JPS6115740A - Regeneration of oxidizing catalyst - Google Patents

Regeneration of oxidizing catalyst

Info

Publication number
JPS6115740A
JPS6115740A JP59135188A JP13518884A JPS6115740A JP S6115740 A JPS6115740 A JP S6115740A JP 59135188 A JP59135188 A JP 59135188A JP 13518884 A JP13518884 A JP 13518884A JP S6115740 A JPS6115740 A JP S6115740A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
dampers
inlet
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135188A
Other languages
Japanese (ja)
Inventor
Takeo Tsunoda
角田 健夫
Hisashi Kogo
向後 久
Kunihiro Tanaka
田中 邦宏
Asei Takehara
竹原 亜生
Keiji Shinozaki
篠崎 佳二
Hideho Kubo
久保 秀穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59135188A priority Critical patent/JPS6115740A/en
Publication of JPS6115740A publication Critical patent/JPS6115740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To reduce fuel cost, power cost and installation cost at the regeneration time of a catalyst, by alternately and successively changing over the flow direction of gas, which is allowed to pass through the catalyst bed used in the oxidation of a combustible component such as carbon monoxide, in a reversible manner. CONSTITUTION:In such a stage that the deterioration of a CO-oxidizing catalyst advances and the catalyst bed in the vicinity of the side of an inlet 2a is deactivated but the activity of the catalyst bed 2 in the vicinity of the side of an outlet 2b is kept, dampers 8, 8b are closed and dampers 9a, 9b are opened. At this time, exhaust gas 1 flows through the CO-oxidizing catalyst bed 2 through the dampers 9a, 9b in the direction shown by the arrow 2d opposite to a usual direction and the deactivated catalyst in the side of the inlet 2a can be regenerated by the exhaust gas 1 raised in its temp. by the catalyst bed 2 keeping activity in the vicinity of a conventional outlet 2b (the inlet at this time). The dampers 8, 8b and 9, 9a are opened and closed successively and alternately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結鉱の製造工程等で発生する一酸化炭素等
の可燃成分の酸化に用いられる触媒の再生方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for regenerating a catalyst used for oxidizing combustible components such as carbon monoxide generated in a sintered ore manufacturing process.

〔従来の技術〕[Conventional technology]

−・般に1例えば焼結鉱の製造工程等で生成する未燃の
−・酸化炭素(以下COとする。)は、酸化熱回収の対
象となる。この未燃のCOは低濃度であるため低温では
酸化されず、従来より触媒を用いて酸化されてきた。
Generally, unburned carbon oxide (hereinafter referred to as CO) generated in the manufacturing process of sintered ore, for example, is subject to oxidation heat recovery. Since this unburned CO has a low concentration, it is not oxidized at low temperatures, and has conventionally been oxidized using a catalyst.

しかし、焼結炉の排ガス中には一般に極く微量の触媒被
毒物質が含まれており、触媒が劣化してしまうという問
題点があった。この触媒の再生については、従来から温
度依存性が強いことが知られており、触媒活性を失った
部分に高温の排ガスを通すことにより、触媒再生をする
方法が提案された。例えば、第5図に概略工程図が示さ
れる特開昭56−37035では触媒を連続的に回転し
、CO金含有ガスを流通し、劣化した触媒を高温のガス
で再生する方法が開示されている。
However, the exhaust gas from the sintering furnace generally contains very small amounts of catalyst poisoning substances, which poses a problem in that the catalyst deteriorates. It has long been known that the regeneration of this catalyst is strongly temperature dependent, and a method has been proposed in which the catalyst is regenerated by passing high-temperature exhaust gas through the portion where the catalyst has lost its activity. For example, JP-A-56-37035, a schematic process diagram of which is shown in FIG. 5, discloses a method in which a catalyst is continuously rotated, CO gold-containing gas is passed through it, and a deteriorated catalyst is regenerated with high-temperature gas. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの従来方法はCOの酸化熱を必ずしも触媒再生
に十分使用できず、脱硝設備の系内の温度バランスによ
っては触媒の再生が不能となり、適宜加熱炉での燃焼ガ
スを混合し、CO金含有排ガス1を昇温し、触媒の再生
を行う必要がある。
However, in this conventional method, the oxidation heat of CO cannot necessarily be used sufficiently for catalyst regeneration, and depending on the temperature balance within the denitrification equipment system, catalyst regeneration becomes impossible. It is necessary to raise the temperature of the exhaust gas 1 and regenerate the catalyst.

