JPS60238153A - Regeneration of catalyst used in oxidation of carbon monoxide - Google Patents

Regeneration of catalyst used in oxidation of carbon monoxide

Info

Publication number
JPS60238153A
JPS60238153A JP59093773A JP9377384A JPS60238153A JP S60238153 A JPS60238153 A JP S60238153A JP 59093773 A JP59093773 A JP 59093773A JP 9377384 A JP9377384 A JP 9377384A JP S60238153 A JPS60238153 A JP S60238153A
Authority
JP
Japan
Prior art keywords
catalyst
oxidation
exhaust gas
regeneration
deteriorated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59093773A
Other languages
Japanese (ja)
Other versions
JPS6254539B2 (en
Inventor
Kunihiro Tanaka
田中 邦宏
Takeo Tsunoda
角田 健夫
Keiji Shinozaki
篠崎 圭二
Asei Takehara
竹原 亜生
Nobuhiro Futagami
二上 伸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59093773A priority Critical patent/JPS60238153A/en
Publication of JPS60238153A publication Critical patent/JPS60238153A/en
Publication of JPS6254539B2 publication Critical patent/JPS6254539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To keep the high oxidation ratio of CO and to enhance effect for largely conserving energy and reducing operation cost, by simultaneously performing the oxidizing action of CO and the regeneration of a deteriorated catalyst. CONSTITUTION:In a method for regenerating a catalyst used in the oxidation of CO in exhaust gas, oxidizing catalysts 5a, 5c having high activity are arranged in the upstream side of an exhaust gas flowline and deteriorated oxidizing catalyst 5b, 5d are arranged in the downstream side to perform oxidation of CO and the catalysts in the downstream side perform not only the oxidation of CO remaining in the exhaust gas issued from the catalyst beds in the upstream side but also the regeneration of the catalyst deteriorated by said gas. By this method, the high oxidation ratio of CO can be kept and the replacement of the catalyst or the high temp. heating of exhaust gas is dispensed with while CO contained in exhaust gas is oxidized perfectly. As a result, the entire amount of heat of CO-oxidation can be utilized in the regeneration of the deteriorated catalyst and effect for largely conserving energy and reducing operation cost can be enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排ガス中の一酸化炭素を酸化して酸化熱を回
収したり公害防止を図るために用いられる酸化触媒の再
生方法に係るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for regenerating an oxidation catalyst used to oxidize carbon monoxide in exhaust gas, recover oxidation heat, and prevent pollution. .

従来の技術 焼結鉱の製造工程等で生成し、排ガス中に含まれる一酸
化炭素は、環境対策上また省エネルギートその低減が望
まれる。
Conventional technology It is desirable to reduce carbon monoxide, which is generated in the manufacturing process of sintered ore and is contained in exhaust gas, for environmental protection and energy conservation.

上記排ガス中に含まれる不完全燃焼による一酸化炭素は
、低濃度であり、低温では酸化されないので、従来より
、触媒を用いて酸化させる方法が研究されている。
The carbon monoxide contained in the exhaust gas due to incomplete combustion has a low concentration and is not oxidized at low temperatures, so methods of oxidizing it using a catalyst have been studied.

しかし、排ガス中には一般に極〈微量の触媒被毒物質が
含まれており、触媒が短時間に劣化してしまうという問
題があった。
However, there is a problem in that the exhaust gas generally contains very small amounts of catalyst poisoning substances, and the catalyst deteriorates in a short period of time.

すなわち、焼結排ガス中にはSOx 、NOxの他に極
く微量の触媒被毒物質が含まれているので、酸化触媒で
一酸化炭素を効率よく酸化させるためには、触媒を頻繁
に交換するかあるいは被処理ガスを高温にして酸化触媒
に吸着した被毒物質を加熱脱着させ、触媒の活性を回復
させる必要がある。
In other words, in addition to SOx and NOx, sintering exhaust gas contains extremely small amounts of catalyst poisoning substances, so in order to efficiently oxidize carbon monoxide with an oxidation catalyst, the catalyst must be replaced frequently. Alternatively, it is necessary to heat the gas to be treated to a high temperature to thermally desorb the poisonous substances adsorbed on the oxidation catalyst and restore the activity of the catalyst.

