JPH11179153A - Method and apparatus for cleaning exhaust gas - Google Patents

Method and apparatus for cleaning exhaust gas

Info

Publication number
JPH11179153A
JPH11179153A JP9355776A JP35577697A JPH11179153A JP H11179153 A JPH11179153 A JP H11179153A JP 9355776 A JP9355776 A JP 9355776A JP 35577697 A JP35577697 A JP 35577697A JP H11179153 A JPH11179153 A JP H11179153A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
purifying
reactor
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9355776A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujisawa
雅敏 藤澤
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9355776A priority Critical patent/JPH11179153A/en
Publication of JPH11179153A publication Critical patent/JPH11179153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply regenerate a deteriorated catalyst with a very small amt. of a halogen compd. in an apparatus wherein CO and hydrocarbons are removed by contact oxidation at low temp. SOLUTION: When an exhaust gas cleaning catalyst is deteriorated, the gas inlet direction of a catalyst layer 2 in a catalytic reactor 12 is shifted by using dampers 3-6. By opening the dampers 3 and 5 provided in an exhaust gas flow path 10a and closing the damper 4 provided in a flow path 10b and the damper 6 provided in a flow path 10c, the exhaust gas flows into from the front side in a figure of the catalytic reactor 12 and by closing the dampers 3 and 5 of the flow path 10b and opening the dampers 4 and 6 of the flow paths 10b and 10c, the exhaust gas flows into from the back side in a figure of the catalytic reactor 12. In addition, when activity of the catalyst is deteriorated, steam may be intermittently poured or the catalyst provided in the outlet part of the exhaust gas in the catalyst layer 2 piled into multistages and the catalyst of the inlet part may be respectively filled again so as to shift them to the gas inlet part and the outlet part or a combustible material such as methanol and propane may be poured into the catalyst layer for a definite period after the catalyst is deteriorated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラなどの燃焼
装置または石油化学工場や印刷、塗装、クリーニング工
場などから排出される排ガスの浄化装置とその運転方法
に係り、特にハロゲン化合物が共存する一酸化炭素や炭
化水素などの可燃物を効率よく酸化除去できる排ガス浄
化装置と運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion apparatus such as a boiler or an apparatus for purifying exhaust gas discharged from a petrochemical factory, a printing, painting, or cleaning factory, and an operation method thereof. The present invention relates to an exhaust gas purifying apparatus and an operating method capable of efficiently oxidizing and removing combustible substances such as carbon oxides and hydrocarbons.

【0002】[0002]

【従来の技術】一酸化炭素(CO)や炭化水素を含有す
る排ガスは、人体に有毒であると同時に臭気が強いため
公害を引き起こし、高い効率で除去することが望まれて
いる。これらを除く技術としては吸着法と接触酸化法が
知られているが、濃度の高い場合には前記有害物質除去
装置がコンパクトになることなどから、接触酸化による
方法が有利である。
2. Description of the Related Art Exhaust gas containing carbon monoxide (CO) and hydrocarbons is toxic to the human body and at the same time has a strong odor, causing pollution and is desired to be removed with high efficiency. As techniques for removing these, an adsorption method and a catalytic oxidation method are known. However, when the concentration is high, a method using catalytic oxidation is advantageous because the harmful substance removing device becomes compact.

【0003】COや炭化水素の接触酸化に用いる触媒と
しては、遷移金属酸化物を活性成分にする触媒や白金
(Pt)やパラジウム(Pd)などの貴金属を各種担体
に担持したものが知られており、特にPtを担持した触
媒が低温でも活性が高く、劣化も小さいことから広く実
用化されている。
As catalysts used for catalytic oxidation of CO and hydrocarbons, there are known catalysts containing a transition metal oxide as an active component and those carrying a noble metal such as platinum (Pt) or palladium (Pd) on various carriers. In particular, Pt-supported catalysts are widely used because of their high activity and low degradation even at low temperatures.

【0004】具体的には、図6の様に各種排ガス発生プ
ラント15出口の排ガス流路10に触媒層13を充填し
た触媒反応器12を設け、助燃バーナなどの加熱装置1
1を用いて所定温度に昇温した排ガスを触媒層13に導
き、排ガス中に含有されるCOや炭化水素を二酸化炭素
(CO2)や水に酸化する方法が採られている。触媒層
13中の触媒には一般に貴金属(特に白金)をアルミナ
もしくはコージェライトなどに担持した触媒が用いら
れ、150〜300℃の反応温度で高い除去効率が得ら
れている。
More specifically, as shown in FIG. 6, a catalyst reactor 12 filled with a catalyst layer 13 is provided in an exhaust gas passage 10 at the outlet of various exhaust gas generating plants 15 and a heating device 1 such as an auxiliary burner is provided.
1 is used to guide the exhaust gas heated to a predetermined temperature to the catalyst layer 13 and oxidize CO and hydrocarbons contained in the exhaust gas into carbon dioxide (CO 2 ) and water. Generally, a catalyst in which a noble metal (particularly platinum) is supported on alumina or cordierite is used as the catalyst in the catalyst layer 13, and high removal efficiency is obtained at a reaction temperature of 150 to 300 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
技術は、排ガス中にハロゲン化合物を含む場合の触媒活
性の劣化までは考慮されておらず、ハロゲン化合物を微
量に含む排ガスでは急激に触媒活性が低下するという問
題があった。図7は臭化水素を数ppmを含む排ガスに
おけるPt−A123触媒の活性の経時変化の一例を示
したものであるが、ハロゲン化合物が微量に存在すると
Pt−A123触媒の活性が急激に低下している。
However, the above prior art does not take into account the deterioration of the catalytic activity when the halogen compound is contained in the exhaust gas, and the catalytic activity decreases sharply in the exhaust gas containing a small amount of the halogen compound. There was a problem of doing. Figure 7 is illustrates an example of a time course of Pt-A1 2 O 3 catalyst activity in exhaust gas containing several ppm hydrogen bromide, the Pt-A1 2 O 3 catalyst when the halogen compound is present in a trace amount Activity drops sharply.

【0006】石油化学工場や印刷、塗装、クリーニング
工場などから排出される排ガス中には、数千ppmのC
Oや炭化水素の他に、通常数ppmから数10ppmの
ハロゲン化合物が含有されており、接触酸化法による排
ガス浄化では触媒の劣化が著しく、劣化した触媒の交換
のために多量の触媒を必要としたり、また触媒交換頻度
が大きく、その対策が望まれていた。特に、貴金属担持
触媒のハロゲン化合物による劣化速度は、低温になるほ
ど顕著であるため、低温活性が高い貴金属触媒を高温で
使用して使用期間を延ばそうとする手段がとられている
が、この場合には、運転コストの増大を招くだけでな
く、触媒の熱による劣化という問題を生じている。
Thousands of ppm of C are contained in exhaust gas discharged from petrochemical plants, printing, painting, and cleaning plants.
In addition to O and hydrocarbons, it usually contains several ppm to several tens ppm of halogen compounds, and exhaust gas purification by the catalytic oxidation method significantly deteriorates the catalyst, requiring a large amount of catalyst to replace the deteriorated catalyst. In addition, the frequency of catalyst replacement is high, and countermeasures have been desired. In particular, the rate of deterioration of the noble metal-supported catalyst due to the halogen compound is more remarkable at lower temperatures, and measures have been taken to extend the use period by using a noble metal catalyst having high low-temperature activity at high temperatures. In addition to the increase in operating cost, the problem of deterioration of the catalyst due to heat is caused.