また回転式触媒層2は設備的にも大型化し、操作も複雑
となるという問題点があった。
Further, the rotary catalyst bed 2 has the problem that the equipment is large and the operation is complicated.

つまり第5図に示されるように触媒の活性が劣化した部
分12の入口温度が触媒の再生に必要な塩度に達しない
場合があり、その都度加熱炉4を用いてCo含有排ガス
lを必要温度までM温し、触媒の活性が劣化した部分1
2の触媒を再生する必要がある。これは燃料費の増加と
なるほかに、脱硝触媒の種類によっては脱硝効率の低下
をもたらす場合がある。
In other words, as shown in FIG. 5, the inlet temperature of the portion 12 where the activity of the catalyst has deteriorated may not reach the salinity required for catalyst regeneration, and in each case it is necessary to replenish the Co-containing exhaust gas l using the heating furnace 4. Part 1 where catalyst activity has deteriorated due to heating to M temperature
It is necessary to regenerate the second catalyst. This not only increases fuel costs but also may lead to a decrease in denitrification efficiency depending on the type of denitrification catalyst.

また、触媒層の圧力損失により、ブロア5での電力使用
星が犬となる問題点があった。
In addition, there was a problem in that the power consumption of the blower 5 was reduced due to pressure loss in the catalyst layer.

この対策として触媒層2の厚みを小とし、触媒層2の断
面積を大きくし、触媒層2の圧力損失を低減化すること
も可能であるが、設備的に大型化し、設置面積も広くな
る。
As a countermeasure to this problem, it is possible to reduce the thickness of the catalyst layer 2 and increase the cross-sectional area of the catalyst layer 2 to reduce the pressure loss of the catalyst layer 2, but this requires larger equipment and a larger installation area. .

本発明は上述の問題点を解決するために提案されたもの
で、Co酸化触媒の発熱が全て触媒再生に有効に利用さ
れ、燃ネ;]コスト、電力コスト、設備コストの安価な
簡便な酸化触媒の再生方法を提供することを目的とする
The present invention was proposed in order to solve the above-mentioned problems, and all of the heat generated by the Co oxidation catalyst is effectively used for catalyst regeneration. The purpose of the present invention is to provide a method for regenerating a catalyst.

〔問題点を解決するための手段〕 本発明者らは、種々実験の結果、触媒の劣化速度の温度
依存性が強く、またガスの流れ方向に対し、触媒層内に
温度勾配が生じるため、触媒層内の活性度についても勾
配が生じることを見い出した。すなわち、第4図に示す
ごとく、焼結炉拮ガス1がCo酸化触媒層2を通る時、
拮ガスl中のCOの酸化熱により排ガス温度が上昇する
ため、触媒層?の入口2aから出口2bにかけて温度勾
配が生ずる。触媒被毒物質の吸着は温度依存性が強ど、
触媒層2の入口2a伺近での吸着速度に比し、出口2b
付近での吸着速度は非常に小である。従って、全体とし
ての触媒活性の劣化が進行してきた段階においても出口
2b付近の触媒層2は活性を維持している。
[Means for Solving the Problems] As a result of various experiments, the present inventors found that the deterioration rate of the catalyst is strongly dependent on temperature, and that a temperature gradient occurs within the catalyst layer in the direction of gas flow. It was also found that a gradient occurs in the activity within the catalyst layer. That is, as shown in FIG. 4, when the sintering furnace gas 1 passes through the Co oxidation catalyst layer 2,
Because the exhaust gas temperature rises due to the heat of oxidation of CO in the gas, the catalyst layer? A temperature gradient occurs from the inlet 2a to the outlet 2b. Adsorption of catalyst poisoning substances is strongly temperature dependent;
Compared to the adsorption rate near the inlet 2a of the catalyst layer 2, the adsorption rate at the outlet 2b
The adsorption rate in the vicinity is very small. Therefore, even at the stage where the overall catalyst activity has progressed to deterioration, the catalyst layer 2 near the outlet 2b maintains its activity.