劣化した触媒の再生に際しては、従来より、排ガス流通
下において昇温再生する方法が知られており、また特開
昭56−168825.56−168826.56−1
68827および56−169734には、空気流通下
において昇温再生する方法も開示されている。これらは
再生用ガスまたは空気を昇温し、触媒層を流通せしめた
後、熱交換機で熱回収を行う方法、または再生用ガスま
たは空気を昇温し、循環使用する方法を提示している。
In order to regenerate a deteriorated catalyst, a method of regenerating the catalyst by raising the temperature while circulating exhaust gas has been known, and Japanese Patent Application Laid-Open No. 56-168825.56-168826.56-1
No. 68827 and No. 56-169734 also disclose a method of temperature raising regeneration under air circulation. These methods propose a method in which regeneration gas or air is heated, passed through a catalyst layer, and then heat is recovered using a heat exchanger, or a method in which the regeneration gas or air is heated and recycled.

しかし、これらは何れも触媒再生用の排ガスや空気を別
途、加熱炉を設けて昇温させているため、省エネルギー
上好ましくない。さらにその排ガスや空気を循環使用す
るための送風機なども要し、総じて運転費が高いという
欠点があった。
However, in both of these methods, a heating furnace is separately provided to raise the temperature of exhaust gas or air for catalyst regeneration, which is not preferable in terms of energy saving. Furthermore, it requires a blower to circulate the exhaust gas and air, which has the disadvantage of high operating costs.

第3図は従来の焼結排ガスの処理フローの一例を示した
ものである。
FIG. 3 shows an example of a conventional treatment flow for sintering exhaust gas.

焼結排ガス中には SOx; 200〜300ppm NOx; 150〜250ppm Co;1.0〜1.2% 02.14〜16% 等が含まれているために脱硫・脱硝、CO酸化を行いこ
れを大気放散している。
Sintering exhaust gas contains SOx; 200-300ppm NOx; 150-250ppm Co; 1.0-1.2%, 02.14-16%, etc., so desulfurization, denitrification, and CO oxidation are performed to remove this. It is dissipating into the atmosphere.

焼結排ガスの脱硫後排ガス(I)は回転式熱交換機工で
受熱後昇圧ブロワ2で加圧された後、脱硝反応に必要な
温度、例えば約400℃まで加熱炉3で加温される。そ
の後、脱硝反応器4a。
After desulfurizing the sintering exhaust gas, the exhaust gas (I) receives heat in a rotary heat exchanger, is pressurized by a booster blower 2, and then heated in a heating furnace 3 to a temperature required for a denitrification reaction, for example, about 400°C. After that, the denitrification reactor 4a.

4bへ送られてNH3による還元が行われる。脱硝後の
排ガス(m)はCO酸化触媒5によって排ガス(m)中
のCOが排ガス中の02によって酸化されC02になり
、回転式熱交換機1で脱硫後の排ガスCI)と熱交換し
て大気放散されている。
4b and is reduced by NH3. In the exhaust gas (m) after denitration, the CO in the exhaust gas (m) is oxidized by 02 in the exhaust gas by the CO oxidation catalyst 5 to become C02, and the rotary heat exchanger 1 exchanges heat with the exhaust gas CI) after desulfurization to the atmosphere. It is being dissipated.

