JPH04326924A - Intermittent type apparatus and method for purifying catalyst - Google Patents

Intermittent type apparatus and method for purifying catalyst

Info

Publication number
JPH04326924A
JPH04326924A JP3095839A JP9583991A JPH04326924A JP H04326924 A JPH04326924 A JP H04326924A JP 3095839 A JP3095839 A JP 3095839A JP 9583991 A JP9583991 A JP 9583991A JP H04326924 A JPH04326924 A JP H04326924A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
heating
gas
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095839A
Other languages
Japanese (ja)
Inventor
Akira Hashimoto
彰 橋本
Junjiro Awano
順二郎 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3095839A priority Critical patent/JPH04326924A/en
Publication of JPH04326924A publication Critical patent/JPH04326924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the apparatus reduced in energy loss and effective even for corrosive gas in a catalyst purifying apparatus heating harmful components such as CO (carbon monoxide), HC(hydrocarbon) or the like in various exhaust gases to oxidize and purify the same. CONSTITUTION:The opening end of a catalyst purifying apparatus main body having two chambers mutually communicating at closed other ends thereof and each having a catalyst and a heating device can be alternately converted as an exhaust gas inlet or outlet and corrosion-resistant heat accumulator layers are respectively arranged on the way of the exhaust gas flow passages from the opening end to the catalysts or heating devices. Exhaust gas receives heat from one of the heat accumulator layers to be purified in a heated state and the heat thereof is removed by the other heat accumulator layer to discharge the exhaust gas in a cooled state. By reversing the flow of the exhaust gas to be treated at every set time, the respective heat accumulator layers alternately develops heating and cooling functions. By this constitution, a part or the greater part of heat energy for heating exhaust gas to temp. necessary for purifying the gas can be circulated in the catalyst purifying apparatus main body and thermal loss can be reduced even by intermittent operation. Further, this apparatus can be adapted to corrosive gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種排ガス中に混入し
たCO(一酸化炭素),HC(炭化水素)等の悪臭成分
や有害成分を適正温度に加熱し、触媒により酸化浄化す
る触媒浄化装置および浄化方法に関するものであり、特
に間欠的に発生する有害ガスの浄化に適した間欠式触媒
浄化装置を提供するものである。
[Industrial Application Field] The present invention is a catalytic purification method that heats malodorous and harmful components such as CO (carbon monoxide) and HC (hydrocarbons) mixed in various exhaust gases to an appropriate temperature and oxidizes them using a catalyst. The present invention relates to a device and a purification method, and provides an intermittent catalyst purification device particularly suitable for purifying harmful gases that are generated intermittently.

【0002】0002

【従来の技術】近年、各種の燃焼機や乾燥、熱処理時に
発生するCOやHC成分は、その有害性や臭気のため浄
化し、排出することが必要不可欠なものになっている。 またバンド機や樹脂,ビニール等の融着時に有害ガスが
発生し、その浄化が求められている。
BACKGROUND OF THE INVENTION In recent years, it has become essential to purify and discharge CO and HC components generated in various combustion machines, drying, and heat treatments due to their toxicity and odor. In addition, harmful gases are generated when using band machines and fusing resins, vinyl, etc., and there is a need to purify them.

【0003】COやHC成分の浄化方法としては、排ガ
ス自身を加熱しガス中の酸素と反応させる方法が最も浄
化効率が高く、信頼性も高い。ここで排ガスの温度を高
め、空気中の酸素がCOやHCと反応するには、800
〜900℃以上の温度が必要になる。しかし酸化触媒を
用いれば200〜400℃の温度範囲で反応を進めるこ
とができ、熱エネルギーの無駄を省くことができるため
広く用いられている。
[0003] As a method for purifying CO and HC components, a method of heating the exhaust gas itself and causing it to react with oxygen in the gas has the highest purification efficiency and reliability. In order to raise the temperature of the exhaust gas and cause the oxygen in the air to react with CO and HC, it takes 800
A temperature of ~900°C or higher is required. However, if an oxidation catalyst is used, the reaction can proceed in a temperature range of 200 to 400°C, and waste of thermal energy can be avoided, so it is widely used.