本発明者等は、この現象を利用して、焼結炉排ガスの疲
れを、逆方向に切り換えることによりCo酸化触媒の再
生が可能であることを見い出した。
The present inventors have discovered that by utilizing this phenomenon, it is possible to regenerate the Co oxidation catalyst by switching the fatigue of the sintering furnace exhaust gas in the opposite direction.

すなわち、焼結炉排ガスlの垢れ方向を逆方向に切り換
えることにより、従来の出口2b付近で高活性を維持し
ていた部分で、COの酸化が生じ、υ1ガス温度が−1
−、−J’lする。この高温排ガス1が従来の入口2a
付近で失活した触媒の部分と接触することにより、活性
を回復することができる。
That is, by switching the direction of sintering furnace exhaust gas l to the opposite direction, CO oxidation occurs in the area where high activity was maintained near the conventional outlet 2b, and the υ1 gas temperature decreases by -1.
-, -J'l. This high temperature exhaust gas 1 is connected to the conventional inlet 2a.
The activity can be restored by contacting a nearby deactivated portion of the catalyst.

入口2a伺近の活性が低下し、出口2b付近の活性が維
持されている段階で排ガス1の切換えを順次実施するこ
とにより、Co酸化触媒を長期間継続して使用すること
が可能となる。
By sequentially switching the exhaust gas 1 at a stage when the activity near the inlet 2a decreases and the activity near the outlet 2b is maintained, the Co oxidation catalyst can be used continuously for a long period of time.

〔実施例〕〔Example〕

以下、本発明を図面を参照1.てその実施例に基づいて
説明する。
Hereinafter, the present invention will be described with reference to the drawings.1. This will be explained based on an example.

第1図は本発明の一実施例方法の工程図で、焼結炉低温
排ガスlは、熱交換器6で脱硝反応温度まで昇温された
後、プロワ5を経て、熱バランス上温度が不足する場合
はさらに、加熱炉4で昇温され、脱硝反応温度まで■温
され、脱硝反応器3で脱硝される。ここでダンパ9,9
aを閉にし、ダンパ8,8aを開にした場合、ダンパ8
を経て、Co酸化触媒層2で矢印2Cの方向に梳れCO
の酸化熱で層温される。さらにダンパ8aを経て熱交換
器6で、低温排ガス1と熱交換された後、煙突7より、
大気中に放出される。
FIG. 1 is a process diagram of a method according to an embodiment of the present invention, in which low-temperature exhaust gas l from a sintering furnace is heated to the denitrification reaction temperature in a heat exchanger 6, and then passed through a blower 5 when the temperature is insufficient due to the heat balance. In this case, the temperature is further raised in the heating furnace 4 to the denitrification reaction temperature, and denitrified in the denitrification reactor 3. Here damper 9,9
a is closed and dampers 8 and 8a are opened, damper 8
After that, the CO is combed in the direction of arrow 2C with the Co oxidation catalyst layer 2.
It is heated by the heat of oxidation. After passing through the damper 8a and exchanging heat with the low-temperature exhaust gas 1 in the heat exchanger 6, from the chimney 7,
released into the atmosphere.

この過程で、Co酸化触媒の劣化が進行し、入口2a側
付近の触媒層2が失活し、出口2b側付近の触91層2
の活性が維持されている段階で、逆i、:り7ハ8 、
8 aを閉にして、ダンパ9,9aを開にする、このと
き排ガス1はダンパ9a、9を経て、Co酸化触媒層2
を逆方向の矢印2d方向に流れる。この時従来の出「1
2b(この時の入口)付近の活性を維持した触媒層2で
昇温された排ガスlにより、失活した部分2a側の触媒
を再生することがでSる。
In this process, the deterioration of the Co oxidation catalyst progresses, the catalyst layer 2 near the inlet 2a side is deactivated, and the catalyst layer 2 near the outlet 2b side is deactivated.
At the stage when the activity of is maintained, reverse i, :ri7ha8,
8a is closed and the dampers 9, 9a are opened. At this time, the exhaust gas 1 passes through the dampers 9a, 9, and reaches the Co oxidation catalyst layer 2.
flows in the opposite direction of arrow 2d. At this time, the conventional output “1”
The catalyst on the deactivated portion 2a side can be regenerated by the exhaust gas l heated in the catalyst layer 2 which maintains its activity near 2b (inlet at this time).