【0007】また、触媒交換頻度を低減するために行う
触媒の再生処理はハロゲン化合物が存在しない高温下に
長時間さらしておく必要があり、その間プラントの運用
は停止させなければならない。
[0007] In addition, the regeneration treatment of the catalyst, which is performed to reduce the frequency of catalyst replacement, needs to be exposed to a high temperature in the absence of a halogen compound for a long time, during which time the operation of the plant must be stopped.

【0008】本発明の課題は、上記した従来技術の問題
をなくし、ハロゲン化合物含有排ガスを低温で、かつ長
期間高い浄化効率で運転可能な排ガス浄化装置または方
法を提供することにある。
[0008] An object of the present invention is to provide an exhaust gas purifying apparatus or method capable of operating a halogen compound-containing exhaust gas at a low temperature for a long period of time with high purification efficiency while eliminating the above-mentioned problems of the prior art.

【0009】また、本発明の課題は、COや炭化水素を
低温で接触酸化除去する装置において、微量なハロゲン
化合物により劣化した触媒を簡単に再生できる排ガス浄
化装置もしくは方法を提供することにある。
Another object of the present invention is to provide an exhaust gas purifying apparatus or method which can easily regenerate a catalyst deteriorated by a trace amount of a halogen compound in an apparatus for catalytically oxidizing and removing CO and hydrocarbons at a low temperature.

【0010】[0010]

【課題を解決するための手段】上記本発明の課題は、C
Oや炭化水素の接触酸化により浄化した際に発生する熱
または水蒸気でハロゲン化合物による劣化速度を遅らせ
るか、または劣化した触媒が再生されるようにすること
で解決できる。具体的には、次に列挙した発明を実行す
る方法と装置により本発明の課題が解決できる。
The object of the present invention is to solve the above-mentioned problem.
The problem can be solved by delaying the rate of deterioration by the halogen compound with heat or water vapor generated when the catalyst is purified by catalytic oxidation of O or hydrocarbons, or by regenerating the deteriorated catalyst. Specifically, the objects of the present invention can be solved by the following methods and apparatuses for carrying out the invention.

【0011】(a)図1に示すように排ガス浄化触媒が
劣化した場合にはダンパー3〜6を用いて触媒反応器1
2内の触媒層2のガス流入方向を入れ替える。すなわち
排ガス流路10のメイン流路10aに設けたダンパー
3、5を開放し、バイパス流路10bに設けたダンパー
4とバイパス流路10cに設けたダンパー6を閉鎖する
ことで排ガスは触媒反応器12の図示の前方側から流れ
込み、排ガス流路10のメイン流路10aのダンパー
3、5を閉じ、バイパス流路10b、10cのダンパー
4、6を開くことで排ガスは触媒反応器12の図示の後
方側から流れ込む。 (b)ハロゲン化合物により触媒活性が劣化した場合に
は、図2に示すように触媒A〜Eを多段に積んだ触媒層
2の排ガスガス出口部に設置していた触媒Eなどをガス
流入部に、入口部の触媒Aなどを出口部に置き換えるよ
うに充填し直す (c)排ガス浄化触媒の活性が劣化した後の一定期間
は、メタノール、プロパンなどの可燃物を触媒層に注入
する。
(A) When the exhaust gas purifying catalyst is deteriorated as shown in FIG.
The direction of gas inflow of the catalyst layer 2 in the second 2 is exchanged. That is, by opening the dampers 3 and 5 provided in the main flow passage 10a of the exhaust gas flow passage 10 and closing the damper 4 provided in the bypass flow passage 10b and the damper 6 provided in the bypass flow passage 10c, the exhaust gas is discharged to the catalytic reactor. 12, the exhaust gas flows from the front side in the figure, and the dampers 3, 5 of the main flow path 10a of the exhaust gas flow path 10 are closed, and the dampers 4, 6 of the bypass flow paths 10b, 10c are opened. It flows from behind. (B) When the catalyst activity is deteriorated by the halogen compound, as shown in FIG. 2, the catalyst E or the like which is installed at the exhaust gas outlet of the catalyst layer 2 in which the catalysts A to E are stacked in multiple stages is replaced by the gas inflow. (C) Inject a combustible material such as methanol or propane into the catalyst layer for a certain period after the activity of the exhaust gas purifying catalyst has deteriorated.

【0012】(d)排ガス浄化装置運転中、触媒層前流
側に水蒸気注入装置を設け、排ガス中に水蒸気を間欠的
に添加する。 (e)排ガス浄化装置運転停止時、触媒再生を目的と
し、水蒸気注入装置から水を含んだガス(air、N2
など)を流す。 (f)排ガス浄化装置運転停止時における触媒を装置内
または装置より取り出し、水蒸気を用いて通風する。
(D) During operation of the exhaust gas purifier, a steam injector is provided on the upstream side of the catalyst layer to intermittently add steam to the exhaust gas. (E) When the operation of the exhaust gas purifying device is stopped, water-containing gas (air, N 2
Flow). (F) The catalyst at the time when the operation of the exhaust gas purification device is stopped is taken out of the device or from the device, and ventilation is performed using steam.

【0013】COや炭化水素の接触酸化に用いる触媒は
遷移金属酸化物を活性成分にする触媒やPt、Pd等の
貴金属担持触媒がその特性を有しており、中でも上記方
法に用いる触媒としてPtを担持した触媒が好適であ
る。特にチタニアもしくはチタニアを担持したハニカム
担体に白金を担持したものが好結果を与える。
The catalyst used for the catalytic oxidation of CO and hydrocarbons is a catalyst containing a transition metal oxide as an active component or a catalyst supporting a noble metal such as Pt or Pd. Is preferred. In particular, those in which platinum is supported on titania or a honeycomb carrier supporting titania give good results.

【0014】本発明の上記(a)の発明において触媒反
応器12への排ガスの流入方向を入れ替えるための手段
には図1に示すように排ガス流路10のメイン流路10
aに設けたダンパー3、5とバイパス流路10b、10
cにそれぞれ設けたダンパー4、6を用いても良いし、
図示しない二方弁を複数用いて排ガスの流れる方向を切
り換えられるようにしても良い。
In the invention of the above (a) of the present invention, means for changing the flow direction of the exhaust gas into the catalytic reactor 12 includes, as shown in FIG.
a, dampers 3, 5 and bypass passages 10b, 10
The dampers 4 and 6 provided respectively for c may be used,
The flow direction of the exhaust gas may be switched using a plurality of two-way valves (not shown).

【0015】また、触媒層中の排ガス出口部の触媒と排
ガス入口部の触媒を入れ替える(b)の方法において触
媒層は多段である必要はなく、一層からなる触媒層の排
ガス入口部分と排ガス出口部分を反転させることで入れ
替えて充填することもできる。
In the method (b) in which the catalyst at the exhaust gas outlet and the catalyst at the exhaust gas inlet in the catalyst layer are replaced with each other, the catalyst layer does not need to be multistage, and the exhaust gas inlet and the exhaust gas outlet of the single catalyst layer are replaced. It is also possible to replace and fill by inverting the part.