【0004】以下に従来の触媒浄化装置について説明す
る。図4は、従来の触媒浄化装置の一例であり、(a)
は触媒浄化装置本体、(b)は熱交換も含めたシステム
を示す。図中19は触媒浄化装置本体、16は熱交換機
、12は加熱装置、13は触媒を示す。(a)で排ガス
は20の入り口から触媒加熱装置本体に導入され、12
の加熱装置により所定の温度に昇温し、13の触媒によ
りCO,HC等が酸化浄化され、14の出口から排出さ
れる。この時排ガスの昇温に要したエネルギーはガスと
一緒に排出されることになる。このエネルギーの一部を
回収する目的で熱交換機を用いたシステムが(b)であ
る。この場合ガスの入り口17から導入され16の熱交
換機で昇温された排ガスは、矢印に沿って流れ、19の
触媒浄化装置本体に進む。ここで浄化されたガスは、再
び16の熱交換機に入り冷却されてガスの出口18から
排出される。すなわち排ガスの昇温に要したエネルギー
の一部を回収し、エネルギーロスを少なくしようとする
ものである。
[0004] A conventional catalyst purification device will be explained below. FIG. 4 is an example of a conventional catalyst purification device, and (a)
(b) shows the catalytic purification device main body, and (b) shows the system including heat exchange. In the figure, 19 is the main body of the catalyst purification device, 16 is a heat exchanger, 12 is a heating device, and 13 is a catalyst. In (a), exhaust gas is introduced into the catalyst heating device main body from the inlet 20,
The temperature is raised to a predetermined temperature by the heating device 13, and CO, HC, etc. are oxidized and purified by the catalyst 13, and then discharged from the outlet 14. At this time, the energy required to raise the temperature of the exhaust gas is exhausted together with the gas. A system using a heat exchanger for the purpose of recovering part of this energy is shown in (b). In this case, the exhaust gas introduced from the gas inlet 17 and heated by the heat exchanger 16 flows along the arrow and advances to the main body of the catalytic purification device 19. The gas purified here again enters the 16 heat exchangers, is cooled, and is discharged from the gas outlet 18. In other words, it attempts to recover a portion of the energy required to raise the temperature of exhaust gas and reduce energy loss.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成で用いられる熱交換機16は、通常熱伝導率の
良い薄肉のアルミニウムが主体となっており、熱交換効
率は50〜60%が限界である。またSOxやNOx等
の腐食性のガスを含んだ排ガスに対しては、アルミニウ
ムが腐食するため使用できなかった。そして間欠的に発
生する有害ガスの浄化に対しても常に運転している必要
がありエネルギー的にも無駄が多いという問題点があっ
た。
[Problems to be Solved by the Invention] However, the heat exchanger 16 used in the above-mentioned conventional configuration is usually made of thin-walled aluminum with good thermal conductivity, and the heat exchange efficiency is limited to 50 to 60%. be. Further, aluminum could not be used for exhaust gas containing corrosive gases such as SOx and NOx because the aluminum would corrode. Moreover, there is a problem in that it is necessary to constantly operate to purify harmful gases that are generated intermittently, and there is a lot of energy waste.

【0006】本発明は、上記従来の問題点を解決するも
ので、熱交換効率を大きく向上させることによりエネル
ギーロスを大幅に減少させるとともに、腐食性のガスに
対しても有効で特に間欠的な運転に有効な触媒浄化装置
および浄化方法を提供することを目的としている。
The present invention solves the above-mentioned conventional problems, and greatly reduces energy loss by greatly improving heat exchange efficiency. It is also effective against corrosive gases, and is particularly effective against intermittent gases. The purpose is to provide a catalyst purification device and a purification method that are effective for operation.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の間欠式触媒浄化装置は、本体の一端が開口し
、他端が閉じられた構造でありその部分で互いに連通し
た2室を有し、各室の開口部側には蓄熱体層を、閉じら
れた側には触媒と加熱装置をそれぞれ配置するとともに
、それぞれの室の開口部がそれぞれダンパーを介して排
ガスの入り口流路および出口流路の両方に連通した構成
を有している。
[Means for Solving the Problems] In order to achieve this object, the intermittent catalyst purification device of the present invention has a structure in which one end of the main body is open and the other end is closed, and two chambers communicate with each other at that part. A heat storage layer is placed on the opening side of each chamber, and a catalyst and a heating device are placed on the closed side, and the opening of each chamber is connected to an exhaust gas inlet flow path via a damper. and an outlet flow path.