ダンパ8,8aおよび9,9aの開閉′を順次交代して
行うことにより、Co酸化触媒を、長期間高活性で使用
することができる。またCo酸化触媒層2での反応熱は
、熱交換器6により、低温排ガス1を脱硝反応温度まで
、昇温するために利用することができる。
By sequentially opening and closing the dampers 8, 8a and 9, 9a, the Co oxidation catalyst can be used with high activity for a long period of time. Further, the reaction heat in the Co oxidation catalyst layer 2 can be used to raise the temperature of the low-temperature exhaust gas 1 to the denitrification reaction temperature by the heat exchanger 6.

次に、第2図は本発明の他の実施例方法の工程図で、バ
ルブ15開、バルブ16閉、バルブ13.13a閉、お
よびバルブ14.14a開の状態でブロア5により空気
を吸引して電熱ヒータ10によりCo酸化触媒層2を3
90″Cに昇温した後にバルブ16を開、バルブ15を
閉として300 Nrn’/ hノ排ガスlをCO酸化
触媒層2の入口2aから出「12bに流す。この時入口
2a側のCO濃度をN11l定、Ijy17から、出口
2b側のCO濃度を測定点18からサンプリングして測
定する。触媒の劣化が進行した時点でバルブ14゜14
aを閉、バルブ13.13aを開にして排ガス1の流れ
を切換えCO酸化触奴層2に枡ガス1を出口2bから入
口2aに疏す。
Next, FIG. 2 is a process diagram of another embodiment method of the present invention, in which air is sucked by the blower 5 with valve 15 open, valve 16 closed, valve 13.13a closed, and valve 14.14a open. Co oxidation catalyst layer 2 is heated by electric heater 10.
After the temperature is raised to 90"C, the valve 16 is opened, the valve 15 is closed, and 300 Nrn'/h of exhaust gas is passed from the inlet 2a of the CO oxidation catalyst layer 2 to the "12b. At this time, the CO concentration on the inlet 2a side is The CO concentration on the outlet 2b side is sampled and measured from measurement point 18 from Ijy17 with N11 constant.When catalyst deterioration progresses, valve 14°14
A is closed, and a valve 13.13a is opened to switch the flow of the exhaust gas 1 and inject the gas 1 into the CO oxidation contact layer 2 from the outlet 2b to the inlet 2a.

第3図に第2図の工程図による実施結果を示す。あらか
じめ長時間排ガスを流してCO酸化触媒の劣化を進行さ
せた後測定点17.18から排ガス1をサンプリングし
てCO計でCO濃度を分析した。測定開始後6時間で、
バルブ14.14aを閉、バルブ13.13aを開にし
てガスの渣れを!、l】換えた。入[]2a側、または
2b側の測定点17、または18のCO濃度は測定期間
中、常時1.1%であった。ガス切換前に出口2b側の
測定点18のCO濃度は0.45%(CO酸化=ゼ59
%)であったものがガス切換後に出口2a側の測定点1
7のCO儂度は急速に低下し約1時間後に0.1%(C
O酸化率91%)まで低下した。出口2b側または2a
側のCO濃度が低いはどCO酸化触媒でのCO酸化率が
良いことを示すもので、CO酸化触媒の活性が回復した
ことを示している。さらに9時間目にバルブ14.14
aを開に、バルブ13.13aを閉にして排ガス1の流
れを元にもどしたが出口2b側のCO濃度は0.1%で
あり、」1下どちらの方向から排ガスlを揄してもCO
酸化触媒は高活性を維持していた。以−トの実験から排
ガス1の流れの切換えによりCO酸化触媒が再生される
ことが確認された。
FIG. 3 shows the results of implementation according to the process diagram of FIG. 2. After allowing exhaust gas to flow for a long time in advance to promote deterioration of the CO oxidation catalyst, exhaust gas 1 was sampled from measurement points 17 and 18, and the CO concentration was analyzed using a CO meter. 6 hours after the start of measurement,
Close valve 14.14a and open valve 13.13a to remove the gas residue! , l] changed. The CO concentration at measurement point 17 or 18 on the input [2a side or 2b side] was always 1.1% during the measurement period. Before switching the gas, the CO concentration at the measurement point 18 on the outlet 2b side was 0.45% (CO oxidation =
%) at measurement point 1 on the outlet 2a side after gas switching.
The CO intensity of No. 7 rapidly decreased to 0.1% (C
The O oxidation rate decreased to 91%). Exit 2b side or 2a
A lower CO concentration on the side indicates that the CO oxidation rate of the CO oxidation catalyst is good, indicating that the activity of the CO oxidation catalyst has been recovered. Further, at the 9th hour, valve 14.14
A was opened and valve 13.13a was closed to restore the flow of exhaust gas 1, but the CO concentration on the outlet 2b side was 0.1%. Also CO
The oxidation catalyst maintained high activity. From the above experiments, it was confirmed that the CO oxidation catalyst was regenerated by switching the flow of the exhaust gas 1.

