JP6814494B1 - Hazardous component heating purification device - Google Patents

Hazardous component heating purification device Download PDF

Info

Publication number
JP6814494B1
JP6814494B1 JP2020039032A JP2020039032A JP6814494B1 JP 6814494 B1 JP6814494 B1 JP 6814494B1 JP 2020039032 A JP2020039032 A JP 2020039032A JP 2020039032 A JP2020039032 A JP 2020039032A JP 6814494 B1 JP6814494 B1 JP 6814494B1
Authority
JP
Japan
Prior art keywords
communication
chamber
gas
damper
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020039032A
Other languages
Japanese (ja)
Other versions
JP2021139584A (en
Inventor
橋本 彰
彰 橋本
松岡 茂
茂 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimakawa Seisakusyo Co Ltd
Original Assignee
Shimakawa Seisakusyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimakawa Seisakusyo Co Ltd filed Critical Shimakawa Seisakusyo Co Ltd
Priority to JP2020039032A priority Critical patent/JP6814494B1/en
Application granted granted Critical
Publication of JP6814494B1 publication Critical patent/JP6814494B1/en
Priority to CN202110244230.2A priority patent/CN113019116A/en
Publication of JP2021139584A publication Critical patent/JP2021139584A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Incineration Of Waste (AREA)

Abstract

【課題】有害成分加熱浄化装置において、流入流路、流出流路、パージ流路の切り替えを、選択口を設けたダンパーを移動させて行う場合、ダンパーの重量で切り替えに大きな電力が必要であった。【解決手段】上方で連通する連通部と、下方には連通口が設けられた開口部が形成された底面を有し、前記連通部以外は壁によって仕切られた3つ以上の室と、前記室に前記開口部側から前記連通部に向かって蓄熱体部と、加熱部と、触媒部が連設され、前記底面上と摺動可能に密着載置され、前記3つの連通口の内の1つを連通状態にする選択口が形成されたダンパーと、前記底面と前記ダンパーとの摺動の間に配置された低摩擦層と、前記ダンパーを移動させ前記連通口の開閉を制御する制御装置を有することを特徴とする有害成分加熱浄化装置は、低摩擦層によって容易にダンパーを移動させることができる。【選択図】図1PROBLEM TO BE SOLVED: To switch between an inflow flow path, an outflow flow path and a purge flow path in a harmful component heating and purifying device by moving a damper provided with a selection port, a large amount of electric power is required for the switching due to the weight of the damper. It was. SOLUTION: The three or more chambers having a communication portion communicating above and a bottom surface having an opening provided with a communication port below, and being separated by a wall other than the communication portion, and the above. A heat storage body portion, a heating portion, and a catalyst portion are connected to the chamber from the opening side toward the communication portion, and are slidably mounted on the bottom surface of the three communication ports. A damper having a selection port for making one communicate, a low friction layer arranged between the bottom surface and the sliding of the damper, and a control for moving the damper to control the opening and closing of the communication port. The harmful component heating purification device, which comprises the device, can easily move the damper by the low friction layer. [Selection diagram] Fig. 1

Description

本発明は、各種ガス中のCO(一酸化炭素)、HC(炭化水素:有機性臭気成分を含んだガス)、細菌、ダニ等の有害成分(これらの何れかの成分を含んだもの、以後「有害ガス」と呼ぶ)を加熱し酸化浄化する有害成分加熱浄化装置に関する。 The present invention relates to harmful components such as CO (carbon monoxide), HC (hydrocarbon: gas containing an organic odor component), bacteria, mites, etc. in various gases (containing any of these components, hereinafter. It relates to a harmful component heating purification device that heats and oxidatively purifies (called "harmful gas").

塗装工場や化学工場などから排出される有害ガスは、通常加熱燃焼や触媒などを用いて酸化させることで無害化される。この無害化には、直接燃焼脱臭装置や触媒脱臭装置が使用されている。また蓄熱体を介して加熱浄化室に給排気することで、熱効率を高めた蓄熱式脱臭装置も知られている。 Hazardous gases emitted from painting factories and chemical factories are usually rendered harmless by heating and burning or oxidizing them with a catalyst. A direct combustion deodorizer or a catalytic deodorizer is used for this detoxification. Further, a heat storage type deodorizing device having improved thermal efficiency by supplying and exhausting air to and from a heating and purification chamber via a heat storage body is also known.