【0008】[0008]

【作用】この構成による排ガスの浄化について説明する
。この浄化装置本体の2室はそれぞれ相反する出口また
は入り口のガス流路の一方とのみ連通した状態で作動す
る。悪臭成分を含んだ排ガスは入り口ガス流路から一方
の室に流入し、蓄熱体及び加熱装置により加熱後、触媒
により浄化される。そしてもう一方の室の蓄熱体を通過
するとき排ガスのエネルギーは蓄熱体により奪われ冷却
されて出口ガス流路に排出される。次にそれぞれの室の
ダンパーを同時に切り替えることによって浄化装置本体
内の排ガスの流れを逆転させる。すなわちこれまで出口
流路と連通していた室が入り口流路と連通し、これまで
入り口流路と連通していた室が出口流路と連通すること
になる。この時排ガスは熱エネルギーを十分に吸収して
いる蓄熱体から熱を奪い、加熱される。そして触媒によ
り浄化されもう一方の蓄熱体層で冷却され排出される。 このことは、排ガスが浄化に必要な温度まで加温される
ための熱エネルギーの一部または大部分を触媒浄化装置
本体の内部で循環できることを意味し、排出される熱的
ロスを削減できることを意味する。また蓄熱体は排気ガ
スの流れていない間は触媒浄化装置本体の最外壁からの
放熱のみが熱的ロスとして現れるだけであり、間欠運転
に対しても十分に高いエネルギー効率を発揮することが
できる。蓄熱体の材料として熱容量の大きい耐腐食性に
優れたセラミック構造物を選べば、腐食性物質を含む排
ガスでも浄化可能で、熱的ロスの少ない触媒浄化装置を
提供することができる。
[Operation] Purification of exhaust gas by this configuration will be explained. The two chambers of the purifier main body operate in a state where they are in communication with only one of the opposing outlet or inlet gas flow paths. Exhaust gas containing malodorous components flows into one chamber from the inlet gas flow path, is heated by a heat storage body and a heating device, and then purified by a catalyst. Then, when the exhaust gas passes through the heat storage body in the other chamber, the energy of the exhaust gas is taken away by the heat storage body, and the exhaust gas is cooled and discharged to the exit gas flow path. Next, the flow of exhaust gas within the purifier body is reversed by switching the dampers in each chamber simultaneously. That is, the chamber that has been in communication with the outlet flow path will now be in communication with the inlet flow path, and the chamber that has been in communication with the inlet flow path will be in communication with the outlet flow path. At this time, the exhaust gas is heated by absorbing heat from the heat storage body, which has absorbed sufficient thermal energy. Then, it is purified by the catalyst, cooled by the other heat storage layer, and discharged. This means that part or most of the thermal energy needed to heat the exhaust gas to the temperature required for purification can be circulated inside the catalyst purification system, reducing the thermal loss of exhaust gas. means. In addition, while the exhaust gas is not flowing through the heat storage body, only the heat released from the outermost wall of the catalyst purification device body appears as thermal loss, and it can demonstrate sufficiently high energy efficiency even in intermittent operation. . If a ceramic structure with a large heat capacity and excellent corrosion resistance is selected as the material for the heat storage body, it is possible to provide a catalytic purification device that can purify even exhaust gas containing corrosive substances and has little thermal loss.

【0009】[0009]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1において、1,2は排ガスの入り口側
流路、11は排ガスの出口側流路をそれぞれ示す。7は
触媒浄化装置本体、6は蓄熱体層、9は触媒、10は加
熱装置を示す。(a)は装置の概略図、(b)は(a)
のA−B面の断面を示す。(b)の上方が開口部であり
、ダンパー部4,5で入り口側流路,出口側流路と連通
する。下方が閉じられた一端を示し、8の分割壁で分け
られた左右の2室がここで連通している。排ガスの流れ
は矢印3で示した。4は閉じたダンパー、5は開いたダ
ンパーを示す。(c)および(d)は、(a)および(
b)の状態からダンパーの操作により排ガスの流れを逆
にした状態を示す。
In FIG. 1, reference numerals 1 and 2 indicate flow paths on the inlet side of exhaust gas, and reference numeral 11 indicates flow paths on the outlet side of exhaust gas. 7 is a catalytic purification device main body, 6 is a heat storage layer, 9 is a catalyst, and 10 is a heating device. (a) is a schematic diagram of the device, (b) is (a)
A cross section taken along A-B plane is shown. The upper part of (b) is the opening, which communicates with the inlet side flow path and the outlet side flow path through the damper parts 4 and 5. The lower part shows one end that is closed, and the two chambers on the left and right, separated by 8 dividing walls, communicate here. The flow of exhaust gas is indicated by arrow 3. 4 indicates a closed damper and 5 indicates an open damper. (c) and (d) are (a) and (
This shows a state in which the flow of exhaust gas is reversed from state b) by operating the damper.