脱硝後排ガス(m)中のcoがco酸化触媒5によって
排ガス中の02と酸化する際には酸化熱が発生するので
、CO酸化後の排ガス(IT)は通常go−ioo’c
温度上昇し、約480℃〜500°Cになる。通常、加
熱炉3での加温は焼結設備等の設備休止後の立上げある
いは排ガス中のCo濃度の低下時のみ行えばよく、排ガ
ス中のCo濃度が1.0〜1.2%の場合には加温する
必要がなく、CO酸化熱によって脱硝反応あるいはCO
の酸化反応に必要な温度まで排ガス温度を上昇させるこ
とができる。
When CO in the exhaust gas (m) after denitrification is oxidized with 02 in the exhaust gas by the CO oxidation catalyst 5, oxidation heat is generated, so the exhaust gas (IT) after CO oxidation is usually go-ioo'c.
The temperature rises to approximately 480°C to 500°C. Normally, heating in the heating furnace 3 only needs to be performed when the sintering equipment or other equipment is started up after being shut down or when the Co concentration in the exhaust gas decreases. In some cases, there is no need to heat, and the denitrification reaction or CO
The exhaust gas temperature can be raised to the temperature required for the oxidation reaction.

しかし、焼結鉱製造操業の変化等によって排カス中のc
od度は大きく変化する。Co濃度が1、0−1.2%
より高濃度側に移行した場合にはCO酸化後の排ガス(
IT)の温度は高温化するので、この場合にはさほど問
題はないが、Co濃度が低濃度側に移行した場合には、
脱硝あるいはCO酸化に必要な温度までの熱が得られず
、第4図に示す如く排ガス温度が低下すると極端にCO
#化率が低下し、酸化触媒の劣化が進行する。
However, due to changes in sintered ore manufacturing operations,
The degree of od varies greatly. Co concentration is 1,0-1.2%
When the concentration shifts to a higher concentration side, the exhaust gas after CO oxidation (
Since the temperature of IT) increases, there is not much of a problem in this case, but if the Co concentration shifts to the lower concentration side,
If heat to the temperature required for denitrification or CO oxidation cannot be obtained, and the exhaust gas temperature drops as shown in Figure 4, CO will become extremely low.
The # conversion rate decreases and the deterioration of the oxidation catalyst progresses.

一方、脱硝後排ガス(m)の温度をCO酸化率が低下し
にくい420℃以上にして操業を行う場合には渠内仝休
からの#I′MIylがすきイ、1.かも回転式熱交換
機lでの脱硫後排ガスCI)への熱交換率はほぼ一定で
あるために、大気放散ガス(V)への熱ロスが大きくな
る等、省エネルギー上好ましくない。また、高温度下に
おいてはダクト類や熱交換機−昇圧ブロワ等の設備強度
も低下し、大がかりな補強改造を要する等の問題があっ
た。
On the other hand, if the operation is carried out at a temperature of exhaust gas (m) after denitrification of 420°C or higher, at which the CO oxidation rate is difficult to decrease, #I'MIyl from the culvert is preferred.1. Since the heat exchange rate to the exhaust gas CI) after desulfurization in the rotary heat exchanger 1 is almost constant, heat loss to the atmospheric gas (V) increases, which is unfavorable in terms of energy saving. Furthermore, under high temperatures, the strength of equipment such as ducts, heat exchangers, pressure boosters, etc. is also reduced, posing the problem of requiring large-scale reinforcement and modification.

問題点を解決するための手段 本発明は上記問題点を解決することを目的とするもので
、酸化触媒をガス流中にガス流に対し直列に2段以上の
複数段の触媒層に分けて配置し、排ガスの上流段では活
性の高い触媒による排ガスのCO酸化を行い、下流段で
は上流段触媒で酸化しきれなかったCOの酸化とCO酸
化によって温度上昇した排ガスによる劣化触媒の再生を
行うことを特徴としている。
Means for Solving the Problems The present invention aims to solve the above-mentioned problems by dividing the oxidation catalyst into a plurality of catalyst layers of two or more stages in series with the gas flow. In the upstream stage of the exhaust gas, a highly active catalyst oxidizes CO in the exhaust gas, and in the downstream stage, the CO that could not be oxidized by the upstream catalyst is oxidized and the exhaust gas whose temperature has risen due to CO oxidation regenerates the deteriorated catalyst. It is characterized by

