JPS6330056B2 - - Google Patents

Info

Publication number
JPS6330056B2
JPS6330056B2 JP58105439A JP10543983A JPS6330056B2 JP S6330056 B2 JPS6330056 B2 JP S6330056B2 JP 58105439 A JP58105439 A JP 58105439A JP 10543983 A JP10543983 A JP 10543983A JP S6330056 B2 JPS6330056 B2 JP S6330056B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
carbon monoxide
catalyst
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58105439A
Other languages
Japanese (ja)
Other versions
JPS59230625A (en
Inventor
Yasuaki Ishikawa
Hideyuki Asahina
Tetsuo Sada
Hiroshi Kurihara
Shinichi Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58105439A priority Critical patent/JPS59230625A/en
Publication of JPS59230625A publication Critical patent/JPS59230625A/en
Publication of JPS6330056B2 publication Critical patent/JPS6330056B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、焼結排ガス(焼結鉱の製造過程で生
成する排ガス)等を脱硝する際に排ガス中に含ま
れる一酸化炭素を触媒で酸化させ、排ガスを昇温
させる方法に関する。 焼結排ガスを脱硝する際、焼結排ガスをMガス
等の燃焼により反応温度まで昇温させる必要があ
る。一方焼結排ガス中に含まれる未燃一酸化炭素
に着目し、これを燃焼させて昇温する方法が提案
されている。この方法は、排ガスを一酸化炭素酸
化触媒を組込んだ回転蓄熱式熱交換器に通して一
酸化炭素を酸化せしめ、この酸化熱により排ガス
を昇温し、このことによりMガスの原単位を下
げ、かつ昇温されたガスが熱交換機に戻る時に触
媒を再生させて長期操業できる方法である(特開
昭56―168827号)。 しかしこの方法では、排ガス中の一酸化炭素の
濃度が変化すると昇温温度が変化する。昇温温度
が高過ぎると設備破壊あるいは脱硝率の低下のお
それがあり、又逆に低過ぎると触媒の再生が不可
能になるおそれがある。 この問題を解決するために、各種温度制御方法
が従来から提案されている。例えば第1図に示す
ように一酸化炭素を含む排ガス1を熱交換器2、
触媒3、ブロワー4、脱硝反応器5及び上記熱交
換器2に順に通して脱硝する際、触媒3の前後段
に水噴霧冷却装置6を設けて水等の噴霧により排
ガスを冷却する方法がある。しかしこの方法は、
水噴霧ノズルのつまり、結露などの問題があると
ともに、冷却するので熱の有効利用上問題があ
る。 また別の方法として触媒3にバイパスライン7
を設けて、このバイパス量を制御する方法がある
(特開昭54―151558号、特開昭56―37035号、特開
昭56―40420号)。 しかしこの方法は、一酸化炭素の一部がバイパ
スされて酸化されないため、熱を有効利用する上
で問題があり、しかも処理後の排ガスに一酸化炭
素が含まれているので、公害対策上の問題があ
る。また触媒前後の温度差が少ない場合、バイパ
ス量が多量となり、設備費が高くなつてしまう。 本発明は、上記事情に鑑みてなされたもので、
その目的とするところは、排ガスの熱利用効率を
損うことなく昇温温度を一定温度に制御すること
ができる排ガス中の一酸化炭素酸化方法を得んと
するものである。 すなわち本発明は、一酸化炭素を含む排ガス
を、一酸化炭素酸化触媒を組込んだ回転蓄熱式熱
交換器に通して一酸化炭素の酸化により昇温せし
めた後脱硝反応器に通して脱硝し、ついで脱硝後
の排ガスを上記熱交換器に通して触媒を再生する
際に、一酸化炭素を含む排ガスが回転蓄熱式熱交
換器及び触媒をパイパスするための往バイパス路
と、脱硝後の排ガスが上記熱交換器及び触媒をバ
イパスするための復バイパス路とを備え、排ガス
中の一酸化炭素濃度及び排ガス温度にもとずいて
排ガスの一部を上記バイパス路の一方又は両方に
バイパスさせかつそのバイパス流量を調節して脱
硝反応器に流入する排ガスの温度、脱硝後上記熱
交換器に流入する排ガスの昇温温度及び処理後の
排ガス中の一酸化炭素濃度を制御することを特徴
とする。 以下本発明を第3図に示す実施例を参照して説
明する。 一酸化炭素を含む排ガス11を、ブロワー12
の吸引により回転蓄熱式熱交換器13に導く。こ
の熱交換器13は、鉄鉱石触媒等の一酸化炭素酸
化触媒14を組込んでおり、ここで排ガス11中
の一酸化炭素を酸化して排ガス11を昇温する。
昇温された排ガス11を脱硝反応器15に導いて
脱硝した後、上記熱交換器13に導いて触媒14
を再生し、清浄ガス16として排気する。なおこ
の脱硝システムでは、脱硝反応温度、触媒再生温
度が不足する場合、補助的に昇温装置17を用い
てもよい。 しかして本発明は、排ガス11の往路及び復路
にそれぞれ熱交換器13及び触媒14の両方をバ
イパスするバイパス路18,19を設け、バイパ
ス路18,19を流れる排ガス流量をバイパス弁
20,21で制御することにより、昇温温度を制
御する。この場合、往バイパス路18にのみ排ガ
スをバイパス流通させる方法、あるいは往復バイ
パス路18,19の両方に排ガスをバイパス流通
させる方法のいずれでも有効である。なお往バイ
パス路18のみの場合、熱交換器13への低温ガ
ス量と高温ガス量の比が変化して熱交換器効率が
変化する。 また一酸化炭素濃度、排ガス温度、流量を測定
し、その結果の数値データの単独あるいは組み合
せにより、バイパス弁20,21を自動制御し
て、バイパス流量を制御するようにしてもよい。 しかしてこの方法によれば、排ガス11は復路
においても熱交換器13に組み込んだ触媒14と
再度接触しているので、復路でも昇温されて排ガ
ス最終温度が高くなり、熱の有効利用の上から有
利である。また熱交換器13前の低温ガスをバイ
パスするので、バイパス流量が少量ですみ、設備
費を低減できる。更にこの方法は、水噴霧冷却の
如きノズルの詰り、結露などの問題がなく、信頼
性が高い。 次に本発明方法の温度バランスの1例につき説
明する。第3図のシステムを用いてF点の温度を
430℃として一定にさせる条件のもとに、A点の
ガス流入温度が130℃、触媒における温度上昇が
100℃であると仮定して、各地点(A〜I)の温
度等を調べた。この結果を第1表(No.1,No.2)
に示す。 これと比較するため第1図のもの(No.3)及び
第2図のもの(No.4,No.5)についても同様にし
て各地点(A〜I)の温度等を調べた。その結果
を第1表に併記する。 ここでNo.1は、往復バイパス流量制御の場合、
No.2は往きバイパスのみの流量制御の場合を示
す。またNo.5は、第2図のものにおいて復路にも
触媒を設けた場合(破線で示す)を示す。 なおF点の温度を430℃に一定にするのは、設
備耐熱、脱硝反温温度確保、触媒再生温度を考慮
したためである。