なお、本発明は焼結工場排ガス中の一酸化炭素の酸化に
関する場合に限定Sれない。
Note that the present invention is not limited to the case of oxidizing carbon monoxide in sintering factory exhaust gas.

〔発明の効果〕〔Effect of the invention〕

以上に示したしたように本発明によれば、C0酸化触媒
の発熱が全て触媒再生に有効に利用され、触媒の再生が
継続的に行われる。またガスの流れの向きを逆にするこ
とにより、切換前のガス入側の触媒の温度が触媒の再生
に必要な温度まで」−昇することにより劣化した触媒部
の再生が迅速にかつ完全に行われCO酸化触媒の発熱が
全て触媒再生に有効に利用され、燃料コストが低減化す
る。また従来提案されている方式に対し、本発明の方法
によれば、ガスの線速度が小さなため大幅な設備投資を
要せずに電力使用砥の低減化が可能である。また触媒を
動かさないので装置の構造が簡便で、かつ触媒の物理的
強度は要求yれないという効果を奏する。
As described above, according to the present invention, all of the heat generated by the CO oxidation catalyst is effectively used for catalyst regeneration, and the catalyst is continuously regenerated. In addition, by reversing the direction of the gas flow, the temperature of the catalyst on the gas inlet side before switching increases to the temperature required for catalyst regeneration, allowing the deteriorated catalyst to be regenerated quickly and completely. All of the heat generated by the CO oxidation catalyst is effectively used for catalyst regeneration, reducing fuel costs. Furthermore, in contrast to conventionally proposed methods, according to the method of the present invention, since the linear velocity of the gas is small, it is possible to reduce the amount of electric power used without requiring a large capital investment. Furthermore, since the catalyst is not moved, the structure of the device is simple and the physical strength of the catalyst is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法の工程図、第2図は本発
明の他の実施例方法の工程図、第3図は第2図の実施結
果説明図、第4図は本発明の前提現象の説明図、第5図
は従来方法の工程図である。 1・・・焼結炉排ガス 2・・・触媒層 3・・・脱硝反応器 4・・・加熱炉 5・・・ブロワ 6・・・熱交換器 7・・・煙突 8.8a、9.9a・・・ダンパ 10・・・電熱ヒータ ー13.13a、14.14a、15 、16−・・バ
ルブ 17.18・・・flll定点
Fig. 1 is a process diagram of one embodiment of the present invention, Fig. 2 is a process diagram of another embodiment of the present invention, Fig. 3 is an explanatory diagram of the implementation results of Fig. 2, and Fig. 4 is a process diagram of the present invention. FIG. 5 is a process diagram of the conventional method. 1... Sintering furnace exhaust gas 2... Catalyst layer 3... Denitration reactor 4... Heating furnace 5... Blower 6... Heat exchanger 7... Chimney 8.8a, 9. 9a...Damper 10...Electric heater 13.13a, 14.14a, 15, 16-...Valve 17.18...Fllll fixed point

Claims (1)