また、前段の酸化触媒層の性能劣化が進んできた場合に
は前・後段触媒層の配置位置を反転させ、再生が終了し
た後段触媒をガス流れに対して前段に、また性能が劣化
した前段触媒を後段に、各々配置場所を変更して、酸化
あるいは再生を行わしめる。この触媒位置の反転は、複
数段の触媒層を回動自在に構成し間欠的に回動させても
よい。
In addition, if the performance deterioration of the front stage oxidation catalyst layer progresses, the positions of the front and rear stage catalyst layers are reversed, and the rear stage catalyst that has completed regeneration is moved to the front stage relative to the gas flow, and the front stage catalyst layer whose performance has deteriorated is placed in the front stage relative to the gas flow. Oxidation or regeneration is performed by changing the location of the catalyst in the latter stage. This reversal of the catalyst position may be achieved by making the catalyst layers in multiple stages rotatable and rotating them intermittently.

本発明方法を好適に実施することのできるフローシート
を第1図、第5図に示す。第2図は第1図の部分拡大図
である。本発明方法では脱硝後排ガス(m)の流れ方向
に交差させて触媒層を多段に配置し、排ガスの酸化と劣
化触媒の再生とを同時に行う。第1図、第2図に示した
例では排ガスの流れに直角に、また第5図では排カスの
流れに対して45°程度の角度をつけて触媒表面に乱流
を生ぜしめ酸化促進させるように酸化触[5を配置して
いる。
Flow sheets for suitably implementing the method of the present invention are shown in FIGS. 1 and 5. FIG. 2 is a partially enlarged view of FIG. 1. In the method of the present invention, catalyst layers are arranged in multiple stages so as to intersect with the flow direction of the exhaust gas (m) after denitrification, and the oxidation of the exhaust gas and the regeneration of the deteriorated catalyst are performed simultaneously. In the examples shown in Figures 1 and 2, turbulence is created on the catalyst surface at right angles to the flow of exhaust gas, and in Figure 5, at an angle of about 45° to the flow of exhaust gas to promote oxidation. The oxidation catalysts [5] are arranged as shown.

酸化触媒5は第2図に詳細を示す如くガス流れに対して
前段と後段との2段に配置する。この酸化触媒の配列段
数は2段に限られるものではなく3段以上の多段に配列
してもよい。第2図の例では2組の2段の回転式触媒層
6,6aをダクト7内に配置している。回転式触媒層6
,6aには回動軸、駆動装置(図示せず)が付属してお
り、第2図の矢印80如く2正・逆反転または同一方向
に回転できるようになっている。
The oxidation catalyst 5 is arranged in two stages, a front stage and a rear stage, with respect to the gas flow, as shown in detail in FIG. The number of stages in which this oxidation catalyst is arranged is not limited to two stages, but may be arranged in multiple stages of three or more stages. In the example shown in FIG. 2, two sets of two-stage rotary catalyst layers 6, 6a are arranged in the duct 7. Rotary catalyst layer 6
, 6a are attached with a rotating shaft and a drive device (not shown), and can rotate in two forward and reverse directions or in the same direction as shown by the arrow 80 in FIG.

作用 脱硝後排ガス(m)中に含まれている1、 0〜1、2
%のCOは前段酸化触媒5a、5Cで排ガス中の02に
より約90%酸化され、その酸化熱によって昇温した排
ガスは後段触媒5b 、5dと接触し通過する。この際
、前段触媒5a、5cで完全に酸化されなかったCOは
、後段酸化触媒5b、5d層で完全に酸化される。
1, 0 to 1, 2 contained in exhaust gas (m) after action denitrification
% CO is oxidized by about 90% by O2 in the exhaust gas at the front stage oxidation catalysts 5a and 5C, and the exhaust gas heated by the heat of oxidation contacts and passes through the rear stage catalysts 5b and 5d. At this time, CO that has not been completely oxidized in the first stage catalysts 5a and 5c is completely oxidized in the second stage oxidation catalysts 5b and 5d.

