトラ
ンジスタのn−ソースおよびドレイン領域と、pチャネ
ルトランジスタのp−ソースおよびドレイン領域を同時
に形成し、しかも、熱処理が不要で高精度に、且つ、微
細に形成できる形成方法を提案するものである。
The present invention eliminates these problems and simultaneously forms the n-source and drain regions of an n-channel transistor and the p-source and drain regions of a p-channel transistor, and moreover, with high precision without the need for heat treatment. Moreover, the present invention proposes a forming method that allows fine formation.

[問題点を解決するための手段] その目的は、一導電型面体不純物源を一導電型不純物形
成領域上に配置し、且つ、異種導電型不純物ガスを含む
雰囲気中に異種導電型不純物形成領域を露出させ、全面
にレーザを照射して前記面体不純物源とガス不純物源と
から同時に拡散させて一導電型不純物領域と異種導電型
不純物領域とを画定する工程、あるいは、一導電型面体
不純物源を一導電型不純物形成領域上に配置し、且つ、
異種導電型面体不純物源を異種導電型不純物形成領域上
に配置し、全面にレーザを照射して前記2つの面体不純
物源から同時に拡散させて一導電型不純物領域と異種導
電型不純物領域とを画定する工程が含まれる半導体装置
の製造方法によって達成される。
[Means for Solving the Problems] The purpose is to place a one-conductivity type impurity impurity source on one conductivity type impurity formation region, and to place a different conductivity type impurity formation region in an atmosphere containing a different conductivity type impurity gas. a step of exposing the entire surface and irradiating the entire surface with a laser to simultaneously diffuse from the surface impurity source and the gas impurity source to define an impurity region of one conductivity type and an impurity region of different conductivity type; is placed on the impurity formation region of one conductivity type, and
Plaster impurity sources of different conductivity types are placed on the impurity formation region of different conductivity types, and the entire surface is irradiated with a laser to simultaneously diffuse from the two plane impurity sources to define an impurity region of one conductivity type and an impurity region of different conductivity types. This is achieved by a method of manufacturing a semiconductor device that includes the steps of:

[作用] 即ち、本発明は、一導電型不純物領域と異種導電型不純
物領域とを同時に形成するために、一方を面体不純物源
にし、他方をガス不純物源にする方法、または、両方を
面体不純物源にする方法によって不純物源を準備し、そ
の上からレーザを照射し拡散させて不純物領域を同時に
画定する。
[Operation] That is, the present invention provides a method in which one conductivity type impurity region and a different conductivity type impurity region are formed simultaneously by using a method in which one is made into a faceted impurity source and the other is made into a gaseous impurity source, or both are made into a faceted impurity source. An impurity source is prepared by a method using a source, and a laser is irradiated and diffused from above to simultaneously define an impurity region.

そうすれば、パターンニングも1回だけになり、処理工
程が簡略になって、短縮され、しかも、微細な領域を精
度良く形成することができる。
In this way, patterning is performed only once, the processing steps are simplified and shortened, and fine regions can be formed with high precision.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図(a)、 (b)は本発明にかかる形成方法を示
す工程順断面図である。
FIGS. 1(a) and 1(b) are step-by-step sectional views showing the forming method according to the present invention.

第1図(a)参照;本図は従来例の第4図(a)と同様
に、p−シリコン基板1上にn−ウェル領域2を画定し
、次いで、フィールド絶縁膜3を形成し、次いで、ゲー
ト絶縁膜を介してゲート電極4を形成する。
Refer to FIG. 1(a); In this figure, similarly to FIG. 4(a) of the conventional example, an n-well region 2 is defined on a p-silicon substrate 1, and then a field insulating film 3 is formed. Next, a gate electrode 4 is formed via a gate insulating film.