従来の蓄熱式燃焼脱臭装置として、
上方で連通する連通部と、下方には開口部が形成された底面を有し、前記連通部以外は壁によって仕切られた3つ以上の室と、
前記室に前記開口部側から前記連通部に向かって連設された蓄熱体層および触媒層と、
前記触媒層に隣接して設けられた加熱装置とを有し、
前記開口部には、
有害ガスを前記室内に導入する流入流路に連通する連通口と、
前記室から浄化ガスを排出する流出流路に連通する連通口と、
前記室にパージガスを導入するパージ流路に連通する連通口が設けられ、
前記底面上と摺動可能に密着載置され、前記連通口の1つを連通状態にする選択孔が形成されたダンパーと、
前記ダンパーによる前記連通口の開閉を制御する制御装置が設けられたことを特徴とする有害成分加熱浄化装置が知られていた。
As a conventional heat storage type combustion deodorizer
A communication portion that communicates above, and three or more chambers that have a bottom surface with an opening formed below and are separated by a wall except for the communication portion.
A heat storage layer and a catalyst layer serially provided in the chamber from the opening side toward the communication portion,
It has a heating device provided adjacent to the catalyst layer, and has a heating device.
In the opening
A communication port that communicates with the inflow flow path that introduces harmful gas into the room,
A communication port that communicates with the outflow channel that discharges purified gas from the chamber,
A communication port is provided in the chamber to communicate with the purge flow path for introducing the purge gas.
A damper that is slidably mounted on the bottom surface and has a selection hole that allows one of the communication ports to communicate with each other.
A harmful component heating and purifying device has been known, characterized in that a control device for controlling the opening and closing of the communication port by the damper is provided.

特開2016−121859号公報Japanese Unexamined Patent Publication No. 2016-121859

特許文献1の有害成分加熱浄化装置では、ダンパーが室の底面上に摺動可能に密着載置されている。このダンパーは、3つの連通口の1つを連通状態にする。したがって、浄化ガスを排出する流出流路に連通する連通口を連通状態にした際には、有害ガスを前記室内に導入する流入流路に連通する連通口とパージガスを導入するパージ流路に連通する連通口は、塞がれている。 In the harmful component heating and purifying device of Patent Document 1, the damper is slidably and closely mounted on the bottom surface of the chamber. This damper puts one of the three communication ports into a communication state. Therefore, when the communication port communicating with the outflow flow path for discharging the purified gas is set to the communication state, the communication port communicates with the inflow flow path for introducing the harmful gas into the room and communicates with the purge flow path for introducing the purge gas. The communication port is closed.

これらの流入流路およびパージ流路の送圧は数気圧とかなり高い圧力になる。そのためこれらの連通口を閉じておくためには、ダンパーは重量が必要となる。結果、底面とダンパーを密着させつつ、摺動可能に維持するためには、重いダンパーを動かすための大きな動力が必要となっていたという第1の課題があった。 The sending pressure of these inflow channels and purge channels is as high as several atmospheres. Therefore, the damper needs to be heavy in order to keep these communication ports closed. As a result, there is the first problem that a large amount of power for moving the heavy damper is required in order to keep the bottom surface and the damper in close contact with each other and maintain the slidability.

また、有害成分加熱浄化装置では、高温となった浄化ガスが蓄熱体層を加熱し、その蓄熱体層は、有害ガスが通過する際に冷却される。しかし、有害成分加熱浄化装置が、連続稼働を始め、有害成分濃度の高い有害ガスが流入された場合等、蓄熱体層が保持する熱量が多くなりすぎ、一定時間の有害ガスの通過では、蓄熱体層の温度が一定温度以下にならず、装置全体が加熱されすぎるという第2の課題があった。 Further, in the harmful component heating purification device, the purified gas having a high temperature heats the heat storage body layer, and the heat storage body layer is cooled when the harmful gas passes through. However, when the harmful component heating and purifying device starts continuous operation and a harmful gas with a high concentration of harmful components flows in, the amount of heat retained by the heat storage layer becomes too large, and the heat storage occurs when the harmful gas passes for a certain period of time. There is a second problem that the temperature of the body layer does not fall below a certain temperature and the entire device is overheated.