The present invention relates to a method for denitrating sintering exhaust gas (exhaust gas generated in the process of manufacturing sintered ore), etc. by oxidizing carbon monoxide contained in the exhaust gas using a catalyst and raising the temperature of the exhaust gas. When denitrating the sintering exhaust gas, it is necessary to heat the sintering exhaust gas to the reaction temperature by burning M gas or the like. On the other hand, a method has been proposed that focuses on unburned carbon monoxide contained in sintering exhaust gas and burns it to raise the temperature. In this method, exhaust gas is passed through a rotary regenerative heat exchanger incorporating a carbon monoxide oxidation catalyst to oxidize carbon monoxide, and the exhaust gas is heated by the heat of oxidation, thereby reducing the basic unit of M gas. This is a method that allows long-term operation by regenerating the catalyst when the lowered and heated gas returns to the heat exchanger (Japanese Patent Application Laid-Open No. 168827-1982). However, in this method, the heating temperature changes when the concentration of carbon monoxide in the exhaust gas changes. If the heating temperature is too high, there is a risk of equipment destruction or a decrease in the denitrification rate, while if the temperature is too low, it may become impossible to regenerate the catalyst. In order to solve this problem, various temperature control methods have been proposed in the past. For example, as shown in FIG. 1, exhaust gas 1 containing carbon monoxide is transferred to a heat exchanger 2,
When the exhaust gas is denitrified by sequentially passing through the catalyst 3, blower 4, denitrification reactor 5, and the heat exchanger 2, there is a method in which a water spray cooling device 6 is provided before and after the catalyst 3 to cool the exhaust gas by spraying water or the like. . However, this method
There are problems such as clogging of the water spray nozzle and condensation, and there are also problems in terms of effective use of heat since it is cooled. Another method is to connect the bypass line 7 to the catalyst 3.
There is a method of controlling this amount of bypass by providing a bypass amount (Japanese Patent Application Laid-open Nos. 151558-1982, 37035-1980, 40420-1980). However, with this method, some of the carbon monoxide is bypassed and is not oxidized, so there is a problem in making effective use of heat.Furthermore, the exhaust gas after treatment contains carbon monoxide, so it is important to prevent pollution. There's a problem. Furthermore, if the temperature difference before and after the catalyst is small, the bypass amount will be large and the equipment cost will be high. The present invention was made in view of the above circumstances, and
The purpose is to provide a method for oxidizing carbon monoxide in exhaust gas, which can control the temperature increase to a constant temperature without impairing the heat utilization efficiency of exhaust gas. That is, the present invention passes exhaust gas containing carbon monoxide through a rotary regenerative heat exchanger incorporating a carbon monoxide oxidation catalyst to raise the temperature by oxidizing carbon monoxide, and then passes it through a denitrification reactor to denitrify the gas. Then, when the denitrified exhaust gas is passed through the heat exchanger to regenerate the catalyst, an outgoing bypass passage is provided for the exhaust gas containing carbon monoxide to bypass the rotary regenerative heat exchanger and the catalyst, and the denitrified exhaust gas is is provided with a return bypass path for bypassing the heat exchanger and the catalyst, and a portion of the exhaust gas is bypassed to one or both of the bypass paths based on the carbon monoxide concentration in the exhaust gas and the exhaust gas temperature. The bypass flow rate is adjusted to control the temperature of the exhaust gas flowing into the denitrification reactor, the heating temperature of the exhaust gas flowing into the heat exchanger after denitrification, and the carbon monoxide concentration in the treated exhaust gas. . The present invention will be explained below with reference to the embodiment shown in FIG. A blower 12 blows the exhaust gas 11 containing carbon monoxide.