第1図中)参照;次いで、砒素12%含んだ膜厚300
0人程度0砒素シリケートガラス(AsSG)膜(n型
不純物源)を上面に被着し、これをフォトプロセスによ
ってパターンニングしてnチャネルトランジスタ形成領
域上のみをAs5G膜10で被覆し、次いで、ジボラン
(82H6)ガス雰囲気の減圧気中(10Torr)に
おいて、エキシマレーザ(Ar Fレーザ)でスキャン
ニングしながら1秒間照射する。この際、基板は加熱せ
ず、レーザ照射による熱量は2〜10ジユ一ル/cd程
度、波長11Zの1パルスで各部分を1回照射するだけ
である。なお、ジボランガス雰囲気はキャリアガスをア
ルゴンとした1%の82 H6ガスを含んだ雰囲気であ
る。
(See Figure 1); Next, a film with a thickness of 300 containing 12% arsenic was prepared.
An arsenic silicate glass (AsSG) film (n-type impurity source) was deposited on the top surface, and this was patterned by a photo process to cover only the n-channel transistor formation region with an As5G film 10. Then, Irradiation is performed for 1 second while scanning with an excimer laser (Ar F laser) in a reduced pressure (10 Torr) of diborane (82H6) gas atmosphere. At this time, the substrate is not heated, the amount of heat by laser irradiation is about 2 to 10 J/cd, and each part is irradiated only once with one pulse of wavelength 11Z. Note that the diborane gas atmosphere is an atmosphere containing 1% 82 H6 gas with argon as a carrier gas.

そうすれば、このレーザ照射によってnチャネルトラン
ジスタのn−ソース領域沿よびドレイン領域15がAs
5G膜10からの拡散によって形成され、又、pチャネ
ルトランジスタのp−ソース領域およびドレイン領域1
6はB2 H6ガスからの拡散によって同時に形成され
、しかも、これらのソース・ドレイン領域は厚さ100
0人程度人程めて?1111Iで高精度に形成すること
ができる。
Then, by this laser irradiation, the area along the n-source region and the drain region 15 of the n-channel transistor becomes As.
It is formed by diffusion from the 5G film 10, and also forms the p- source region and drain region 1 of the p-channel transistor.
6 are simultaneously formed by diffusion from B2 H6 gas, and these source and drain regions have a thickness of 100 mm.
Approximately 0 people? 1111I can be formed with high precision.

次に、第2図+8)、 (b)は本発明にかかる他の形
成方法を示す工程順断面図である。
Next, FIG. 2+8) and (b) are step-by-step sectional views showing another forming method according to the present invention.

第2図(a)参照;本図も従来例の第4図(a)と同じ
く、p−シリコン基板1上にn−ウェル領域2を画定し
、次いで、フィールド絶縁膜3を形成し、次いで、ゲー
ト絶縁膜を介してゲート電極4を形成する。
Refer to FIG. 2(a); In this figure, similarly to the conventional example shown in FIG. 4(a), an n-well region 2 is defined on a p-silicon substrate 1, a field insulating film 3 is formed, and then , a gate electrode 4 is formed via a gate insulating film.

第2図(bl参照;次いヤ、砒素12%含んだ膜厚30
00人程度0砒素シリケートガラス(AsSG)膜を上
面に被着し、これをフォトプロセスによってパターンニ
ングして、nチャネルトランジスタ形成領域上のみをA
s5G膜10で被覆し、次いで、その上に硼素12%含
んだ膜厚3000人の硼素シリケートガラX(BSC;
)膜(p型不純物源)を被着して、pチャネルトランジ
スタ形成領域上をBSG膜11で被覆した後、上記例と
同様にエキシマレーザ(ArFレーザ)でスキャンニン
グしながら1秒間照射する。その時のレーザ照射の条件
は上記と同様である。そうすれば、このレーザ照射によ
ってnチャネルトランジスタのn−ソース領域およびド
レイン領域15が^sSG膜10からの拡散によって形
成され′、又、pチャネルトランジスタのp−ソース領
域およびドレイン領域16がBSG膜11がらの拡散に
よって同時に形成されて、しかも、これらの領域は極め
て微細で高精度に形成される。
Figure 2 (see BL; next, film thickness 30% containing 12% arsenic)
An arsenic silicate glass (AsSG) film is deposited on the top surface and patterned by a photo process to form an arsenic silicate glass (AsSG) film only on the n-channel transistor formation region.
It was coated with s5G film 10, and then coated with 3000% boron silicate gala X (BSC) containing 12% boron.
) film (p-type impurity source) to cover the p-channel transistor formation region with the BSG film 11, and then irradiation is performed for 1 second while scanning with an excimer laser (ArF laser) in the same manner as in the above example. The conditions for laser irradiation at that time are the same as above. Then, by this laser irradiation, the n-source region and drain region 15 of the n-channel transistor are formed by diffusion from the sSG film 10', and the p-source region and drain region 16 of the p-channel transistor are formed by the BSG film. 11 regions are formed simultaneously by diffusion, and these regions are formed extremely finely and with high precision.