本発明は上記の第1の課題若しくは第1および第2の課題を解決するために想到された
ものである。より具体的に本発明に係る有害成分加熱浄化装置は、
上方で連通する連通部と、下方には開口部が形成された底面を有し、前記連通部以外は
壁によって仕切られた3つ以上の室と、
前記室に前記開口部側から前記連通部に向かって蓄熱体部と、加熱部と、触媒部が連設
され、
前記開口部には、
有害ガスを前記室内に導入する流入流路に連通するガス流入口と、
前記室から浄化ガスを排出する流出流路に連通するガス流出口と、
前記室にパージガスを導入するパージ流路に連通するパージガス流入口の3つの連通口が設けられ、
前記底面上と摺動可能に密着載置され、前記3つの連通口の内の1つを連通状態にする選択口が形成されたダンパーと、
前記底面と前記ダンパーとの摺動の間に配置された低摩擦層と、
前記ダンパーを移動させ前記連通口の開閉を制御する制御装置を有し、
前記連通部に冷却装置を設け、
前記加熱部に加熱部温度センサを有し、
前記制御装置は、
各室の連通状態を、流入流路との連通、パージ流路との連通および流出流路との連通の3つの状態を順に遷移させ、さらに各室毎の連通状態にずれを持たせ、
前記連通状態の遷移を制限時間と、前記流入流路と連通された前記室の前記加熱部の温度によって制御し、
前記加熱部の温度が所定温度以下でない場合は、前記制限時間が経過した後であっても、現在の前記連通状態を遷移させないことを特徴とする。
The present invention has been conceived to solve the above-mentioned first problem or the first and second problems. More specifically, the harmful component heating purification device according to the present invention is
A communication portion that communicates above, and three or more chambers that have a bottom surface with an opening formed below and are separated by a wall except for the communication portion.
A heat storage body portion, a heating portion, and a catalyst portion are continuously provided in the chamber from the opening side toward the communication portion.
In the opening
A gas inlet that communicates with the inflow channel that introduces harmful gas into the room,
A gas outlet that communicates with the outflow channel that discharges purified gas from the chamber,
Three communication ports of a purge gas inflow port communicating with a purge flow path for introducing purge gas into the chamber are provided.
A damper that is slidably mounted on the bottom surface and has a selection port that allows one of the three communication ports to communicate with each other.
A low friction layer arranged between the bottom surface and the slide of the damper,
Have a control device to move the damper to control the opening and closing of the communication port,
A cooling device is provided in the communication portion,
The heating unit has a heating unit temperature sensor.
The control device is
The communication state of each room is changed in order from the three states of communication with the inflow flow path, communication with the purge flow path, and communication with the outflow flow path, and further, the communication state of each room is shifted.
The transition of the communication state is controlled by the time limit and the temperature of the heating unit in the chamber communicated with the inflow flow path.
When the temperature of the heating unit is not equal to or lower than the predetermined temperature, the current communication state is not changed even after the time limit has elapsed .

本発明に係る有害成分加熱浄化装置では、ダンパーと室の底面との摺動面の間に低摩擦層を設けたので、重量のあるダンパーを小さな駆動力でも移動させることができ、第1の課題を解決する。 In the harmful component heating and purifying device according to the present invention, since the low friction layer is provided between the sliding surface between the damper and the bottom surface of the chamber, the heavy damper can be moved even with a small driving force. Solve the problem.