【0016】さらに、(c)の発明において用いられる
可燃物は、メタノール、プロパンまたはブタン以外のも
のでも良いが、燃焼開始温度が排ガス浄化装置の運転温
度で容易に酸化燃焼する物質がよい。一般に炭素数の少
ない含酸素化合物、メタノール、エタノールのほか、炭
素数の比較的多い炭化水素が好結果を与えやすい。
Further, the combustible used in the invention (c) may be other than methanol, propane or butane, but a substance whose combustion start temperature easily oxidizes and burns at the operating temperature of the exhaust gas purifying apparatus is preferable. In general, oxygen-containing compounds having a small number of carbon atoms, methanol and ethanol, and hydrocarbons having a relatively large number of carbon atoms tend to give good results.

【0017】また、(d)の発明により間欠的に水蒸気
を注入することにより、ハロゲン化合物がハロゲン化
水素に分解された際、水蒸気が存在すると触媒層より排
ガス流れの後流側に配置された機器の腐食が著しいが、
触媒が劣化した時のみ水蒸気を添加するので、機器の腐
食のおそれがない。また触媒活性が低下したとのみ、
水蒸気を添加するので、水蒸気添加のランニングコスト
が少なくて済む。
Further, by intermittently injecting steam according to the invention of (d), when the halogen compound is decomposed into hydrogen halide, if steam is present, the steam is disposed on the downstream side of the exhaust gas flow from the catalyst layer. The equipment is significantly corroded,
Since steam is added only when the catalyst has deteriorated, there is no risk of equipment corrosion. Also, only when the catalyst activity has decreased,
Since steam is added, the running cost of steam addition can be reduced.

【0018】また、蒸気(d)の発明において、予め排
ガス中に水蒸気が含まれている場合は、水蒸気の不足分
を注入することでより効果的に酸化浄化できる。さら
に、上記効果を得るために、SO2などを付加すること
でも効果は期待されるが、非常に安価で、環境問題に影
響を及ぼさない水蒸気が最も適している。
Further, in the invention of the steam (d), when steam is contained in the exhaust gas in advance, more efficient oxidation purification can be achieved by injecting a shortage of the steam. Furthermore, although the effect can be expected by adding SO 2 or the like in order to obtain the above effect, water vapor which is very inexpensive and does not affect environmental issues is most suitable.

【0019】さらに上記した(a)〜(f)の発明は、
それぞれ単独で用いても良いが、これらの方法の中で少
なくとも二種類の方法を組み合わせて用いてもよい。
(a)あるいは(b)の発明を用いる場合に(c)〜
(f)の発明を組み合わせて行うことにより、さらに高
い効果が得られる。
Further, the inventions of the above (a) to (f)
Each of them may be used alone, or at least two of these methods may be used in combination.
When the invention of (a) or (b) is used, (c)-
A higher effect can be obtained by combining the invention of (f).

【0020】[0020]

【作用】本発明者らは、図6で示す従来の排ガス浄化装
置における触媒のハロゲンによる活性劣化を防止するた
め、その劣化挙動を詳細に研究し、次のような結論に至
った。
The present inventors have studied in detail the behavior of the catalyst in the conventional exhaust gas purifying apparatus shown in FIG. 6 in order to prevent the catalyst from deteriorating due to halogen, and have reached the following conclusion.

【0021】A)貴金属系触媒のハロゲン化合物による
劣化は、吸着による一次劣化であり再生可能である。 B)ハロゲン化合物の触媒への吸着は極めて弱く、数1
0〜100℃程度の昇温により大幅に減少し、それによ
り活性が回復する。その際、回復に要する時間は数時間
から数十時間でよい。 C)ハロゲン化合物による触媒活性の劣化は非常に大き
いが、水蒸気を間欠的に添加すると吸着したハロゲン化
合物を置換し、活性は回復する。 D)上記A)ないしC)の現象は特にPt−TiO2
媒で顕著である。
A) The deterioration of a noble metal catalyst due to a halogen compound is a primary deterioration due to adsorption and is reproducible. B) The adsorption of the halogen compound on the catalyst is extremely weak.
The activity is greatly reduced by raising the temperature to about 0 to 100 ° C., thereby recovering the activity. At this time, the time required for the recovery may be several hours to several tens of hours. C) Deterioration of the catalyst activity by the halogen compound is very large, but when steam is intermittently added, the adsorbed halogen compound is replaced and the activity is recovered. D) The above phenomena A) to C) are particularly remarkable with a Pt-TiO 2 catalyst.

【0022】本発明の特徴は、以上の現象を従来技術の
問題点の解決に利用する点にある。図3はPtまたは銅
(Cu)を活性成分とする触媒の臭化水素による加速劣
化試験により劣化挙動を示したものである。本図から明
らかなように、Cu系触媒に比較してPt系触媒は反応
ガス中で反応温度より50〜100℃高い温度である3
50〜400℃に2時間さらすだけで容易に活性が回復
する。これは、Pt触媒が前述したA)およびB)に示
した性質を有するためである。
A feature of the present invention resides in that the above phenomena are used to solve the problems of the prior art. FIG. 3 shows the degradation behavior of a catalyst containing Pt or copper (Cu) as an active component by an accelerated degradation test using hydrogen bromide. As is clear from this figure, the Pt-based catalyst is 50 to 100 ° C. higher than the reaction temperature in the reaction gas compared to the Cu-based catalyst.
Activity can be easily recovered by simply exposing to 50 to 400 ° C for 2 hours. This is because the Pt catalyst has the properties shown in A) and B) above.

【0023】ここで、もし微量なハロゲン化合物により
徐々に劣化した触媒を何らかの手段により、間欠的に短
時間でも高温で処理できるならば、触媒活性を回復させ
ることができ、長期間高い性能を維持し続けることが可
能になる。
Here, if the catalyst gradually degraded by a trace amount of a halogen compound can be intermittently treated at a high temperature for a short period of time by any means, the catalyst activity can be recovered and the high performance can be maintained for a long time. It is possible to continue doing.

【0024】一方、一般的に触媒酸化により無害化しな
ければならない産業排ガス中のCOや炭化水素濃度は数
千ppmと高い場合が多い。そのような場合にはそれら
の酸化反応熱で触媒装置内の温度分布は図5に示すよう
に数十〜100℃上昇する。従って、触媒性能の低下し
た時点で、温度が低く、活性劣化の大きい排ガス入口部
の触媒を何らかの手段により排ガス出口部に位置させる
ことにより、反応熱で触媒を再生できるはずである。本
発明で採用した(a)と(b)の方法は、このような思
想の基に達成したものであり、以下にその動作を説明す
る。
On the other hand, the concentration of CO and hydrocarbons in industrial exhaust gas, which must generally be made harmless by catalytic oxidation, is often as high as several thousand ppm. In such a case, the temperature distribution in the catalyst device rises by several tens to 100 ° C. as shown in FIG. 5 due to the heat of the oxidation reaction. Therefore, when the catalyst performance decreases, the catalyst at the exhaust gas inlet having a low temperature and large activity degradation should be located at the exhaust gas outlet by some means, so that the catalyst can be regenerated with the heat of reaction. The methods (a) and (b) employed in the present invention have been achieved based on such an idea, and the operation thereof will be described below.