is guided to the rotary regenerative heat exchanger 13 by suction. This heat exchanger 13 incorporates a carbon monoxide oxidation catalyst 14 such as an iron ore catalyst, which oxidizes carbon monoxide in the exhaust gas 11 to raise the temperature of the exhaust gas 11.
The heated exhaust gas 11 is led to the denitrification reactor 15 to be denitrated, and then led to the heat exchanger 13 to be heated to the catalyst 14.
is regenerated and exhausted as clean gas 16. In this denitrification system, if the denitrification reaction temperature and catalyst regeneration temperature are insufficient, the temperature raising device 17 may be used as an auxiliary device. Therefore, the present invention provides bypass paths 18 and 19 that bypass both the heat exchanger 13 and the catalyst 14 on the outward and return paths of the exhaust gas 11, respectively, and controls the flow rate of the exhaust gas flowing through the bypass paths 18 and 19 using the bypass valves 20 and 21. By controlling the heating temperature, the heating temperature is controlled. In this case, either a method of bypass-circulating the exhaust gas only through the forward bypass passage 18 or a method of bypass-circulating the exhaust gas through both the reciprocating bypass passages 18 and 19 is effective. Note that in the case of only the forward bypass path 18, the ratio of the amount of low temperature gas to the amount of high temperature gas to the heat exchanger 13 changes, and the heat exchanger efficiency changes. Alternatively, the bypass flow rate may be controlled by measuring the carbon monoxide concentration, exhaust gas temperature, and flow rate, and automatically controlling the bypass valves 20 and 21 based on the resulting numerical data alone or in combination. However, according to this lever method, the exhaust gas 11 comes into contact with the catalyst 14 installed in the heat exchanger 13 again on the return trip, so the temperature rises on the return trip as well, increasing the final temperature of the exhaust gas, which increases the effective use of heat. It is advantageous from Furthermore, since the low temperature gas before the heat exchanger 13 is bypassed, a small amount of bypass flow is required, and equipment costs can be reduced. Furthermore, this method is highly reliable as it is free from problems such as nozzle clogging and dew condensation unlike water spray cooling. Next, one example of temperature balance in the method of the present invention will be explained. Using the system shown in Figure 3, calculate the temperature at point F.
Under the condition of keeping it constant at 430℃, the gas inflow temperature at point A is 130℃, and the temperature rise at the catalyst is
Assuming that the temperature was 100°C, the temperature etc. of each point (A to I) was investigated. This result is shown in Table 1 (No. 1, No. 2)
Shown below. In order to compare with this, the temperature etc. of each point (A to I) were similarly investigated for the one in FIG. 1 (No. 3) and the one in FIG. 2 (No. 4, No. 5). The results are also listed in Table 1. Here, No. 1 is, in the case of reciprocating bypass flow control,
No. 2 shows the case of flow control only for the forward bypass. Further, No. 5 shows a case in which a catalyst is also provided on the return trip (indicated by a broken line) in the case of FIG. 2. The reason why the temperature at point F is kept constant at 430°C is to take into account the heat resistance of the equipment, ensuring the denitrification reaction temperature, and the catalyst regeneration temperature.