また、本発明に係る有害成分加熱浄化装置は、制御装置が、加熱部中の温度と時間で各室の状態遷移を制御し、加熱部が所定の温度以下にならない場合は、一定の時間が経過した後も、状態を遷移させないように構成したので、加熱部が加熱しすぎることが抑制され、有害成分加熱浄化装置を安全に運転でき、第2の課題を解決することができる。 Further, in the harmful component heating purification device according to the present invention, when the control device controls the state transition of each chamber by the temperature and time in the heating unit, and the heating unit does not fall below a predetermined temperature, a certain period of time Since the state is not changed even after the lapse of time, the heating unit is suppressed from being overheated, the harmful component heating and purifying device can be operated safely, and the second problem can be solved.

本発明に係る有害成分加熱浄化装置の正面断面図である。It is a front sectional view of the harmful component heating purification apparatus which concerns on this invention. 本発明に係る有害成分加熱浄化装置の各室毎の断面図である。It is sectional drawing of each room of the harmful component heating purification apparatus which concerns on this invention. 蓄熱体部の構成を示す図である。It is a figure which shows the structure of the heat storage body part. 有害成分加熱浄化装置の定常状態から次の定常状態までの状態遷移を示す図である。It is a figure which shows the state transition from the steady state to the next steady state of a toxic component heating purification apparatus. 制御装置の処理のフローを示すフロー図である。It is a flow chart which shows the processing flow of a control device.

以下に本発明に係る有害成分加熱浄化装置について図面を示し説明を行う。なお、以下の説明は、本発明の一実施形態を例示するものであり、本発明が以下の説明に限定されるものではない。以下の説明は本発明の趣旨を逸脱しない範囲で改変することができる。 The drawings of the hazardous component heating and purifying apparatus according to the present invention will be shown and described below. The following description illustrates one embodiment of the present invention, and the present invention is not limited to the following description. The following description can be modified without departing from the spirit of the present invention.

図1および図2に本発明に係る有害成分加熱浄化装置の構成を示す。図1は有害成分加熱浄化装置1の正面からの断面図である。有害成分加熱浄化装置1は、外郭10に囲まれた空間内に、3つ以上の「室12」が壁13を隔てて並設される図2(a)、(b)、(c)は、それぞれ室12x、室12y、室12zの側面からの断面を示す。また図2(d)、(e)、(f)は、それぞれ室12x、室12y、室12zのダンパースライド部18の下面(後述するようにこれは室12の底面14と同じである。)とダンパー20との平面図を示す。 1 and 2 show the configuration of the harmful component heating and purifying device according to the present invention. FIG. 1 is a cross-sectional view from the front of the hazardous component heating purification device 1. In the hazardous component heating and purifying device 1, three or more "chambers 12" are arranged side by side with a wall 13 in a space surrounded by an outer shell 10. FIGS. 2 (a), 2 (b), and (c) are shown. , The cross sections of the chamber 12x, the chamber 12y, and the chamber 12z from the side surface are shown. 2 (d), (e), and (f) show the lower surface of the damper slide portion 18 of the chambers 12x, 12y, and 12z, respectively (this is the same as the bottom surface 14 of the chamber 12, as will be described later). And the damper 20 are shown in plan view.

なお、図1および図2において矢印Wは有害成分加熱浄化装置1の幅方向を表し、矢印Hは上下方向を表す。矢印Hにおいて「U」は重力上方を表し、「D」は重力下方を表す。また、図2(a)、(b)、(c)において、矢印Tは厚み方向を表す。図2(d)、(e)、(f)において、図1の幅方向Wは、紙面の上下方向となる。 In FIGS. 1 and 2, the arrow W represents the width direction of the harmful component heating purification device 1, and the arrow H represents the vertical direction. In the arrow H, "U" represents above gravity and "D" represents below gravity. Further, in FIGS. 2A, 2B, and 2C, the arrow T indicates the thickness direction. In FIGS. 2D, 2E, and 2F, the width direction W in FIG. 1 is the vertical direction of the paper surface.