【0025】図1に示すように(a)の発明において、
排ガスはまず、メインの排ガス流路10aとダンパー3
を通って触媒層2に導かれ、排ガスに含有されるCOと
炭化水素が接触酸化によりCO2と水に変換された後、
ダンパー5を経て排出される。触媒層2中の触媒は排ガ
スに含まれるハロゲン化合物により、排ガス入口から徐
々に劣化し、その結果触媒層2の排ガス浄化性能が低下
してくる。排ガス浄化性能の程度が一定に達した時点で
ダンパー3、5を閉じ、ダンパー4、6を開き、バイパ
ス流路10bから触媒層2の図示後方側から排ガスを導
入させて、触媒酸化後、ダンパー6、バイパス流路10
cから排出されるようにガス流れ方向を変更すると、活
性劣化の激しかった反応器12の図示の排ガス入口部に
位置していた触媒は、反応熱で温度の上昇した排ガスに
さらされ、再生される。
As shown in FIG. 1, in the invention of FIG.
Exhaust gas is first supplied to the main exhaust gas passage 10 a and the damper 3.
After passing through the catalyst layer 2 to convert CO and hydrocarbons contained in the exhaust gas into CO 2 and water by catalytic oxidation,
It is discharged through the damper 5. The catalyst in the catalyst layer 2 gradually deteriorates from the exhaust gas inlet due to the halogen compound contained in the exhaust gas, and as a result, the exhaust gas purification performance of the catalyst layer 2 decreases. When the degree of exhaust gas purification performance reaches a certain level, the dampers 3 and 5 are closed, the dampers 4 and 6 are opened, and exhaust gas is introduced from the back side of the catalyst layer 2 through the bypass flow path 10b as shown in FIG. 6, bypass channel 10
When the gas flow direction is changed so as to be discharged from c, the catalyst located at the illustrated exhaust gas inlet portion of the reactor 12 whose activity has been greatly degraded is exposed to the exhaust gas whose temperature has increased due to the heat of reaction, and is regenerated. You.

【0026】(b)の発明の場合は、上記(a)の発明
における操作をガス流路を切り換えないで一つの触媒層
での触媒の入れ換えによって実施しようとするものであ
り、その作用は上述した場合と同様である。
In the case of the invention (b), the operation in the invention (a) is to be carried out by exchanging the catalyst in one catalyst layer without switching the gas flow path. This is the same as when

【0027】他方、(c)の発明を用いる場合は、触媒
が劣化して排ガス浄化装置が所定の性能を維持できなく
なった場合に、処理対象であるCOや炭化水素に比べて
反応性の高いガスを排ガス中に注入し、触媒層の排ガス
入口部で燃焼させることによって加熱再生しようとする
ものである。
On the other hand, when the invention of (c) is used, when the catalyst deteriorates and the exhaust gas purifying device cannot maintain the predetermined performance, the reactivity is higher than that of CO or hydrocarbon to be treated. The gas is injected into the exhaust gas and burned at the exhaust gas inlet of the catalyst layer to perform heating and regeneration.

【0028】排ガス中にメタノールやブタンなどの反応
性の高い物質を数1000ppm注入すると、それらは
触媒層の排ガス入口側で速やかに酸化し、触媒層の排ガ
ス入口部の温度を上昇させる。その温度上昇に伴って、
ハロゲンによって劣化した触媒は、速やかに再生され、
排ガス浄化装置の性能が回復する。上述したように再生
に必要な時間は数時間から数10時間で十分であり僅か
な燃料費の増大によって効率よく再生することが可能で
ある。特に浄化対象ガスの発熱量の小さい場合には、極
めて有効な再生手段となる。
When several 1000 ppm of highly reactive substances such as methanol and butane are injected into the exhaust gas, they rapidly oxidize at the exhaust gas inlet side of the catalyst layer, and increase the temperature at the exhaust gas inlet of the catalyst layer. With its temperature rise,
The catalyst degraded by halogen is quickly regenerated,
The performance of the exhaust gas purification device is restored. As described above, the time required for regeneration is several hours to several tens of hours, and regeneration can be efficiently performed with a slight increase in fuel cost. In particular, when the calorific value of the gas to be purified is small, it becomes an extremely effective regeneration means.

【0029】以上のように本発明は、貴金属触媒のハロ
ゲン化合物による劣化の特徴と浄化対象ガスが発熱を伴
うことが多いことを巧みに組み合わせることにより、長
期間高い装置性能を維持できるようにしたことを特徴と
するものである。
As described above, the present invention makes it possible to maintain high device performance for a long period of time by skillfully combining the characteristic of deterioration of a noble metal catalyst with a halogen compound and the fact that the gas to be purified often generates heat. It is characterized by the following.

【0030】また(d)の発明において、図4に示す通
りプラント15からの排ガス出口流路において触媒層1
3を充填した触媒反応器12と加熱装置11の間に水蒸
気注入装置7を設け、水蒸気注入装置7から水蒸気を排
ガス中に入れることによりハロゲンの触媒への吸着が抑
制され、低温で効率的に排ガス浄化が可能となる。この
水蒸気の排ガス中への注入は加熱装置11の前流側でも
構わず、加熱装置11と一体にしても問題ない。
In the invention (d), as shown in FIG.
The steam injection device 7 is provided between the catalytic reactor 12 filled with 3 and the heating device 11, and the steam is introduced into the exhaust gas from the steam injection device 7, whereby the adsorption of halogen to the catalyst is suppressed, and the catalyst is efficiently used at a low temperature. Exhaust gas purification becomes possible. The injection of the steam into the exhaust gas may be on the upstream side of the heating device 11 or may be integrated with the heating device 11 without any problem.

【0031】図6に示す従来技術ではプラント15より
排出される排ガスは加熱装置11により加熱された後、
触媒層13へと送られる。ここで、一般的に水蒸気共存
下ではその吸着阻害により活性が低下するため、必要に
応じてドライヤーにより脱水される。
In the prior art shown in FIG. 6, after the exhaust gas discharged from the plant 15 is heated by the heating device 11,
It is sent to the catalyst layer 13. Here, in general, in the presence of water vapor, the activity is reduced due to the inhibition of the adsorption.

【0032】(d)の発明を用いて運転を行うことは、
先に述べた通り、ハロゲンの吸着を抑制する結果を導
き、ハロゲンの吸着量が減少することで触媒の有効活性
点が増加し、酸化率の向上につながる。高酸化率が得ら
れれば必然的に必要触媒量が減少し、装置運転のコスト
ダウンができる。
Driving using the invention of (d)
As described above, the result of suppressing the adsorption of halogen is derived, and the reduction in the amount of halogen adsorption increases the effective active site of the catalyst, leading to an improvement in the oxidation rate. If a high oxidation rate is obtained, the required amount of catalyst is inevitably reduced, and the cost of operating the apparatus can be reduced.

【0033】一般的な接触酸化では、水蒸気共存下で触
媒活性が低下する。本発明の触媒も水蒸気を注入するこ
とで触媒活性は低下するが、水蒸気とハロゲン化合物が
共存すると、水による活性低下がハロゲン化合物による
活性低下を妨げて、全体として触媒の活性低下が小さく
て済む。
In general catalytic oxidation, the catalytic activity decreases in the presence of steam. The catalyst of the present invention also reduces the catalytic activity by injecting steam. However, when steam and a halogen compound coexist, the decrease in activity due to water prevents the decrease in activity due to the halogen compound. .

【0034】また、(e)の方法において、本発明では
従来技術では高温で長時間エージングする必要のあった
触媒再生が、低温で円滑に行うことが可能であるため、
プラント停止持には図4に示す水蒸気注入装置7から水
蒸気を注入し、配管5、反応器12(触媒層13)を経
由し、配管6により排出することで触媒を再生すること
が可能となる。
Further, in the method (e), in the present invention, the catalyst regeneration which had to be aged for a long time at a high temperature in the prior art can be smoothly performed at a low temperature.
When the plant is stopped, steam can be injected from the steam injection device 7 shown in FIG. 4 and discharged through the pipe 6 via the pipe 5 and the reactor 12 (catalyst layer 13) to regenerate the catalyst. .