しかも酸化熱を奪って約80〜100℃温度上昇した排
ガスは、後段酸化触媒5b、5dに吸着している極〈微
量の被毒物質を脱着させるのに必要な温度、例えば42
0℃以上に上昇しているために、これら被毒物質を脱着
、浄化させ、酸化触媒活性の再生を行って回転式熱交換
機lへと進む。回転式熱交換機1では脱硫後排ガス(I
)への放熱を行って大気放散される。
Moreover, the temperature of the exhaust gas, which has increased in temperature by about 80 to 100 degrees Celsius by removing oxidation heat, is maintained at a temperature of 42°C, for example, which is necessary to desorb extremely small amounts of poisonous substances adsorbed on the post-oxidation catalysts 5b and 5d.
Since the temperature has risen to 0° C. or higher, these poisonous substances are desorbed and purified, the oxidation catalyst activity is regenerated, and the temperature is transferred to the rotary heat exchanger l. In the rotary heat exchanger 1, the exhaust gas (I
) and is dissipated into the atmosphere.

しかし経時的に前段酸化触媒5a、5cは徐々に被毒物
質を吸着し酸化性能が低下(劣化)してくる。一方後段
酸化触媒5b 、5dの再生は短時間に行われるので、
前段酸化触媒5a、5cのCO酸化率がある程度低下し
た段階または定期的に回転式触媒層6,6aを駆動装置
(図示せず)により正転方向または逆転方向へ半回転さ
せて前段酸化触媒5a、5cをガス流後段へ、また後段
酸化触媒5b 、5dをガス流前段へ移動させる。
However, over time, the first-stage oxidation catalysts 5a and 5c gradually adsorb poisonous substances and their oxidation performance decreases (deteriorates). On the other hand, since the regeneration of the latter stage oxidation catalysts 5b and 5d is carried out in a short time,
At a stage when the CO oxidation rate of the pre-oxidation catalysts 5a, 5c has decreased to a certain extent, or periodically, the rotary catalyst layers 6, 6a are rotated by half a rotation in the forward or reverse direction by a drive device (not shown) to remove the pre-oxidation catalyst 5a. , 5c are moved to the rear stage of the gas flow, and the rear stage oxidation catalysts 5b and 5d are moved to the front stage of the gas flow.

すなわち、劣化している前段酸化触媒5a。In other words, the front-stage oxidation catalyst 5a has deteriorated.

5Cを再生側へ、後段酸化触媒5b、5dをCO酸化側
へ反転させることで移動させる。
5C is moved to the regeneration side, and the post-oxidation catalysts 5b and 5d are moved to the CO oxidation side.

この繰り返しを行うことにより高CO酸化率が維持でき
安定した操業を継続することができる。
By repeating this process, a high CO oxidation rate can be maintained and stable operation can be continued.

なお、前段酸化触媒5a 、5cと後段酸化触媒5b、
5dとの間にCO濃度計のセンサを設置してCO濃度を
表示させ、前段酸化触媒5a、5cを通過するCO濃度
を常時把握して、ある数値以上になれば回転式触媒層6
,6aを反転させて再生させるシステムとするのが好適
である。
Note that the first stage oxidation catalysts 5a, 5c and the second stage oxidation catalyst 5b,
A CO concentration meter sensor is installed between the oxidation catalyst 5d and the CO concentration to display the CO concentration, and the CO concentration passing through the pre-stage oxidation catalysts 5a and 5c is constantly monitored.If the CO concentration exceeds a certain value, the rotary catalyst layer 6
, 6a are preferably inverted and reproduced.

実施例 焼結排ガスについて本発明方法を実施した例を示す。Example An example of implementing the method of the present invention on sintering exhaust gas will be shown.