【0011】次に(a)および(b)の状態を説明す。 有害ガスを含んだ排ガスは(a)の入り口1から入り、
左に進み矢印から5の開口部を通過して触媒浄化装置本
体7に導入される。ここでは(b)の矢印で示したよう
に排ガスは流れる。この時左の室の蓄熱体層6により加
熱され、左右の室の触媒9と加熱体10により有害ガス
が浄化される。そして右の室の蓄熱体層6で熱交換され
冷却された状態で開口部5から出口側流路11に排出さ
れる。一定時間後排ガスの流れを止めダンパーを操作し
て(c)および(d)の状態になるようにし、再び排ガ
スを流す。この時は排ガスは(c)の入り口側流路1を
右に流れ、(d)の右の室を上から下へ流れ左の室に移
り、ここで下から上は流れて出口側流路11に排出され
る。右室の蓄熱体層6は(b)の状態の時に十分に熱エ
ネルギーを蓄積しており、(d)の状態では排ガスを熱
交換によって加熱する。すなわち熱エネルギーは触媒浄
化装置内を循環し、ロスする量は非常に少ない。
Next, states (a) and (b) will be explained. Exhaust gas containing harmful gas enters from entrance 1 in (a),
Proceeding to the left, it passes through the opening 5 from the arrow and is introduced into the catalyst purification device main body 7. Here, the exhaust gas flows as shown by the arrow in (b). At this time, it is heated by the heat storage layer 6 in the left chamber, and the harmful gas is purified by the catalyst 9 and heating body 10 in the left and right chambers. Then, heat is exchanged in the heat storage layer 6 of the right chamber, and the cooled state is discharged from the opening 5 to the outlet side flow path 11. After a certain period of time, the flow of exhaust gas is stopped and the damper is operated to achieve the conditions (c) and (d), and the exhaust gas is allowed to flow again. At this time, the exhaust gas flows to the right through the inlet side flow path 1 in (c), flows from top to bottom through the right chamber in (d), moves to the left chamber, where it flows from bottom to top, and flows through the outlet side flow path. It is discharged at 11. The heat storage layer 6 of the right ventricle has sufficiently stored thermal energy in the state (b), and heats the exhaust gas by heat exchange in the state (d). That is, thermal energy is circulated within the catalyst purification device, and the amount lost is extremely small.

【0012】本実施例における有害成分の浄化効果と熱
効率を測定した結果を表1に示す。
Table 1 shows the results of measuring the harmful component purification effect and thermal efficiency in this example.

【0013】[0013]

【表1】[Table 1]

【0014】触媒浄化装置は、蓄熱体としてそれぞれの
室に粒状アルミナ(5〜10mmφ)のもの5リットル
、触媒はハニカム状の白金触媒をそれぞれ1リットル、
加熱装置はmax1kWのシーズヒーターを用い、30
0℃で温度調節を行った。排ガスは100ppmのスチ
レンガスを含み、送風量は500リットル/minとし
た。排ガスの浄化率はスチレンガスの触媒による分解率
で示し、熱効率は簡易的に排ガスが300℃まで昇温さ
れたとして300℃への昇温温度に対して出口温度と入
り口温度の差を比較して算出した。切り替え時間とは、
一方向で排ガスを流し続けた時間を示し、ダンパーの切
り替え時は10秒間排ガスは流れていない。
The catalyst purification device has 5 liters of granular alumina (5 to 10 mmφ) in each chamber as a heat storage body, 1 liter of honeycomb-shaped platinum catalyst as a catalyst,
The heating device uses a sheathed heater with a maximum capacity of 1kW.
Temperature control was performed at 0°C. The exhaust gas contained 100 ppm of styrene gas, and the air flow rate was 500 liters/min. The purification rate of exhaust gas is indicated by the decomposition rate of styrene gas by a catalyst, and thermal efficiency is simply calculated by assuming that the exhaust gas is heated to 300℃ and comparing the difference between the outlet temperature and the inlet temperature with respect to the temperature raised to 300℃. Calculated. What is switching time?
It shows the time that exhaust gas continues to flow in one direction, and when the damper is switched, the exhaust gas does not flow for 10 seconds.

【0015】この表1から明らかなように、本実施例に
よる触媒浄化装置は、90%以上のスチレンガス排ガス
の浄化を85%以上の熱交換効率で達成することができ
ている。従来法によるアルミニウムの熱交換機を用いた
ものでは、排ガスの浄化率を90%以上にすることは可
能であるが、熱交換率は連続運転でも50〜60%が限
界であった。本実施例の最も優れた条件では、スチレン
ガスの浄化率及び熱効率共に90%以上を示した。
[0015] As is clear from Table 1, the catalytic purification apparatus according to the present example can achieve 90% or more purification of styrene gas exhaust gas with a heat exchange efficiency of 85% or more. In conventional methods using aluminum heat exchangers, it is possible to achieve an exhaust gas purification rate of 90% or more, but the heat exchange rate is limited to 50 to 60% even in continuous operation. Under the most excellent conditions of this example, both the styrene gas purification rate and thermal efficiency were 90% or more.