【0035】(f)の方法においては排ガス浄化装置の
運転停止後、図4に示す反応器12から触媒層13を取
り出した後、この触媒層13に水蒸気を用いて通風する
方法である。
In the method (f), after the operation of the exhaust gas purifying apparatus is stopped, the catalyst layer 13 is taken out from the reactor 12 shown in FIG. 4, and then the catalyst layer 13 is ventilated using steam.

【0036】(e)の方法または(f)の方法を用いる
ことによりハロゲン化合物によって劣化した触媒の再生
において、水蒸気がハロゲンの脱離を促進し、低温で回
復することが可能であるため、従来技術において再生
時、高温に昇温していた燃料が不要となり、また、再生
時間についても短時間で再生可能となるため、より大き
なコストダウンが可能となる。
In the regeneration of a catalyst degraded by a halogen compound by using the method (e) or the method (f), water vapor promotes elimination of halogen and can be recovered at a low temperature. In the technology, the fuel which has been heated to a high temperature is not required at the time of regeneration, and the regeneration time can be reduced in a short time, so that a greater cost reduction is possible.

【0037】[0037]

【発明の実施の形態】以下本発明の実施の形態について
説明する。 実施例1 コージェライト担体(セル数 200セル/インチ、セ
ル厚み 0.3mm)の担体にチタニアゾル(TiO2
含有量30%)を含浸させた後、150℃で乾燥させ、
再びチタニアゾルに含浸させ、150℃で乾燥させ後、
500℃で2時間焼成した。得られた担体にジニトロジ
アンミン白金の水溶液を担体に対し、Ptが0.1wt
%になるように含浸させた後、150℃で乾燥させ、5
50℃で2時間焼成させて排ガス浄化用触媒を得た。
Embodiments of the present invention will be described below. Example 1 Titania sol (TiO 2 ) was applied to a cordierite carrier (cell number: 200 cells / inch, cell thickness: 0.3 mm).
Content 30%), dried at 150 ° C.,
After impregnating again in titania sol and drying at 150 ° C.,
It was baked at 500 ° C. for 2 hours. An aqueous solution of dinitrodiammine platinum was added to the obtained carrier, and Pt was 0.1 wt%
%, And then dried at 150 ° C.
It was calcined at 50 ° C. for 2 hours to obtain an exhaust gas purifying catalyst.

【0038】図1あるいは図2に示した触媒の再生の効
果を確認するため、上記触媒を用いて表1の条件で24
時間運転後、触媒層の排ガスの入口部と出口部とで触媒
の配置位置を逆にして24時間運転することを10回繰
り返した。
In order to confirm the effect of the regeneration of the catalyst shown in FIG. 1 or FIG.
After the operation for 24 hours, the operation for 24 hours was repeated by reversing the arrangement position of the catalyst at the inlet and the outlet of the exhaust gas of the catalyst layer 10 times.

【0039】[0039]

【表1】 [Table 1]

【0040】比較例1 従来技術を模擬するため実施例1に用いた触媒と同じ触
媒を用い、触媒層の排ガスの入口部と出口部を入れ替え
ることを行わないで、480時間保持した。
Comparative Example 1 In order to simulate the prior art, the same catalyst as used in Example 1 was used, and the catalyst layer was held for 480 hours without changing the inlet and outlet of the exhaust gas.

【0041】実施例2 実施例1のチタニアゾルをアルミナゾルに代えて同様の
操作により触媒を調整した。この触媒を用いて実施例1
と同様に触媒再生の模擬試験を行った。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that the titania sol was replaced with alumina sol. Example 1 using this catalyst
A simulation test of catalyst regeneration was conducted in the same manner as in the above.

【0042】比較例2 実施例2の触媒を用い比較例1と同様の試験を実施し
た。
Comparative Example 2 The same test as in Comparative Example 1 was performed using the catalyst of Example 2.

【0043】実施例3 前述の(c)の方法の効果を確認するため、実施例1の
触媒を表1の条件で480時間運転後、気化させたメタ
ノールを2,000ppm、2時間注入し、その後の触
媒活性を調べた。
Example 3 In order to confirm the effect of the above method (c), the catalyst of Example 1 was operated for 480 hours under the conditions shown in Table 1, and then 2,000 ppm of vaporized methanol was injected for 2 hours. The subsequent catalytic activity was investigated.

【0044】比較例3 実施例1の触媒に代えて特願平6−320527号(特
開平8−173760号)におけるCu・CeO2・M
23・ZrO2(重量比1:1:4:4)触媒を用い
て同様の試験を行った。
[0044] Comparative Example 3 Example in place of the catalyst No. Hei 6-320527 of 1 Cu · CeO 2 · in (JP-A-8-173760) M
A similar test was performed using an n 2 O 3 .ZrO 2 (weight ratio of 1: 1: 4: 4) catalyst.

【0045】実施例1〜実施例3および比較例1〜比較
例3の触媒について、初期および500時間経過後のC
O除去率を測定した結果を表2にまとめて示した。
With respect to the catalysts of Examples 1 to 3 and Comparative Examples 1 to 3, C was initially and after 500 hours.
The results of measuring the O removal rate are summarized in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】実施例1と比較例1および実施例2と比較
例2の比較から、触媒層に流入する方向を周期的に変更
した本発明の実施例の場合には触媒の活性低下がほとん
ど無かったのに対し、ガス流入方向が同一であった比較
例の場合には500時間経過後のCOの除去性能は大き
く低下している。
From the comparison between Example 1 and Comparative Example 1 and between Example 2 and Comparative Example 2, in the example of the present invention in which the direction of flow into the catalyst layer is periodically changed, there is almost no decrease in the activity of the catalyst. On the other hand, in the case of the comparative example in which the gas inflow directions were the same, the CO removal performance after 500 hours had been significantly reduced.

【0048】このようにガス流れ方向の変更もしくは触
媒の排ガス入口部と出口部での入れ替えによって、触媒
層の排ガス入口部にあった触媒を排ガス出口部に、排ガ
ス出口部にあった触媒を排ガス入口部になるように運転
することにより、排ガス中のハロゲンに化合物による劣
化を著しく軽減でき、長時間高い性能を維持することが
できる。
As described above, by changing the gas flow direction or changing the catalyst at the exhaust gas inlet and outlet, the catalyst at the exhaust gas inlet of the catalyst layer is used as the exhaust gas outlet, and the catalyst at the exhaust gas outlet is used as the exhaust gas. By operating so as to be at the inlet, deterioration of halogen in exhaust gas due to compounds can be remarkably reduced, and high performance can be maintained for a long time.

【0049】また、比較例1と実施例3の比較をしてみ
ると、燃焼性の高い有機物を添加し、その接触酸化熱で
触媒を加熱した本発明になる実施例3では活性が大きく
回復している。これは、間欠的に燃焼し易い炭化水素を
添加して運転する本発明の方法が優れたものであること
を示すものである。
In comparison between Comparative Example 1 and Example 3, it was found that in Example 3 according to the present invention in which a highly flammable organic substance was added and the catalyst was heated by the heat of catalytic oxidation, the activity was greatly recovered. doing. This indicates that the method of the present invention, in which an intermittently combustible hydrocarbon is added for operation, is excellent.