焼結排ガスを脱硫、脱硝処理した排ガスは、従来、CO
酸化触媒入ロ排ガス温度を420℃以上にしなければ触
媒の劣化が起こる(第4図参照)ので脱硫後排ガスの熱
交換後排ガスを加熱炉で燃料を用いて加温していた。本
発明方法により、第1図に示すように1回転式触媒層を
設置して前段触媒5a、5cのCO酸化触媒入ロ排ガス
温度を405℃で操業した。その結果後段触媒5b。
Conventionally, the exhaust gas obtained by desulfurizing and denitrating the sintering exhaust gas is CO2.
If the temperature of the exhaust gas entering the oxidation catalyst is not raised to 420°C or higher, the catalyst will deteriorate (see Figure 4), so after heat exchange of the exhaust gas after desulfurization, the exhaust gas was heated in a heating furnace using fuel. According to the method of the present invention, a one-rotation type catalyst layer was installed as shown in FIG. 1, and the exhaust gas temperature after entering the CO oxidation catalyst of the front stage catalysts 5a and 5c was operated at 405°C. As a result, the latter stage catalyst 5b.

5dの入口排ガス温度は485℃になるとともに、第6
図に示す如く前段に配置した触媒のCO酸化率は徐々に
低下し、約2.5日後にはCO酸化率が90%まで低下
したので、回転式触媒層を半回転させ、劣化していない
後段酸化触媒を前段へ移動(第6図にム印で示す)させ
ると、たちまち本来の触媒性能(第6図では約95%)
を発揮した。その後、5.2日目または7.8日目等C
O酸化率が90%に達した段階で反転させてやることに
よって高酸化率を継続して発揮させることができた。
The inlet exhaust gas temperature at 5d becomes 485°C, and at the same time
As shown in the figure, the CO oxidation rate of the catalyst placed in the front stage gradually decreased, and after about 2.5 days, the CO oxidation rate decreased to 90%, so the rotary catalyst layer was rotated half a turn, and no deterioration occurred. When the rear stage oxidation catalyst is moved to the front stage (indicated by the square mark in Figure 6), the original catalyst performance (approximately 95% in Figure 6) is immediately restored.
demonstrated. Then, on the 5.2nd day or 7.8th day, etc.C
By reversing the process when the O oxidation rate reached 90%, a high oxidation rate could be maintained continuously.

また前段酸化触媒と後段酸化触媒との間に設置したCO
濃度計ではCOを検出したが、後段酸化触媒後のCO濃
度は殆どOであった。このことから前段酸化触媒を通過
した若干のCOは後段酸化触媒で酸化されていることが
分る。
In addition, CO installed between the front-stage oxidation catalyst and the rear-stage oxidation catalyst
The concentration meter detected CO, but the CO concentration after the post-oxidation catalyst was almost O. This shows that some CO that passed through the first stage oxidation catalyst was oxidized by the second stage oxidation catalyst.

発明の効果 本発明は、−酸化炭素の酸化作用と、劣化触媒の再生と
を同時に行わせることにより、−酸化炭素の高酸化率を
維持することができ、触媒の入換えや排ガスの加熱高温
化等を不要とし、また焼結排ガス中に含まれているCO
を完全に酸化させることにより、−酸化炭素の酸化熱の
全量を劣化した触媒の再生に利用することができ、大き
な省エネルギーと運転費の低減の効果を挙げると共に環
境が著しく改善された。
Effects of the Invention The present invention is capable of maintaining a high oxidation rate of carbon oxide by simultaneously carrying out the oxidizing action of carbon oxide and the regeneration of a deteriorated catalyst. It also eliminates the need for CO2 contained in the sintering exhaust gas.
By completely oxidizing the -carbon oxide, the entire amount of oxidation heat from the -carbon oxide can be used to regenerate the deteriorated catalyst, resulting in significant energy savings and reductions in operating costs, as well as significant environmental improvements.