【表】【table】

【表】 * 熱交換機効率は流入する低温ガス量が高温ガス量
に比して少なくなると、効率はこのように変
化する傾向がある。(往きのみバイパスする為低温
ガス量が相対的に少なくなる)
上表から明らかなように実施例のものは比較例
(従来方法)に比べて排ガス最終温度(I点)が
30〜40℃高く、排熱を有効利用する上で有利であ
ることがわかる。また触媒のみをバイパスする場
合に比べてバイパス流量が半分以下となる。また
一酸化炭素の大気放散量も少なくなり、とくにNo.
1のものは、零となる。 なお第1表において一酸化炭素濃度が変化する
と、触媒による温度上昇が変化する。このためF
点の温度を430℃に保つためには、往(復)バイ
パス量を変化させるが、変化した状態においても
上記と同様な傾向となる。 以上の如く本発明によれば、排熱の有効利用を
図りながら排ガスの昇温温度を制御することがで
きる顕著な効果を奏する。
[Table] * Heat exchanger efficiency tends to change like this when the amount of low-temperature gas flowing in is smaller than the amount of high-temperature gas. (Since only the forward direction is bypassed, the amount of low-temperature gas is relatively small.)
As is clear from the above table, the final exhaust gas temperature (point I) of the example is lower than that of the comparative example (conventional method).
It can be seen that the temperature is 30 to 40°C higher, which is advantageous in effectively utilizing waste heat. Furthermore, the bypass flow rate is less than half that of the case where only the catalyst is bypassed. Also, the amount of carbon monoxide released into the atmosphere is reduced, especially in No.
1 becomes zero. Note that in Table 1, when the carbon monoxide concentration changes, the temperature rise due to the catalyst changes. For this reason F
In order to maintain the temperature at the point at 430°C, the amount of reciprocal bypass is changed, but the same tendency as above occurs even in the changed state. As described above, according to the present invention, there is a remarkable effect that the temperature increase of exhaust gas can be controlled while effectively utilizing exhaust heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の排ガス中の一酸化炭
素酸化方法の系統図、第3図は本発明の一実施例
を示す排ガス中の一酸化炭素酸化方法の系統図で
ある。 11…排ガス、12…ブロワー、13…回転蓄
熱式熱交換器、14…触媒、15…脱硝反応器、
16…清浄ガス、17…昇温装置、18…往バイ
パス路、19…復バイパス路、20,21…バイ
パス弁。
1 and 2 are system diagrams of a conventional method for oxidizing carbon monoxide in exhaust gas, and FIG. 3 is a system diagram of a method for oxidizing carbon monoxide in exhaust gas, showing an embodiment of the present invention. 11... Exhaust gas, 12... Blower, 13... Rotating regenerative heat exchanger, 14... Catalyst, 15... Denitration reactor,
16... Clean gas, 17... Temperature raising device, 18... Outbound bypass path, 19... Return bypass path, 20, 21... Bypass valve.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素を含む排ガスを、一酸化炭素酸化
触媒を組込んだ回転蓄熱式熱交換器に通して一酸
化炭素の酸化により昇温せしめた後脱硝反応器に
通して脱硝し、ついで脱硝後の排ガスを上記熱交
換器に通して触媒を再生する際に、一酸化炭素を
含む排ガスが回転蓄熱式熱交換器及び触媒をパイ
パスするための往バイパス路と、脱硝後の排ガス
が上記熱交換器及び触媒をバイパスするための復
バイパス路とを備え、測定した排ガス中の一酸化
炭素濃度及び排ガス温度にもとずいて排ガスの一
部を上記バイパス路の一方又は両方にバイパスさ
せかつそのバイパス流量を調節して、脱硝反応器
に流入する排ガスの温度、脱硝後上記熱交換器に
流入する排ガスの昇温温度及び処理後の排ガス中
の一酸化炭素濃度を制御することを特徴とする排
ガスの一酸化炭素酸化方法。
1 Exhaust gas containing carbon monoxide is passed through a rotary regenerative heat exchanger incorporating a carbon monoxide oxidation catalyst to raise the temperature by oxidizing carbon monoxide, and then passed through a denitrification reactor to be denitrified. When the exhaust gas is passed through the heat exchanger to regenerate the catalyst, the exhaust gas containing carbon monoxide bypasses the rotary regenerative heat exchanger and the catalyst, and the exhaust gas after denitration is passed through the heat exchanger. and a return bypass path for bypassing the catalyst and the catalyst, and a part of the exhaust gas is bypassed to one or both of the bypass paths based on the measured carbon monoxide concentration in the exhaust gas and the exhaust gas temperature, and the bypass path is An exhaust gas characterized in that the temperature of the exhaust gas flowing into the denitrification reactor, the heating temperature of the exhaust gas flowing into the heat exchanger after denitrification, and the carbon monoxide concentration in the treated exhaust gas are controlled by adjusting the flow rate. Carbon monoxide oxidation method.
JP58105439A 1983-06-13 1983-06-13 Oxidation of carbon monoxide in exhaust gas Granted JPS59230625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105439A JPS59230625A (en) 1983-06-13 1983-06-13 Oxidation of carbon monoxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105439A JPS59230625A (en) 1983-06-13 1983-06-13 Oxidation of carbon monoxide in exhaust gas