まず、本発明に係る有害成分加熱浄化装置1の概略構成を説明する。有害成分加熱浄化装置1は、外郭10内に3つ以上の室12を有する。ここでは室12が3つある場合について説明するが、3つ以上あってもよい。また、それぞれの室12を区別して呼ぶ場合は、室12x、室12y、室12zとする。室12はそれぞれ壁13によって隔てられている。それぞれの室12の上方では壁13がない。 First, a schematic configuration of the harmful component heating purification device 1 according to the present invention will be described. The harmful component heating purification device 1 has three or more chambers 12 in the outer shell 10. Here, the case where there are three chambers 12 will be described, but there may be three or more chambers 12. When each room 12 is referred to separately, it is referred to as room 12x, room 12y, and room 12z. Each of the chambers 12 is separated by a wall 13. There is no wall 13 above each chamber 12.

つまり、室12の上方では、それぞれの室12が連通している連通部36が形成されている。なお、連通部36の上方は外郭10によって、密閉されている。また、下方は3つの連通口44を有する開口部16を有する底面14で仕切られている。つまり、室12は、上方が開放されている箱型をしている。 That is, above the chamber 12, a communication portion 36 through which each chamber 12 communicates is formed. The upper part of the communication portion 36 is sealed by the outer shell 10. Further, the lower part is partitioned by a bottom surface 14 having an opening 16 having three communication ports 44. That is, the chamber 12 has a box shape with the upper part open.

室12内には、下方から上方に向かって蓄熱体部26と、加熱部28と、触媒部34が順次設けられている。蓄熱体部26と底面14との間にはダンパースライド部18が設けられている。ダンパースライド部18は、ダンパー20を移動可能に収容する空間である。ダンパースライド部18は、室12の下方に室12と連続して形成される。ダンパースライド部18の下面は室12の底面14と同じである。ダンパー20は各室12の底面14の3つの連通口44を選択的に開閉する。 A heat storage body unit 26, a heating unit 28, and a catalyst unit 34 are sequentially provided in the chamber 12 from the lower side to the upper side. A damper slide portion 18 is provided between the heat storage body portion 26 and the bottom surface 14. The damper slide portion 18 is a space for movably accommodating the damper 20. The damper slide portion 18 is formed below the chamber 12 in succession with the chamber 12. The lower surface of the damper slide portion 18 is the same as the bottom surface 14 of the chamber 12. The damper 20 selectively opens and closes the three communication ports 44 on the bottom surface 14 of each chamber 12.

底面14の下方には、有害ガスHGが流れる流入流路46、浄化ガスDGが流れる流出流路48、パージガスPGが流れるパージ流路50の3つの流路が形成されている。これらの流路は全ての室12の底面14に設けられた3つの連通口44を有する開口部16と連通している。すなわち、各室12は、流入流路46に連通する連通口44(ガス流入口40)と、流出流路48に連通する連通口44(ガス流出口42)と、パージ流路50に連通する連通口44(パージガス流入口41)を底面14に有している。 Below the bottom surface 14, three flow paths are formed: an inflow flow path 46 through which the harmful gas HG flows, an outflow flow path 48 through which the purification gas DG flows, and a purge flow path 50 through which the purge gas PG flows. These channels communicate with an opening 16 having three communication ports 44 provided on the bottom surface 14 of all chambers 12. That is, each chamber 12 communicates with the communication port 44 (gas inflow port 40) communicating with the inflow flow path 46, the communication port 44 (gas outflow port 42) communicating with the outflow flow path 48, and the purge flow path 50. A communication port 44 (purge gas inflow port 41) is provided on the bottom surface 14.

流入流路46およびパージ流路50には、有害ガス送風用ファン52とパージガス送風用ファン54が配置されていてもよい。強い送風圧を得るためと、送風流量を制御するためである。 A harmful gas blowing fan 52 and a purging gas blowing fan 54 may be arranged in the inflow flow path 46 and the purge flow path 50. This is to obtain a strong blast pressure and to control the blast flow rate.