また、本発明方法により上流側と下流側の酸化触媒を反
転させて排ガスの酸化と触媒の再生とを連続的に行うこ
とができ、触媒の入れ替等を不要とする効果を奏した。
Further, the method of the present invention has the effect that the oxidation catalysts on the upstream side and the downstream side can be reversed to continuously perform the oxidation of exhaust gas and the regeneration of the catalyst, making it unnecessary to replace the catalysts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を好適に実施することのできる脱硝
、−酸化炭素酸化工程のフローシート、第2図は回転式
触媒層設置詳細図、第3図は従来方法の脱硝、−酸化炭
素酸化工程のフローシート、第4図は排ガス温度とCO
酸化率との関係を示すグラフ、第5図は本発明方法を適
用した他の実施例のフローシート(回転式触媒層設置詳
細図)、第6図は一酸化炭素酸化率の経時変化と触媒層
反転との関係を示すグラフである。 1・・・回転式熱交換器 2・・・昇圧ブロワ 3・・・加熱炉 4a 、 4b・・・脱硝反応器 5a、5b、5c、5d・・・−酸化炭素酸化触媒6.
6a・・・回転式触媒層 7・・・ダクト 8・・・矢印(反転方向を示す) 出願人 川崎製鉄株式会社 代理人 弁理士 小杉佳男 弁理士 粛 藤 和 則 第1図 第2図
Fig. 1 is a flow sheet of the denitrification and -carbon oxide oxidation process in which the method of the present invention can be suitably carried out, Fig. 2 is a detailed view of the rotary catalyst bed installation, and Fig. 3 is a conventional method of denitrification and -carbon oxide The flow sheet of the oxidation process, Figure 4 shows the exhaust gas temperature and CO
A graph showing the relationship with the oxidation rate, Figure 5 is a flow sheet of another example in which the method of the present invention is applied (detailed diagram of the rotary catalyst layer installation), and Figure 6 shows the change over time in the carbon monoxide oxidation rate and the catalyst It is a graph showing the relationship with layer inversion. 1... Rotary heat exchanger 2... Pressure booster blower 3... Heating furnace 4a, 4b... Denitrification reactor 5a, 5b, 5c, 5d... - Carbon oxide oxidation catalyst 6.
6a...Rotary catalyst layer 7...Duct 8...Arrow (indicates the direction of reversal) Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Yoshio Kosugi Patent attorney Kazunori Su Fuji Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 l 排ガス中の一酸化炭素の酸化に用いる触媒を再生す
る方法において、排ガス流路のL流側に活性の高い酸化
触媒を、その下流側に劣化した酸化触媒をそれぞれ配置
し、上流側触媒で排ガス中のCOの酸化を行い、下流側
の触媒は上流側触媒層を出た排ガス中に残存したCOの
酸化を行うと共に、該ガスにより劣化の再生を行うこと
を特徴とする触媒の再生方法。 2 上流側と下流側の酸化触媒を反転させて配置位置を
入れ換える装置を設け、定期的またはCO酸化率の低下
度合いに応じて上流側と下流側の触媒を反転させ、排ガ
スの酸化と劣化触媒の再生とを連続的に行う特許請求の
範囲第1項に記載の触媒の再生方法。
[Claims] l In a method for regenerating a catalyst used for oxidizing carbon monoxide in exhaust gas, a highly active oxidation catalyst is placed on the L flow side of the exhaust gas flow path, and a deteriorated oxidation catalyst is placed on the downstream side thereof. The upstream catalyst oxidizes CO in the exhaust gas, and the downstream catalyst oxidizes the CO remaining in the exhaust gas that has exited the upstream catalyst layer, and the gas regenerates deterioration. A method for regenerating a catalyst. 2. A device is installed that reverses the upstream and downstream oxidation catalysts and swaps their positions, and the upstream and downstream catalysts are reversed periodically or depending on the degree of decline in the CO oxidation rate, thereby reducing the oxidation of exhaust gas and the deterioration of the catalyst. The method for regenerating a catalyst according to claim 1, wherein the regeneration of the catalyst is performed continuously.
JP59093773A 1984-05-10 1984-05-10 Regeneration of catalyst used in oxidation of carbon monoxide Granted JPS60238153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093773A JPS60238153A (en) 1984-05-10 1984-05-10 Regeneration of catalyst used in oxidation of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093773A JPS60238153A (en) 1984-05-10 1984-05-10 Regeneration of catalyst used in oxidation of carbon monoxide