【0016】また本実施例では、蓄熱材としてアルミナ
を用いており、これは耐腐食性に優れているため排ガス
中に金属を腐食するような成分(たとえば酸性ガス等)
が含まれていても十分使用に耐える。
Furthermore, in this embodiment, alumina is used as the heat storage material, and because it has excellent corrosion resistance, it does not contain components that corrode metals (for example, acid gas, etc.) in the exhaust gas.
Even if it contains, it can withstand use.

【0017】(実施例2)以下、本発明の第2の実施例
について図面を参照しながら説明する。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings.

【0018】図2において、加熱体10が左右の室に分
けられ、触媒9と蓄熱体層6の間に位置している。この
構造は設置されている触媒すべてが排ガス浄化に寄与で
きると共に加熱体10の温度制御センサーを両室の連通
部分に設置することにより排ガスの昇温温度を正確に制
御することができる。排ガスの流れは実施例1と同様で
ある。
In FIG. 2, the heating body 10 is divided into left and right chambers, and is located between the catalyst 9 and the heat storage layer 6. With this structure, all of the installed catalysts can contribute to exhaust gas purification, and by installing the temperature control sensor of the heating element 10 in the communicating portion of both chambers, the temperature increase of the exhaust gas can be accurately controlled. The flow of exhaust gas is the same as in Example 1.

【0019】本実施例における有害成分の浄化効果と熱
効率を測定した結果を表2に示す。
Table 2 shows the results of measuring the harmful component purification effect and thermal efficiency in this example.

【0020】[0020]

【表2】[Table 2]

【0021】本実施例の触媒浄化装置は、実施例1と同
様に蓄熱体としてそれぞれ粒状アルミナ(5〜10mm
φ)のもの5リットル用いた。触媒はハニカム状の白金
触媒を1リットル使用し、加熱装置はそれぞれmax1
kWのシーズヒーターを用い、300℃で温度調節を行
った。排ガスは100ppmのスチレンガスを含み、そ
の送風量は500リットル/minとした。排ガスの浄
化率はスチレンガスの触媒による分解率で示し、熱効率
は簡易的に排ガスが300℃まで昇温されたとして30
0℃への昇温温度に対して出口温度と入り口温度の差を
比較して算出した。切り替え時間とは、一方向で排ガス
を流し続けた時間を示し、ダンパーの切り替え時10秒
間は排ガスが流れていない。
[0021] The catalyst purification device of this example uses granular alumina (5 to 10 mm) as a heat storage body, as in Example 1.
5 liters of φ) were used. The catalyst uses 1 liter of honeycomb-shaped platinum catalyst, and each heating device has a max.
The temperature was controlled at 300°C using a kW sheathed heater. The exhaust gas contained 100 ppm of styrene gas, and the air flow rate was 500 liters/min. The purification rate of exhaust gas is expressed as the decomposition rate of styrene gas using a catalyst, and thermal efficiency is simply calculated as 30°C assuming that the exhaust gas is heated to 300°C.
It was calculated by comparing the difference between the outlet temperature and the inlet temperature with respect to the temperature raised to 0°C. The switching time refers to the time during which the exhaust gas continues to flow in one direction, and the exhaust gas does not flow for 10 seconds when the damper is switched.

【0022】この表2から明らかなように、本実施例に
よる触媒浄化装置は、実施例1と比較してスチレンガス
排ガスの浄化率が高く、熱交換効率が低い結果となって
いる。しかし本実施例においても最も優れた条件では、
スチレンガスの浄化率及び熱効率共に90%以上を示し
た。
As is clear from Table 2, the catalytic purification apparatus according to this example has a higher purification rate of styrene gas exhaust gas and lower heat exchange efficiency than that of Example 1. However, in this example, under the best conditions,
Both the styrene gas purification rate and thermal efficiency were over 90%.

【0023】(実施例3)以下、本発明の第3の実施例
について図面を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings.

【0024】図3において、(b)は(a)のA−B部
分での断面図、(c)は(a)のC−D部分での断面図
を示す。第1の実施例と異なるのは(a)で明らかなよ
うにそれぞれの室が出口側流路,入り口側流路と連通す
るダンパー部分の構造が変化しており、流路等が簡単な
構造になっていることである。排ガスはそれぞれ矢印の
方向に流れる。触媒浄化及び熱交換の効率は第1の実施
例と同様であった。
In FIG. 3, (b) shows a cross-sectional view taken along the line AB in (a), and (c) shows a cross-sectional view taken along the line CD in (a). The difference from the first embodiment is that, as is clear in (a), the structure of the damper portion where each chamber communicates with the outlet side flow path and the inlet side flow path has been changed, and the flow paths etc. have a simple structure. This is what is happening. The exhaust gas flows in the direction of each arrow. The efficiency of catalyst purification and heat exchange was similar to the first example.