以上のような形成方法によれば、パターンニングがAs
5G膜の1回、だけとなり、ソースおよびドレイン領域
の形成処理が1回になって工程が短縮され、且つ、極め
て短時間の1回だけの加熱によって形成するため辷、ソ
ースおよびドレイン領域が精度良く微細に形成すること
ができる。
According to the above-described forming method, the patterning is performed using As.
The 5G film is formed only once, and the source and drain regions are formed only once, which shortens the process. Furthermore, since the formation process is performed only once in an extremely short time, the thickness, source and drain regions can be formed with high precision. It can be formed finely.

なお、第1図で説明した実施例において、BSC膜を被
着して、pチャネルトランジスタ形成領域上を被覆した
後、AsH3ガスを含むガス雰囲気でレーザ照射しても
同様の結果が得られる。
In the embodiment described in FIG. 1, the same result can be obtained even if the BSC film is deposited to cover the p-channel transistor formation region and then laser irradiation is performed in a gas atmosphere containing AsH3 gas.

[発明の効果] 上記のC−MOS )ランジスタの実施例から明らかな
ように、本発明によれば一導電型不純物領域と異種導電
型不純物領域とを同時に画定することができて、処理工
程が簡単になり、且つ、短縮されて、しかも、微細領域
が高精度に形成されて、ICの品質向上、集積度の向上
に顕著に寄与するものである。
[Effects of the Invention] As is clear from the above embodiment of the C-MOS transistor, according to the present invention, an impurity region of one conductivity type and an impurity region of a different conductivity type can be defined simultaneously, and the processing steps can be simplified. It is simple and shortened, and a fine region can be formed with high precision, which significantly contributes to improving the quality and degree of integration of ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (blおよび第2図(a)、 (b)
は本発明にかかる形成方法の工程順断面図、 第3図はC−MOS l−ランジスタの断面概要図、第
4図(a)〜(C)は従来の形成方法の工程順断面図で
ある。 図において、 ■はp−シリコン基板、2はn−ウェル領域、3はフィ
ールド絶縁膜、4はゲート電極、5.15はn−ソース
領域およびドレイン領域、6.16はp−ソース領域お
よびドレイン領域、7.8はレジスト膜マスク、 10はAs5G膜、    11はBSG膜斗要明1−
21J−j化IS形代方池6エ科喉図第2図
Figure 1 (a), (bl and Figure 2 (a), (b)
3 is a schematic cross-sectional view of a C-MOS l-transistor, and FIGS. 4(a) to (C) are cross-sectional views of a conventional forming method in the order of steps. . In the figure, 2 is a p-silicon substrate, 2 is an n-well region, 3 is a field insulating film, 4 is a gate electrode, 5.15 is an n-source region and drain region, and 6.16 is a p-source region and drain. area, 7.8 is the resist film mask, 10 is the As5G film, 11 is the BSG film 1-
21J-j IS Katashirokataike 6E Family Throat Diagram Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型固体不純物源を一導電型不純物形成領域
上に配置し、且つ、異種導電型不純物ガスを含む雰囲気
中に異種導電型不純物形成領域を露出させ、全面にレー
ザを照射して前記固体不純物源とガス不純物源とから同
時に拡散させて一導電型不純物領域と異種導電型不純物
領域とを画定する工程が含まれてなることを特徴とする
半導体装置の製造方法。
(1) A solid impurity source of one conductivity type is placed over an impurity formation region of one conductivity type, and the impurity formation region of a different conductivity type is exposed in an atmosphere containing an impurity gas of a different conductivity type, and the entire surface is irradiated with a laser. A method for manufacturing a semiconductor device, comprising the step of simultaneously diffusing from the solid impurity source and the gas impurity source to define an impurity region of one conductivity type and an impurity region of a different conductivity type.
(2)一導電型面体不純物源を一導電型不純物形成領域
上に配置し、且つ、異種導電型固体不純物源を異種導電
型不純物形成領域上に配置し、全面にレーザを照射して
前記2つの固体不純物源から同時に拡散させて一導電型
不純物領域と異種導電型不純物領域とを画定する工程が
含まれてなることを特徴とする半導体装置の製造方法。
(2) One conductivity type facepiece impurity source is placed on the one conductivity type impurity formation region, and a different conductivity type solid impurity source is placed on the different conductivity type impurity formation region, and the entire surface is irradiated with laser to 1. A method of manufacturing a semiconductor device, comprising the step of simultaneously diffusing from two solid impurity sources to define an impurity region of one conductivity type and an impurity region of a different conductivity type.
JP13939387A 1987-06-02 1987-06-02 Manufacture of semiconductor device Pending JPS63302518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13939387A JPS63302518A (en) 1987-06-02 1987-06-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13939387A JPS63302518A (en) 1987-06-02 1987-06-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63302518A true JPS63302518A (en) 1988-12-09