Publications (2)

Publication Number Publication Date
JPS60238153A true JPS60238153A (en) 1985-11-27
JPS6254539B2 JPS6254539B2 (en) 1987-11-16

Family

ID=14091738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093773A Granted JPS60238153A (en) 1984-05-10 1984-05-10 Regeneration of catalyst used in oxidation of carbon monoxide

Country Status (1)

Country Link
JP (1) JPS60238153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976941A (en) * 1984-12-29 1990-12-11 Kawasaki Steel Corporation Process for oxidizing carbon monoxide in exhaust gas from a sintering furnace
JPH11179153A (en) * 1997-12-24 1999-07-06 Babcock Hitachi Kk Method and apparatus for cleaning exhaust gas
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
IT202000019675A1 (en) * 2020-08-07 2022-02-07 Mosca Servizi Ambientali S P A CATALYST WITH MOBILE MODULES AS WELL AS A SECTION OF A WORKING DEVICE INCLUDING SUCH A CATALYST, A WORKING DEVICE INCLUDING SUCH A SECTION AND PLANT INCLUDING SUCH A DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180822U (en) * 1988-06-01 1989-12-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976941A (en) * 1984-12-29 1990-12-11 Kawasaki Steel Corporation Process for oxidizing carbon monoxide in exhaust gas from a sintering furnace
JPH11179153A (en) * 1997-12-24 1999-07-06 Babcock Hitachi Kk Method and apparatus for cleaning exhaust gas
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
IT202000019675A1 (en) * 2020-08-07 2022-02-07 Mosca Servizi Ambientali S P A CATALYST WITH MOBILE MODULES AS WELL AS A SECTION OF A WORKING DEVICE INCLUDING SUCH A CATALYST, A WORKING DEVICE INCLUDING SUCH A SECTION AND PLANT INCLUDING SUCH A DEVICE

Also Published As

Publication number Publication date
JPS6254539B2 (en) 1987-11-16

Similar Documents

Publication Publication Date Title
AU2022271506B2 (en) Low-temperature adsorption flue gas denitration system and process
EP0801978B9 (en) Process for the denitration of exhaust gases with heat treated activated carbon
US7494625B2 (en) Systems and methods for removing materials from flue gas via regenerative selective catalytic reduction
CN204768246U (en) Semidry method desulfurization, dust removal and low temperature denitration combination purifier
US20090130011A1 (en) Systems and Methods for Removing Materials From Flue Gas Via Regenerative Selective Catalytic Reduction
CN105498447A (en) Low-temprature flue gas denitration and poisoning-prevention system
WO2020192114A1 (en) Industrial flue-gas storage reduction and denitration system and method
US3897539A (en) Tail gas nitrogen oxide abatement process
JPS60238153A (en) Regeneration of catalyst used in oxidation of carbon monoxide
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
TWI548780B (en) Electrochemical dual battery panels and features for
JPH08103636A (en) Low-temperature denitrator
CN101036850A (en) Low-temperature smoke air SCR of boiler combined adsorption / desorption catalyzing bed for preventing the escaping of ammonia
JP2001241619A (en) Method for purifying flue gas in radiant tube burner
JP2831910B2 (en) Method for regenerating CO oxidation catalyst
KR20170019524A (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
JP3876903B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
CN209512054U (en) A kind of gas phase catalytic organism burner based on two-dimentional zeolite catalyst
KR102364271B1 (en) Exhaust gas purification device including combined catalyst filter and a control method of the same
JP2008019820A (en) Exhaust emission control system and exhaust emission control method
JPS6115740A (en) Regeneration of oxidizing catalyst
JPS61161143A (en) Carbon monoxide-oxidizing catalyst in waste gas
CN214914701U (en) Rotary treatment device for nitrogen oxides in flue gas
JP2020517448A (en) Method and system for removing harmful compounds from flue gas using fabric filter bag with SCR catalyst
JP2734823B2 (en) Noxious gas heating purification equipment