【0025】[0025]

【発明の効果】以上のように、本発明は浄化装置本体が
蓄熱体層を有した2室に分かれ、開口する一端がそれぞ
れ排ガスの入り口側流路,出口側流路と交互に相反して
連通する構造を有するとともに、閉じられた他端部分で
互いに連通してここに加熱装置と触媒が設けられた構造
を有し、1室の開口部から導入された排ガスは、蓄熱体
層から熱エネルギーを供給され加熱装置,触媒層で有害
成分を浄化された後、もう一方の室の蓄熱体層で熱交換
され冷却されて開口部から出口側流路に排出される。一
定時間の浄化処理後、ダンパーを切り替えることにより
排ガスをこれまでとは反対方向に流し、それぞれの室の
蓄熱体層が逆の熱交換作用を行うようにする。これを交
互に繰り返すことにより熱エネルギーのロスを最小限に
抑え、かつ排ガス中の有害成分を効率よく浄化すること
ができる触媒浄化装置を実現するものである。
[Effects of the Invention] As described above, according to the present invention, the main body of the purification device is divided into two chambers each having a heat storage layer, and one open end is arranged alternately with the inlet side flow path and the outlet side flow path of the exhaust gas. It has a structure in which the heating device and the catalyst are installed in the closed end portion, which communicates with each other, and the exhaust gas introduced from the opening of one chamber is heated from the heat storage layer. After being supplied with energy and purified of harmful components by a heating device and a catalyst layer, heat is exchanged and cooled by a heat storage layer in the other chamber, and the mixture is discharged from the opening to the outlet side flow path. After a certain period of purification treatment, the damper is switched to cause the exhaust gas to flow in the opposite direction, so that the heat storage layer in each chamber performs the opposite heat exchange action. By repeating this process alternately, a catalytic purification device is realized which can minimize loss of thermal energy and efficiently purify harmful components in exhaust gas.

【0026】また排ガスの流れが間欠的になる場合でも
十分な熱交換効率を示すとともに蓄熱材としてアルミナ
等の耐腐食性に優れたセラミックが使用できるため、排
ガス中に金属を腐食するような成分たとえば酸性ガス等
が含まれていても十分使用に耐える。
In addition, even when the flow of exhaust gas is intermittent, it exhibits sufficient heat exchange efficiency and ceramics with excellent corrosion resistance such as alumina can be used as a heat storage material, so there are no components in the exhaust gas that corrode metals. For example, it can withstand use even if it contains acidic gas.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)本発明の第1の実施例における触媒浄化
装置の全体構成を示す (b)(a)のA−B部分での断面を示す(c),(d
)(a),(b)の排ガスの流れを逆転させた状態を示
FIG. 1 (a) shows the overall configuration of a catalyst purification device in a first embodiment of the present invention; (b) shows a cross section taken along A-B in (a); (c), (d);
) Shows the state where the flow of exhaust gas in (a) and (b) is reversed.

【図2】(a)本発明の第2の実施例における触媒浄化
装置の全体構成を示す (b)(a)のA−B部分での断面を示す(c),(d
)(a),(b)の排ガスの流れを逆転させた状態を示
FIG. 2 (a) shows the overall configuration of a catalyst purification device in a second embodiment of the present invention; (b) shows a cross section taken along line A-B in (a); (c), (d);
) Shows the state where the flow of exhaust gas in (a) and (b) is reversed.

【図3】(a)本発明の第3の実施例における触媒浄化
装置の全体構成を示す (b)(a)のA−B部分での断面を示す(c)(a)
のC−D部分での断面を示す
FIG. 3 (a) shows the overall configuration of a catalyst purification device in a third embodiment of the present invention; (b) shows a cross section taken along the line A-B in (a); (c) (a)
shows a cross section at the C-D section of

【図4】(a)従来の触媒
浄化装置本体の構成を示す(b)熱交換機も含めた従来
の触媒浄化システム全体の構成を示す
[Fig. 4] (a) Shows the configuration of a conventional catalyst purification device main body. (b) Shows the entire configuration of a conventional catalyst purification system including a heat exchanger.