Publications (2)

Publication Number Publication Date
JPS59230625A JPS59230625A (en) 1984-12-25
JPS6330056B2 true JPS6330056B2 (en) 1988-06-16

Family

ID=14407621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105439A Granted JPS59230625A (en) 1983-06-13 1983-06-13 Oxidation of carbon monoxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPS59230625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756529Y2 (en) * 1989-10-21 1995-12-25 株式会社東芝 Desktop / wall-mounted phone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2481447T3 (en) * 2008-01-10 2014-07-30 Haldor Topsoe A/S Method and system for the purification of diesel engine exhaust gas
CN112403258B (en) * 2019-11-06 2021-10-26 中冶长天国际工程有限责任公司 System and method for removing carbon monoxide and denitration of flue gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168827A (en) * 1980-05-30 1981-12-25 Nippon Kokan Kk <Nkk> Oxidizing method for carbon monoxide in waste gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168827A (en) * 1980-05-30 1981-12-25 Nippon Kokan Kk <Nkk> Oxidizing method for carbon monoxide in waste gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756529Y2 (en) * 1989-10-21 1995-12-25 株式会社東芝 Desktop / wall-mounted phone

Also Published As

Publication number Publication date
JPS59230625A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
JP2887984B2 (en) Exhaust gas purification device for internal combustion engine
JPH11123318A (en) Device for cleaning gas containing nitrogen oxide
US4877592A (en) Method of catalytic cleaning of exhaust gases
JP5270912B2 (en) Catalytic oxidation treatment apparatus and catalytic oxidation treatment method
WO2007010985A1 (en) Exhaust gas purifier
JPH01184311A (en) Coal fired boiler device with denitration device
JPS6330056B2 (en)
JPH04326924A (en) Intermittent type apparatus and method for purifying catalyst
JP2002370012A (en) Exhaust gas treatment apparatus
JPS6115740A (en) Regeneration of oxidizing catalyst
JPH05115750A (en) Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
JPS59230624A (en) Oxidation of carbon monoxide in exhaust gas
JP2789871B2 (en) Catalyst purification device
JPH0633735A (en) Device for processing exhaust gas of diesel engine
JPH0579320A (en) Internal combustion engine, operation thereof and automobile
JPH0233852B2 (en)
JPS5910245B2 (en) Method of recovering latent heat from exhaust gas
JPS594172B2 (en) Carbon monoxide oxidation method in exhaust gas
JP2743632B2 (en) Noxious gas heating purification equipment
JPH11179153A (en) Method and apparatus for cleaning exhaust gas
JPS645089B2 (en)
JP2734823B2 (en) Noxious gas heating purification equipment
JP3500802B2 (en) Noxious gas heating purification equipment
WO2019026583A1 (en) Method for controlling co oxidation system, and co oxidation system
JP2831910B2 (en) Method for regenerating CO oxidation catalyst