【0050】実施例4 実施例1で得られた触媒を用いて表3の条件で700時
間運転を行った。
Example 4 The catalyst obtained in Example 1 was operated for 700 hours under the conditions shown in Table 3.

【0051】比較例4 従来技術を模擬するため実施例4に用いた触媒と同じ触
媒を用い、表3の条件の中のH2O=1.5%をH2O=
0%に変更して700時間運転を行った。
[0051] Using the same catalyst as used in Example 4 to simulate the Comparative Example 4 prior art, the H 2 O = 1.5% in the conditions of Table 3 H 2 O =
The operation was performed for 700 hours while changing to 0%.

【0052】[0052]

【表3】 [Table 3]

【0053】実施例5 実施例1のチタニアゾルをアルミナゾルに変えて同様の
操作により触媒を調整した。この触媒を用いて実施例4
と同様の試験を行った。
Example 5 A catalyst was prepared in the same manner as in Example 1, except that the titania sol of Example 1 was changed to alumina sol. Example 4 using this catalyst
The same test was performed.

【0054】比較例5 実施例5の触媒を用いて比較例4と同様の試験を実施し
た。
Comparative Example 5 The same test as in Comparative Example 4 was carried out using the catalyst of Example 5.

【0055】実施例6 空間速度の影響を見るため、実施例4の触媒を用い、表
3の条件の空間速度を30000h-1に変更して600
時間運転を行った。
Example 6 In order to observe the effect of space velocity, the catalyst of Example 4 was used, and the space velocity under the conditions shown in Table 3 was changed to 30,000 h -1 to obtain a value of 600.
Driving for hours.

【0056】比較例6 実施例6の条件をH2O=0%に変更して試験を行っ
た。
Comparative Example 6 A test was conducted by changing the conditions of Example 6 to H 2 O = 0%.

【0057】実施例7 (d)の方法、(e)の方法の効果を確認するため、実
施例1と同様の触媒を用い、表3のH2O=0%の条件
で試験を行った。ただし100時間運転毎にH2O=
1.5%で1時間の再生運転を行い、700時間後、再
生を行う前の活性を測定した。
Example 7 In order to confirm the effects of the methods (d) and (e), a test was conducted using the same catalyst as in Example 1 under the condition of H 2 O = 0% in Table 3. . However, H 2 O =
The regeneration operation was performed at 1.5% for 1 hour, and after 700 hours, the activity before regeneration was measured.

【0058】比較例7 比較例5にて劣化した触媒を150℃の空気で2時間通
風後、表3の空間速度30,000h-1の条件にて活性
を測定した。
COMPARATIVE EXAMPLE 7 The catalyst deteriorated in Comparative Example 5 was ventilated with air at 150 ° C. for 2 hours, and then the activity was measured at a space velocity of 30,000 h −1 in Table 3.

【0059】実施例8 (f)の方法の効果を確認するため、比較例6にて劣化
した触媒を取り出し、一度水に漬けた後、ドライヤーで
通風乾燥させた触媒を表3の条件にて活性を測定した。
Example 8 In order to confirm the effect of the method (f), the catalyst degraded in Comparative Example 6 was taken out, immersed in water once, and then dried by ventilation with a drier under the conditions shown in Table 3. Activity was measured.

【0060】比較例8 比較例7にて使用後の触媒を用いて、ドライヤーで通風
のみ行い、表3の条件にて活性を測定した。
Comparative Example 8 Using the catalyst used in Comparative Example 7, only ventilation was performed with a drier, and the activity was measured under the conditions shown in Table 3.

【0061】実施例9 比較例8にて使用後の触媒を用い、実施例7と同様の試
験を行った。
Example 9 The same test as in Example 7 was performed using the catalyst used in Comparative Example 8.

【0062】実施例4〜9および比較例4〜8の触媒に
ついて初期および耐久試験後のCO除去率を測定した結
果を表4にまとめて示した。
Table 4 summarizes the results of measuring the CO removal rates of the catalysts of Examples 4 to 9 and Comparative Examples 4 to 8 both at the initial stage and after the durability test.

【0063】[0063]

【表4】 [Table 4]

【0064】実施例4〜6と比較例4〜6との比較か
ら、初期活性は水蒸気の無い条件の方が高活性であるの
に対して、600または700時間耐久試験時、ハロゲ
ン化合物と水蒸気の触媒表面に競争吸着し、水蒸気の吸
着が、非常に活性低下の大きいハロゲンの吸着を抑制し
ているためといえる。
From the comparison between Examples 4 to 6 and Comparative Examples 4 to 6, the initial activity was higher in the condition without water vapor, whereas the initial activity was higher in the endurance test for 600 or 700 hours. It can be said that the adsorption of water vapor suppresses the adsorption of halogen, which greatly reduces the activity, due to competitive adsorption on the catalyst surface.

【0065】また、実施例7と比較例7との比較から、
低温の空気で再生しても効果がほとんど見られなかった
のに対して、水蒸気を用いて再生した場合の効果は非常
に大きいことが分かる。この比較のみでは単に触媒成分
の違いの影響とも考えられるが、実施例9にて比較例7
で活性回復の小さかった触媒が大きく回復していること
からも水蒸気による再生の有効性が認められる。さら
に、実施例8と比較例8との比較においても同様の効果
を認めることができた。
From the comparison between Example 7 and Comparative Example 7,
It can be seen that while little effect was seen when regenerating with low-temperature air, the effect when regenerating with steam was very large. Although this comparison alone is considered to be simply due to the difference in the catalyst components, Example 9 shows Comparative Example 7
Thus, the effectiveness of the regeneration with steam is also recognized from the fact that the catalyst whose activity recovery was small was largely recovered. Further, a similar effect was able to be recognized in the comparison between Example 8 and Comparative Example 8.

【0066】[0066]

【発明の効果】本発明によれば、従来劣化が大きいため
大量の触媒を必要としたり、高い性能の得られなかった
ハロゲン化合物を含有する排ガス中のCOや炭化水素
を、低温かつ高効率で浄化することが可能になる。
According to the present invention, a large amount of a catalyst is required due to the conventional deterioration, and CO and hydrocarbons in the exhaust gas containing a halogen compound, for which high performance has not been obtained, can be removed at a low temperature and a high efficiency. It becomes possible to purify.

【0067】また触媒再生に際しては、大がかりな操作
は必要なく、流路の切換、劣化時点での触媒の充填し直
し、あるいは微量の可燃物の注入等の簡単な操作でよい
ため、経済的にも大きなメリットがある。また、触媒再
生に水蒸気を用いる場合にも、短時間で効率的な再生が
可能であり、利用する水蒸気についても安価で、環境問
題にも影響が無いため、安価な再生により触媒交換頻度
を軽減でき、経済的にも大きなメリットがある。
In the regeneration of the catalyst, a large-scale operation is not required, and a simple operation such as switching of the flow path, refilling of the catalyst at the time of deterioration, or injection of a small amount of combustible material is sufficient, so that it is economical. There are also great benefits. Also, when steam is used for catalyst regeneration, efficient regeneration can be performed in a short time, and the steam used is inexpensive and has no impact on environmental issues. Yes, it has great economic benefits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の排ガス浄化設備のフロ
ーチャートを示す図である。
FIG. 1 is a diagram showing a flowchart of an exhaust gas purifying facility according to an embodiment of the present invention.

【図2】 本発明の実施の形態の排ガス浄化触媒層の配
置位置を排ガス入口部と出口部で入れ替える場合の説明
図を示す図である。
FIG. 2 is a diagram illustrating a case where the arrangement position of an exhaust gas purifying catalyst layer according to an embodiment of the present invention is switched between an exhaust gas inlet portion and an exhaust portion.