【符号の説明】[Explanation of symbols]

7  触媒浄化装置本体 6  蓄熱体層 9  触媒 10  加熱装置 7 Catalytic purification device main body 6 Heat storage layer 9 Catalyst 10 Heating device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一端が開口し、他端は閉じているとともに
その部分で互いに連通した2室に分けられた本体を有し
、各室の開口部側には蓄熱体層を、閉じられた側には触
媒と加熱装置をそれぞれ配置するとともに、各室の開口
部がそれぞれダンパーを介して排ガスの入り口流路およ
び出口流路と連通したことを特徴とする間欠式触媒浄化
装置。
Claim 1: It has a main body divided into two chambers that are open at one end and closed at the other end and communicate with each other at that portion, and a heat storage layer is provided on the opening side of each chamber. An intermittent catalytic purification device characterized in that a catalyst and a heating device are respectively disposed on the sides, and the openings of each chamber communicate with an inlet flow path and an outlet flow path of exhaust gas through dampers.
【請求項2】2室の連通部分に加熱装置を配置し、加熱
装置と蓄熱体層との間に触媒を配置した請求項1記載の
間欠式触媒浄化装置。
2. The intermittent catalytic purification device according to claim 1, wherein a heating device is disposed in a communicating portion between the two chambers, and a catalyst is disposed between the heating device and the heat storage layer.
【請求項3】2室の連通部分に触媒を配置し、触媒と蓄
熱体層との間に加熱装置を配置した請求項1記載の間欠
式触媒浄化装置。
3. The intermittent catalytic purification device according to claim 1, wherein the catalyst is disposed in a communicating portion between the two chambers, and a heating device is disposed between the catalyst and the heat storage layer.
【請求項4】一端が開口し、他端は閉じているとともに
その部分で互いに連通した2室に分けられた本体を有し
、2室はそれぞれ相反する出口または入り口のガス流路
の一方とのみ連通した状態であり、悪臭成分を含んだ排
ガスは入り口のガス流路から一方の室に流入して蓄熱体
及び加熱装置により加熱後触媒により浄化されてもう一
方の室の蓄熱体層で冷却され出口のガス流路に排出され
る過程と、本体の開口部に設けたダンパーの切り替えに
より浄化装置本体内の排ガスの流れを前記とは逆転させ
て加熱,浄化,冷却過程を経て排出される過程とを交互
に繰り返すことにより排ガス中の有害成分を浄化するこ
とを特徴とする間欠式触媒浄化方法。
[Claim 4] It has a main body divided into two chambers that are open at one end and closed at the other end and communicate with each other at that portion, and each of the two chambers is connected to one of opposite gas flow paths at the outlet or inlet. Exhaust gas containing malodorous components flows into one chamber from the gas flow path at the entrance, is heated by a heat storage body and heating device, is purified by a catalyst, and is cooled by a heat storage layer in the other chamber. The exhaust gas is discharged into the gas flow path at the outlet, and the flow of exhaust gas inside the purifier body is reversed by switching the damper installed at the opening of the main body, and the exhaust gas is discharged after undergoing heating, purification, and cooling processes. An intermittent catalytic purification method characterized by purifying harmful components in exhaust gas by repeating the process alternately.
JP3095839A 1991-04-25 1991-04-25 Intermittent type apparatus and method for purifying catalyst Pending JPH04326924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095839A JPH04326924A (en) 1991-04-25 1991-04-25 Intermittent type apparatus and method for purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095839A JPH04326924A (en) 1991-04-25 1991-04-25 Intermittent type apparatus and method for purifying catalyst

Publications (1)

Publication Number Publication Date
JPH04326924A true JPH04326924A (en) 1992-11-16

Family

ID=14148550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095839A Pending JPH04326924A (en) 1991-04-25 1991-04-25 Intermittent type apparatus and method for purifying catalyst

Country Status (1)

Country Link
JP (1) JPH04326924A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262434A (en) * 1996-03-28 1997-10-07 Trinity Ind Corp Catalytic regenerative heat storage deodorizing device
JPH09262435A (en) * 1996-03-29 1997-10-07 Cataler Kogyo Kk Regenerative waste gas purifier
JPH10238741A (en) * 1997-02-27 1998-09-08 Trinity Ind Corp Catalytic combustion type thermal storage exhaust gas treating apparatus
JPH10267248A (en) * 1997-03-27 1998-10-09 Trinity Ind Corp Catalyst type exhaust gas processor
JP2000130156A (en) * 1998-10-21 2000-05-09 Alternative Fuel Systems Inc Reversible flow catalyst converter for internal combustion engine
JP2000274644A (en) * 1999-03-29 2000-10-03 Trinity Ind Corp Regenerative exhaust gas treating device and method for operating it for burnout
JP2001012717A (en) * 1999-06-30 2001-01-19 Ngk Insulators Ltd Combustion deodorizing furnace
JP2003170024A (en) * 2001-12-05 2003-06-17 Babcock Hitachi Kk Method for cleaning exhaust gas by heat storage system catalyst combustion process
JP2007222750A (en) * 2006-02-22 2007-09-06 Ebara Corp Method and apparatus for treating waste gas containing volatile organic compound
JP2011521783A (en) * 2008-05-27 2011-07-28 バブコック パワー エンヴァイアメンタル インコーポレイテッド System and method for removing material from combustion exhaust by regenerative selective catalytic reduction
JP2016121859A (en) * 2014-12-25 2016-07-07 株式会社島川製作所 Harmful component heating and purifying device
JP6814494B1 (en) * 2020-03-06 2021-01-20 株式会社島川製作所 Hazardous component heating purification device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996967A (en) * 1973-01-20 1974-09-13
JPS4996968A (en) * 1973-01-20 1974-09-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996967A (en) * 1973-01-20 1974-09-13
JPS4996968A (en) * 1973-01-20 1974-09-13