Family

ID=15244248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13939387A Pending JPS63302518A (en) 1987-06-02 1987-06-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63302518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002594A1 (en) * 1995-07-03 1997-01-23 Intel Corporation Low damage source and drain doping technique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236468A (en) * 1975-09-18 1977-03-19 Fujitsu Ltd Shallow diffusion method
JPS5488780A (en) * 1977-12-26 1979-07-14 Cho Lsi Gijutsu Kenkyu Kumiai Method of fabricating complementary mos transistor
JPS5552221A (en) * 1978-10-12 1980-04-16 Toshiba Corp Impurity dispersion method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236468A (en) * 1975-09-18 1977-03-19 Fujitsu Ltd Shallow diffusion method
JPS5488780A (en) * 1977-12-26 1979-07-14 Cho Lsi Gijutsu Kenkyu Kumiai Method of fabricating complementary mos transistor
JPS5552221A (en) * 1978-10-12 1980-04-16 Toshiba Corp Impurity dispersion method and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002594A1 (en) * 1995-07-03 1997-01-23 Intel Corporation Low damage source and drain doping technique
KR100381769B1 (en) * 1995-07-03 2003-08-19 인텔 코오퍼레이션 Low damage doping technique for self-aligned source and drain regions

Similar Documents

Publication Publication Date Title
JPS63302518A (en) Manufacture of semiconductor device
JP2917696B2 (en) Method for manufacturing CMOS semiconductor device
JPH0466379B2 (en)
JPS61156858A (en) Manufacture of cmos fet
JP2973479B2 (en) Thin film transistor device
JPS58100422A (en) Selective diffusion method
JPH08288504A (en) Method of semiconductor device
KR890005197B1 (en) Manufacture of cmos semiconductor device
JPH08227936A (en) Semiconductor device and fabrication thereof
JPH0479336A (en) Production of semiconductor device
JPH04283966A (en) Manufacture of mos semiconductor device
JP3250298B2 (en) Method for manufacturing semiconductor device
JP2953020B2 (en) Method for manufacturing semiconductor device
JPS624866B2 (en)
JPH01179455A (en) Manufacture of semiconductor device
JPS6129551B2 (en)
JPS62210677A (en) Manufacture of semiconductor device
JP3132880B2 (en) Method for manufacturing semiconductor device
JPH05343418A (en) Manufacture of semiconductor device
JPH023915A (en) Manufacture of semiconductor device
JPS55102269A (en) Method of fabricating semiconductor device
JPH03104235A (en) Manufacture of mis type transistor
JPS60245281A (en) Manufacture of semiconductor device
JPH04101456A (en) Manufacture of mos semiconductor device
JPH05291287A (en) Manufacture of mis type semiconductor