また、各室12の外部には、ダンパー20をスライドさせるため、スライド駆動装置(図示せず)が設けられる。スライド駆動装置は、各室12のダンパー20を駆動できれば、その形態は特に限定しない。また、各室12のスライド駆動装置の動作を制御する制御装置60が配置される。つまり、制御装置60は、ダンパー20の動きを制御すると言ってよい。 Further, a slide drive device (not shown) is provided outside each chamber 12 in order to slide the damper 20. The form of the slide drive device is not particularly limited as long as it can drive the damper 20 of each chamber 12. In addition, a control device 60 that controls the operation of the slide drive device in each room 12 is arranged. That is, it can be said that the control device 60 controls the movement of the damper 20.

なお、以後上記の構成において、X室12x、Y室12y、Z室12z毎に設けられる部分をそれぞれ区別する場合は、それぞれの構成部分の符号に「x」、「y」、「z」をつけて表すものとする。例えば、(X室12xの)触媒部34x、(Y室12yの)蓄熱体部26yなどである。 In the above configuration, when the portions provided for each of the X chamber 12x, the Y chamber 12y, and the Z chamber 12z are distinguished from each other, "x", "y", and "z" are added to the symbols of the respective constituent portions. It shall be attached and expressed. For example, the catalyst part 34x (in the X chamber 12x), the heat storage body part 26y (in the Y chamber 12y), and the like.

<各部構成の詳細>
次にそれぞれの構成について順次詳説する。
<Details of each part configuration>
Next, each configuration will be described in detail in sequence.

<連通部>
連通部36は各室12の上端部に位置し、各室12を連通する。したがって、各室12の上端部から出たガスは、他の室12の上端部から他の室12へ流れることができる。連通部36には連通部36内の温度を計測する温度センサ56tが設けられていてもよい。
<Communication department>
The communication portion 36 is located at the upper end of each chamber 12 and communicates with each chamber 12. Therefore, the gas emitted from the upper end of each chamber 12 can flow from the upper end of the other chamber 12 to the other chamber 12. The communication unit 36 may be provided with a temperature sensor 56t that measures the temperature inside the communication unit 36.

また、連通部36には、冷却装置56が備えられていてもよい。冷却装置56は、連通部36の温度が上昇しすぎた場合に有害成分加熱浄化装置1全体の温度を下げるために用いられる。また、冷却装置56は熱交換器であるので、連通部36からの熱を取り出し、他の用途で用いるために使用することもできる。冷却装置56は、金属パイプ56p、温度センサ56t、送風ファン56fで構成される。 Further, the communication unit 36 may be provided with a cooling device 56. The cooling device 56 is used to lower the temperature of the entire harmful component heating and purifying device 1 when the temperature of the communicating portion 36 rises too much. Further, since the cooling device 56 is a heat exchanger, the heat from the communication unit 36 can be taken out and used for other purposes. The cooling device 56 includes a metal pipe 56p, a temperature sensor 56t, and a blower fan 56f.

<室>
室12は、底面14に開口部16を有する。また上方は隣接する室12との間に壁13がなく、連通部36が設けられている。室12は開口部16の上方であって連通部36より下方側に、開口部16に近い方から連通部36に向かって、蓄熱体部26と、加熱部28と、触媒部34が連設される。図1および図2(a)、(b)、(c)からわかるように、蓄熱体部26と、加熱部28と、触媒部34は、それぞれ室12の断面を埋めており、開口部16と連通部36の間を通過するガスは必ず蓄熱体部26と、加熱部28と、触媒部34を通過する。
<Room>
The chamber 12 has an opening 16 on the bottom surface 14. Further, there is no wall 13 above the adjacent chamber 12, and a communication portion 36 is provided. The chamber 12 is above the opening 16 and below the communication portion 36, and the heat storage body portion 26, the heating portion 28, and the catalyst portion 34 are continuously provided from the side closer to the opening 16 toward the communication portion 36. Will be done. As can be seen from FIGS. 1 and 2 (a), (b), and (c), the heat storage body section 26, the heating section 28, and the catalyst section 34 each fill the cross section of the chamber 12, and the opening 16 The gas passing between the communication section 36 and the communication section 36 always passes through the heat storage body section 26, the heating section 28, and the catalyst section 34.