【特許請求の範囲】[Claims] 一酸化炭素等の可燃成分の酸化に用いる触媒層を通過さ
せるガスの流れ方向を、正逆交互に順次切り換えること
を特徴とする酸化触媒の再生方法。
A method for regenerating an oxidation catalyst, comprising sequentially switching the flow direction of gas passing through a catalyst layer used for oxidizing combustible components such as carbon monoxide between forward and reverse.
JP59135188A 1984-07-02 1984-07-02 Regeneration of oxidizing catalyst Pending JPS6115740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135188A JPS6115740A (en) 1984-07-02 1984-07-02 Regeneration of oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135188A JPS6115740A (en) 1984-07-02 1984-07-02 Regeneration of oxidizing catalyst

Publications (1)

Publication Number Publication Date
JPS6115740A true JPS6115740A (en) 1986-01-23

Family

ID=15145890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135188A Pending JPS6115740A (en) 1984-07-02 1984-07-02 Regeneration of oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS6115740A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976941A (en) * 1984-12-29 1990-12-11 Kawasaki Steel Corporation Process for oxidizing carbon monoxide in exhaust gas from a sintering furnace
JPH11179153A (en) * 1997-12-24 1999-07-06 Babcock Hitachi Kk Method and apparatus for cleaning exhaust gas
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
KR100880236B1 (en) 2006-07-10 2009-01-28 쥬코쿠 덴료쿠 가부시키 가이샤 Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
WO2015075793A1 (en) * 2013-11-20 2015-05-28 ボルボ ラストバグナー アクチエボラグ Exhaust purification device and regeneration method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976941A (en) * 1984-12-29 1990-12-11 Kawasaki Steel Corporation Process for oxidizing carbon monoxide in exhaust gas from a sintering furnace
JPH11179153A (en) * 1997-12-24 1999-07-06 Babcock Hitachi Kk Method and apparatus for cleaning exhaust gas
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
US7441332B2 (en) 2003-12-11 2008-10-28 The Chugoku Electric Power Co., Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
CN100431672C (en) * 2003-12-11 2008-11-12 中国电力株式会社 Method for restoring performance of exhaust gas treatment apparatus
KR100880236B1 (en) 2006-07-10 2009-01-28 쥬코쿠 덴료쿠 가부시키 가이샤 Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
WO2015075793A1 (en) * 2013-11-20 2015-05-28 ボルボ ラストバグナー アクチエボラグ Exhaust purification device and regeneration method therefor

Similar Documents

Publication Publication Date Title
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
WO2016208717A1 (en) Denitration device and denitration method
JP4618508B2 (en) Exhaust gas purification apparatus and exhaust gas purification method using the same
JPS6115740A (en) Regeneration of oxidizing catalyst
TWI406701B (en) Process for denoxification of off-gases from annealing and pickling lines, and an annealing and pickling line, especially for stainless steel hot or cold strip
JP2008038634A (en) Exhaust emission control device for internal combustion engine
US5582802A (en) Catalytic sulfur trioxide flue gas conditioning
JPH0617734B2 (en) Catalytic combustion device for gas containing carbon monoxide and hydrogen
FI88363B (en) ROEKGASANLAEGGNING
WO2017002168A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JPS61161143A (en) Carbon monoxide-oxidizing catalyst in waste gas
JPH05115750A (en) Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
JP2831910B2 (en) Method for regenerating CO oxidation catalyst
JP2743632B2 (en) Noxious gas heating purification equipment
JP6961417B2 (en) CO oxidation system control method and CO oxidation system
JPS6254539B2 (en)
JP2789871B2 (en) Catalyst purification device
JP2020517448A (en) Method and system for removing harmful compounds from flue gas using fabric filter bag with SCR catalyst
JPS59230625A (en) Oxidation of carbon monoxide in exhaust gas
JP2501616Y2 (en) Exhaust gas treatment device
JPS61161124A (en) Temperature controlling method in carbon monoxide oxidizing reaction apparatus
JPS59213425A (en) Denitration method of combustion waste gas
JPS5858134B2 (en) Denitrification method for sintering furnace exhaust gas
JP2692425B2 (en) Catalyst purification device and purification method
JP2526770Y2 (en) Diesel engine exhaust purification system