【図3】 ハロゲン化合物含有排ガスによる触媒活性の
変化を示す図である。
FIG. 3 is a graph showing a change in catalytic activity due to a halogen compound-containing exhaust gas.

【図4】 本発明の実施の形態の排ガス浄化設備のフロ
ーチャートを示す図である。
FIG. 4 is a view showing a flowchart of the exhaust gas purifying facility of the embodiment of the present invention.

【図5】 従来技術での触媒層内の温度分布の一例を示
す図である。
FIG. 5 is a diagram showing an example of a temperature distribution in a catalyst layer according to a conventional technique.

【図6】 従来技術による触媒燃焼装置を示す図であ
る。
FIG. 6 is a diagram showing a conventional catalytic combustion device.

【図7】 Pt/Al23触媒のハロゲン共存下でのC
O酸化率の経時変化を示す図である。
FIG. 7: C in the presence of Pt / Al 2 O 3 catalyst in the presence of halogen
It is a figure which shows a time-dependent change of O oxidation rate.

【符号の説明】[Explanation of symbols]

2 触媒層 3〜6 ダンパー 7 水蒸気注入装置 10 排ガス流路 11 加熱装置 12 触媒反応器 15 排ガス発生源プラント 2 Catalyst layer 3-6 Damper 7 Steam injection device 10 Exhaust gas channel 11 Heating device 12 Catalytic reactor 15 Exhaust gas source plant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今田 尚美 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Naomi Imada 3-36 Takara-cho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、炭化水素を排ガス浄化触媒を内蔵した排ガス
浄化触媒反応器に通して接触酸化により二酸化炭素ある
いは水に変換して浄化する排ガス浄化方法において、 排ガス浄化処理中あるいは排ガス浄化処理の停止中に排
ガス浄化触媒反応器の排ガス入口側に位置した触媒を排
ガス浄化触媒反応器の排ガス出口側に、排ガス浄化触媒
反応器の排ガス出口側にあった触媒を排ガス浄化触媒反
応器の排ガス入口側になるような操作を間欠的に行うこ
とを特徴とする排ガス浄化方法。
An exhaust gas purifying method for purifying carbon monoxide and hydrocarbons in an exhaust gas containing a halogen compound through an exhaust gas purifying catalyst reactor having an exhaust gas purifying catalyst and converting the carbon monoxide and hydrocarbons into carbon dioxide or water by catalytic oxidation. During the exhaust gas purification process or during the stop of the exhaust gas purification process, the catalyst located on the exhaust gas inlet side of the exhaust gas purification catalyst reactor is connected to the exhaust gas outlet side of the exhaust gas purification catalyst reactor and the catalyst located on the exhaust gas outlet side of the exhaust gas purification catalyst reactor. An exhaust gas purifying method comprising intermittently performing an operation of bringing the exhausted catalyst into an exhaust gas inlet side of an exhaust gas purifying catalytic reactor.
【請求項2】 排ガス浄化触媒に対する排ガス流入方向
の変更を排ガス浄化反応器の入口側と出口側の排ガス流
路の切り換えにより行うことを特徴とする請求項1記載
の排ガスの浄化方法。
2. The exhaust gas purifying method according to claim 1, wherein the direction of exhaust gas flowing into the exhaust gas purifying catalyst is changed by switching an exhaust gas flow path between an inlet side and an outlet side of the exhaust gas purifying reactor.
【請求項3】 排ガス浄化触媒反応器中の排ガス浄化触
媒が一段又は多段に設けられた触媒層からなり、該触媒
層に対するガス流入方向の変更を一段又は多段触媒層内
の触媒の配置位置を入れ替えにより行うことを特徴とす
る請求項2記載の排ガスの浄化方法。
3. An exhaust gas purifying catalyst in an exhaust gas purifying catalyst reactor comprises a catalyst layer provided in one or more stages, and a change in a gas inflow direction with respect to the catalyst layer is determined by changing the position of the catalyst in the single or multi-stage catalyst layer. 3. The method for purifying exhaust gas according to claim 2, wherein the method is performed by exchanging.
【請求項4】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、炭化水素を排ガス浄化触媒を内蔵した排ガス
浄化触媒反応器内での接触酸化により二酸化炭素あるい
は水に変換して浄化する排ガス浄化方法において、 触媒性能が低下した場合に可燃性ガスを注入すると同時
に接触酸化させ、触媒層の温度を一定期間上昇させるこ
とを特徴とする排ガスの浄化方法。
4. An exhaust gas purification method for converting carbon monoxide and hydrocarbons in an exhaust gas containing a halogen compound into carbon dioxide or water by catalytic oxidation in an exhaust gas purification catalyst reactor containing an exhaust gas purification catalyst to purify the exhaust gas. 3. The method for purifying exhaust gas according to claim 1, wherein when the catalytic performance is lowered, a combustible gas is injected and simultaneously oxidized by contact to raise the temperature of the catalytic layer for a certain period.
【請求項5】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、炭化水素を排ガス浄化触媒を内蔵した排ガス
浄化触媒反応器内での接触酸化により二酸化炭素あるい
は水に変換して浄化する排ガス浄化方法において、 排ガス浄化中の一定期間もしくは排ガス浄化中の全ての
期間で排ガスに水蒸気を間欠的に添加することを特徴と
する排ガスの浄化方法。
5. An exhaust gas purification method for converting and purifying carbon monoxide and hydrocarbons in an exhaust gas containing a halogen compound into carbon dioxide or water by catalytic oxidation in an exhaust gas purification catalyst reactor containing an exhaust gas purification catalyst. 3. The method for purifying exhaust gas according to claim 1, wherein steam is intermittently added to the exhaust gas during a certain period during exhaust gas purification or during all periods during exhaust gas purification.
【請求項6】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、炭化水素を排ガス浄化触媒を内蔵した排ガス
浄化触媒反応器に通して接触酸化により二酸化炭素ある
いは水に変換して浄化する排ガス浄化方法において、 排ガス浄化触媒を排ガス浄化処理の停止期間に排ガス浄
化触媒反応器内で水蒸気で処理するかまたは排ガス浄化
触媒反応器外に一旦取り出した後に水蒸気で処理するこ
とを特徴とする排ガス浄化触媒の再生方法。
6. An exhaust gas purifying method for purifying carbon monoxide and hydrocarbons in an exhaust gas containing a halogen compound through an exhaust gas purifying catalyst reactor having an exhaust gas purifying catalyst and converting the carbon monoxide and hydrocarbons into carbon dioxide or water by catalytic oxidation. The exhaust gas purifying catalyst characterized in that the exhaust gas purifying catalyst is treated with steam in the exhaust gas purifying catalyst reactor during the stop period of the exhaust gas purifying process or is once taken out of the exhaust gas purifying catalyst reactor and treated with steam. Playback method.
【請求項7】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、炭化水素を排ガス浄化触媒を内蔵した排ガス
浄化触媒反応器に通して接触酸化により二酸化炭素ある
いは水に変換して浄化する排ガス浄化装置において、 第一の排ガス通路と第二の排ガス通路を有する排ガス浄
化触媒反応器への排ガス流入、流出方向を第一の排ガス
通路を排ガス入口とし、第二の排ガス通路を排ガス出口
とする場合と、第二の排ガス通路を排ガス入口とし、第
一の排ガス通路を排ガス出口とする場合とに切り換える
手段を備えたことを特徴とする排ガス浄化装置。
7. An exhaust gas purifying apparatus for purifying carbon monoxide and hydrocarbons in an exhaust gas containing a halogen compound through an exhaust gas purifying catalyst reactor having an exhaust gas purifying catalyst and converting the carbon monoxide and hydrocarbons into carbon dioxide or water by catalytic oxidation. In the case where the exhaust gas inflow and outflow directions to the exhaust gas purifying catalytic reactor having the first exhaust gas passage and the second exhaust gas passage are the first exhaust gas passage as the exhaust gas inlet, and the second exhaust gas passage as the exhaust gas outlet. An exhaust gas purifying apparatus characterized by comprising means for switching between a case where the second exhaust gas passage is an exhaust gas inlet and a case where the first exhaust gas passage is an exhaust gas outlet.
【請求項8】 ハロゲン化合物を含有する排ガス中の一
酸化炭素、可燃性炭化水素を排ガス浄化触媒を内蔵した
排ガス浄化触媒反応器に通して接触酸化により二酸化炭
素あるいは水に変換して浄化する排ガス浄化装置におい
て、 排ガス浄化触媒反応器の前流側の排ガス流路中に水蒸気
または可燃性ガスを注入する注入手段を備えたことを特
徴とする排ガス浄化装置。
8. Exhaust gas purified by converting carbon monoxide and flammable hydrocarbons in an exhaust gas containing a halogen compound through an exhaust gas purifying catalyst reactor containing an exhaust gas purifying catalyst and converting it into carbon dioxide or water by catalytic oxidation. An exhaust gas purifying apparatus, comprising: an injection means for injecting steam or a flammable gas into an exhaust gas channel on the upstream side of an exhaust gas purifying catalytic reactor.
JP9355776A 1997-12-24 1997-12-24 Method and apparatus for cleaning exhaust gas Pending JPH11179153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9355776A JPH11179153A (en) 1997-12-24 1997-12-24 Method and apparatus for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9355776A JPH11179153A (en) 1997-12-24 1997-12-24 Method and apparatus for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JPH11179153A true JPH11179153A (en) 1999-07-06