<蓄熱体部>
蓄熱体部26は、流出する高温の浄化ガスDGから熱を受け取り、流入する低温の有害ガスHGに熱を与える。したがって、熱量の大きなものが望ましい。また、浄化ガスDGや有害ガスHGが通過するので、気体が通過できることができるのは、言うまでもない。通常、セラミックス製のハニカム構造が利用される。セラミックスは熱容量が大きいからである。
<Heat storage body>
The heat storage body unit 26 receives heat from the outflowing high-temperature purifying gas DG and gives heat to the inflowing low-temperature harmful gas HG. Therefore, one with a large amount of heat is desirable. Further, it goes without saying that since the purified gas DG and the harmful gas HG pass through, the gas can pass through. Usually, a honeycomb structure made of ceramics is used. This is because ceramics have a large heat capacity.

しかし、セラミックスは多孔質であるので、それ自体がガスを吸着する。蓄熱体部26を通過するガスのタイミングについては、後述するが、有害ガスHGが流入した後はパージガスPGが通過し、セラミックスから有害ガスHGを追い出す。その後高温の浄化ガスDGが流出する。蓄熱体部26が多孔質であると、パージガスPGでは吸着した有害ガスHGを追い出し切れず、高温の浄化ガスDGが流出する時、残留していた有害ガスHGも排出される。つまり、浄化ガスDG中に有害ガスHGが混じる。 However, since ceramics are porous, they themselves adsorb gas. The timing of the gas passing through the heat storage body 26 will be described later, but after the harmful gas HG has flowed in, the purge gas PG passes through and expels the harmful gas HG from the ceramics. After that, the high temperature purification gas DG flows out. If the heat storage body portion 26 is porous, the purge gas PG cannot completely expel the adsorbed harmful gas HG, and when the high-temperature purification gas DG flows out, the remaining harmful gas HG is also discharged. That is, the harmful gas HG is mixed in the purified gas DG.

蓄熱体部26が金属で形成されていれば、有害ガスHGの吸着量が少ないため、パージガスPGで全ての有害ガスHGを追い出すことができ、次に高温の浄化ガスDGが流出してきても、浄化ガスDGに有害ガスHGが混ざる量は少ない。ただし、蓄熱体部26を金属で構成すると、熱容量が少なくなる。 If the heat storage body portion 26 is made of metal, the amount of harmful gas HG adsorbed is small, so that all harmful gas HG can be expelled by the purge gas PG, and even if the next high-temperature purification gas DG flows out, The amount of harmful gas HG mixed with the purified gas DG is small. However, if the heat storage body portion 26 is made of metal, the heat capacity is reduced.

そこで、図3に示すように、蓄熱体部26を複数段で構成し、蓄熱体部26の底面14側(重力下方D)には、金属製の蓄熱体70で構成し、連通部36側(重力上方U)はセラミックス製の蓄熱体72で構成する。金属製の蓄熱体70とセラミックス製の蓄熱体72は、通気孔74を有し、上下方向に気体が通過できる。蓄熱体部26をこのような構成にすることで、蓄熱する熱量は十分な量を確保でき、なおかつ浄化ガスDGの流出時に有害ガスHGの漏れは少なくなる。 Therefore, as shown in FIG. 3, the heat storage body portion 26 is composed of a plurality of stages, and the bottom surface 14 side (gravity downward D) of the heat storage body portion 26 is composed of a metal heat storage body 70, and the communication portion 36 side. (Upper gravity U) is composed of a heat storage body 72 made of ceramics. The metal heat storage body 70 and the ceramic heat storage body 72 have ventilation holes 74, and gas can pass in the vertical direction. By having such a configuration of the heat storage body portion 26, a sufficient amount of heat to be stored can be secured, and the leakage of harmful gas HG is reduced when the purified gas DG flows out.