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262434A (en) * 1996-03-28 1997-10-07 Trinity Ind Corp Catalytic regenerative heat storage deodorizing device
JPH09262435A (en) * 1996-03-29 1997-10-07 Cataler Kogyo Kk Regenerative waste gas purifier
JPH10238741A (en) * 1997-02-27 1998-09-08 Trinity Ind Corp Catalytic combustion type thermal storage exhaust gas treating apparatus
JPH10267248A (en) * 1997-03-27 1998-10-09 Trinity Ind Corp Catalyst type exhaust gas processor
JP2000130156A (en) * 1998-10-21 2000-05-09 Alternative Fuel Systems Inc Reversible flow catalyst converter for internal combustion engine
JP2000274644A (en) * 1999-03-29 2000-10-03 Trinity Ind Corp Regenerative exhaust gas treating device and method for operating it for burnout
JP2001012717A (en) * 1999-06-30 2001-01-19 Ngk Insulators Ltd Combustion deodorizing furnace
JP2003170024A (en) * 2001-12-05 2003-06-17 Babcock Hitachi Kk Method for cleaning exhaust gas by heat storage system catalyst combustion process
JP2007222750A (en) * 2006-02-22 2007-09-06 Ebara Corp Method and apparatus for treating waste gas containing volatile organic compound
JP2011521783A (en) * 2008-05-27 2011-07-28 バブコック パワー エンヴァイアメンタル インコーポレイテッド System and method for removing material from combustion exhaust by regenerative selective catalytic reduction
JP2016121859A (en) * 2014-12-25 2016-07-07 株式会社島川製作所 Harmful component heating and purifying device
JP6814494B1 (en) * 2020-03-06 2021-01-20 株式会社島川製作所 Hazardous component heating purification device

Similar Documents

Publication Publication Date Title
KR100993563B1 (en) VOC oxidizing and decomposing apparatus with preheating function
JPH04326924A (en) Intermittent type apparatus and method for purifying catalyst
JP2011521783A (en) System and method for removing material from combustion exhaust by regenerative selective catalytic reduction
JP5270912B2 (en) Catalytic oxidation treatment apparatus and catalytic oxidation treatment method
JPH11123318A (en) Device for cleaning gas containing nitrogen oxide
JPH04227026A (en) Method for removing nitrogen oxide and the like from flue gas
JP2001522027A (en) Rotary oxidizer for restaurant exhaust control
JP4435417B2 (en) Pollution control equipment
US6193504B1 (en) Portable rotary catalytic oxidizer systems
JP2616516B2 (en) Harmful component heating purification device and purification method
JP2004538436A (en) Module VOC confinement chamber for two-chamber regenerative oxidizer
JP2000189757A (en) Catalytic purification device
JP2692425B2 (en) Catalyst purification device and purification method
JP2789871B2 (en) Catalyst purification device
JPH04326941A (en) Catalytic cleaning apparatus and cleaning method
JP2743632B2 (en) Noxious gas heating purification equipment
JP2720648B2 (en) Hazardous gas heating purification apparatus and operation method thereof
JP2743641B2 (en) Catalyst purification device
JP2734823B2 (en) Noxious gas heating purification equipment
KR102480764B1 (en) Catalytic Oxidation System For Harmful Gas Treatment Having Heat Energy Supply Structure Using Carbon-Based Materials
JPH0557147A (en) Equipment for heating and purifying harmful gas
KR102572767B1 (en) Volatile Organic Compound Reduction System and Reduction Method
JP2005193175A (en) Method and apparatus for treating exhaust gas from gas engine
JP3500802B2 (en) Noxious gas heating purification equipment
KR102282525B1 (en) Catalyst Module for Pulse Type Volatile Organic Compounds Reduction