Family

ID=18445701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9355776A Pending JPH11179153A (en) 1997-12-24 1997-12-24 Method and apparatus for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JPH11179153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2006167359A (en) * 2004-12-20 2006-06-29 Sharp Corp Harmful gas removing filter and air conditioning machine
KR100880236B1 (en) * 2006-07-10 2009-01-28 쥬코쿠 덴료쿠 가부시키 가이샤 Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
JP2010149084A (en) * 2008-12-26 2010-07-08 Ebara Corp Exhaust gas treatment method including increasing treatment temperature, operation method of exhaust gas treatment apparatus, and exhaust gas treatment apparatus
JP2020015040A (en) * 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867614A (en) * 1971-12-18 1973-09-14
JPS5858134B2 (en) * 1979-09-05 1983-12-23 日本鋼管株式会社 Denitrification method for sintering furnace exhaust gas
JPS60238153A (en) * 1984-05-10 1985-11-27 Kawasaki Steel Corp Regeneration of catalyst used in oxidation of carbon monoxide
JPS6115740A (en) * 1984-07-02 1986-01-23 Kawasaki Steel Corp Regeneration of oxidizing catalyst
JPH06205938A (en) * 1992-12-23 1994-07-26 Rohm & Haas Co Method for separation and decomposition of halogenated organic and inorganic compound by porous carbonaceous substance
JPH08229354A (en) * 1994-12-28 1996-09-10 Hitachi Ltd Treatment of organic halogen compound with catalyst
JPH09276697A (en) * 1996-04-15 1997-10-28 Babcock Hitachi Kk Exhaust gas cleaning catalyst and exhaust gas purifying method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867614A (en) * 1971-12-18 1973-09-14
JPS5858134B2 (en) * 1979-09-05 1983-12-23 日本鋼管株式会社 Denitrification method for sintering furnace exhaust gas
JPS60238153A (en) * 1984-05-10 1985-11-27 Kawasaki Steel Corp Regeneration of catalyst used in oxidation of carbon monoxide
JPS6115740A (en) * 1984-07-02 1986-01-23 Kawasaki Steel Corp Regeneration of oxidizing catalyst
JPH06205938A (en) * 1992-12-23 1994-07-26 Rohm & Haas Co Method for separation and decomposition of halogenated organic and inorganic compound by porous carbonaceous substance
JPH08229354A (en) * 1994-12-28 1996-09-10 Hitachi Ltd Treatment of organic halogen compound with catalyst
JPH09276697A (en) * 1996-04-15 1997-10-28 Babcock Hitachi Kk Exhaust gas cleaning catalyst and exhaust gas purifying method using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
US7441332B2 (en) 2003-12-11 2008-10-28 The Chugoku Electric Power Co., Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
CN100431672C (en) * 2003-12-11 2008-11-12 中国电力株式会社 Method for restoring performance of exhaust gas treatment apparatus
JP2006167359A (en) * 2004-12-20 2006-06-29 Sharp Corp Harmful gas removing filter and air conditioning machine
KR100880236B1 (en) * 2006-07-10 2009-01-28 쥬코쿠 덴료쿠 가부시키 가이샤 Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010149084A (en) * 2008-12-26 2010-07-08 Ebara Corp Exhaust gas treatment method including increasing treatment temperature, operation method of exhaust gas treatment apparatus, and exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
JP2020015040A (en) * 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Similar Documents

Publication Publication Date Title
KR100327790B1 (en) Exhaust gas denitration method
KR102082275B1 (en) On-site regeneration method for denitrification catalyst in exhaust gas purification systems
RU2657082C2 (en) Method and catalyst for simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
JP5373891B2 (en) Reactor system (equipment) for reducing NOx emissions from boilers
JP5045629B2 (en) Exhaust gas purification device
US7438876B2 (en) Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury
BRPI0706870A2 (en) APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS
BRPI0717470A2 (en) METHOD AND SYSTEM FOR REDUCING NITROGEN OXIDES IN A POOR GAS CURRENT UNDERSTANDING NITRIC OXIDE, INNER COMBUSTION ENGINE, AND DIESEL ENGINE.
CN108452670A (en) The method that selective oxidation further includes carbon monoxide and volatile organic compounds in the tail gas of sulfur dioxide
JP2011183322A (en) Method and apparatus for removing low concentration methane
JPH11179153A (en) Method and apparatus for cleaning exhaust gas
JPH1052628A (en) Catalytic device for purifying exhaust gas from diesel engine
JPH08266868A (en) Nitrogen oxide removing method and device therefor
JP5094199B2 (en) Exhaust gas purification device
CN110887050B (en) Device for removing VOC (volatile organic compounds) and reducing odor from waste gas
JP4685266B2 (en) Method and apparatus for removing nitrogen oxides in diesel engine exhaust gas
JP2009047117A (en) Exhaust emission control method and exhaust emission control device
WO2014125934A1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines
JP2009127585A (en) Exhaust emission control device
JPH07100335A (en) Nitrogen oxide removing method
JP4553763B2 (en) Exhaust gas purification method and purification apparatus
JP2011056393A (en) Exhaust gas cleaning apparatus
JP6325042B2 (en) Exhaust gas purification device for heat engine
JP2966675B2 (en) Exhaust treatment method
JPH05168857A (en) Method for decreasing nitrogen oxide in combustion exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404