<加熱部>
加熱部28は、加熱装置30が配置された空間である。加熱装置30は、加熱部28の温度を数百度といった温度に上昇させることができれば特に限定されないが、棒状、コイル状、網目状といった形状の発熱体が好適に利用できる。加熱部28の中心には加熱部温度センサ32が配置されている。加熱部温度センサ32は加熱部28内の温度Tを測定する。
<Heating part>
The heating unit 28 is a space in which the heating device 30 is arranged. The heating device 30 is not particularly limited as long as the temperature of the heating unit 28 can be raised to a temperature of several hundred degrees, but a heating element having a rod-shaped, coil-shaped, or mesh-shaped shape can be preferably used. A heating unit temperature sensor 32 is arranged at the center of the heating unit 28. The heating unit temperature sensor 32 measures the temperature T inside the heating unit 28.

加熱部28は、加熱部28内の温度Tが所定の温度T0以下になった時に、加熱装置30が稼働(ON)し、加熱部28内の温度Tが所定の温度T0より高くなった時には加熱装置30が停止(OFF)するように制御されている。この加熱部28の温度制御は、後述する各室12の流入状態、流出状態、パージ状態にかかわらず行われる。 In the heating unit 28, when the temperature T in the heating unit 28 becomes equal to or lower than the predetermined temperature T0, the heating device 30 operates (ON), and when the temperature T in the heating unit 28 becomes higher than the predetermined temperature T0. The heating device 30 is controlled to stop (OFF). The temperature control of the heating unit 28 is performed regardless of the inflow state, the outflow state, and the purge state of each chamber 12, which will be described later.

なお、各室12の加熱部28の所定温度T0の設定と加熱装置のON、OFFの制御は、各加熱部28毎に用意した制御装置が行ってもよいし、有害成分加熱浄化装置1の制御装置60が担当してもよい。 The predetermined temperature T0 of the heating unit 28 of each chamber 12 and the ON / OFF control of the heating device may be performed by the control device prepared for each heating unit 28, or the harmful component heating purification device 1 may be used. The control device 60 may be in charge.

<触媒部>
触媒部34は加熱された有害ガスHGを分解若しくは改変し、毒性の低い浄化ガスDGにする。ここで分解とは、有害ガスHGの構成分子をより小さな分子量の物質にすることであり、改変とは有害ガスの構成分子の分子量は同じ若しくは大きくなるが、毒性がより小さな物質にすることである。分解と改変を、まとめて改質するという。
<Catalyst part>
The catalyst unit 34 decomposes or modifies the heated harmful gas HG into a purifying gas DG having low toxicity. Here, decomposition means making the constituent molecules of the harmful gas HG into a substance having a smaller molecular weight, and modification means making the constituent molecules of the harmful gas into a substance having the same or larger molecular weight but less toxic. is there. Decomposition and modification are said to be reformed together.

触媒部34は具体的には、白金、パラジウムといった貴金属物質が好適に利用できる。もちろん、有害ガスHGを改質できれば、これらの物質以外の物質であってもよい。 Specifically, a noble metal substance such as platinum or palladium can be preferably used for the catalyst unit 34. Of course, as long as the harmful gas HG can be reformed, it may be a substance other than these substances.

<ダンパースライド部>
ダンパースライド部18は、室12の底面14の直上に形成される。ダンパースライド部18にはダンパー20が配置されている。底面14には、流入流路46、流出流路48、パージ流路50に連通する連通口44が設けられた開口部16が設けられている。
<Damper slide part>
The damper slide portion 18 is formed directly above the bottom surface 14 of the chamber 12. A damper 20 is arranged on the damper slide portion 18. The bottom surface 14 is provided with an opening 16 provided with a communication port 44 that communicates with the inflow flow path 46, the outflow flow path 48, and the purge flow path 50.

<ダンパー>
ダンパー20は、各室12の底面14に設けられた3つの連通口44の1つを開放し、各室12と選択された流路を連通状態にさせる。そのため、ダンパー20は、連通口44と重なる選択口24を持っている。また、選択口24以外の部分で、他の2つの連通口44を閉じる。パージガスPGおよび有害ガスHGの送圧は数気圧にも及ぶ場合があり、ダンパー20が持ち上がらないように、ダンパー20は重く構成されている。
<Damper>
The damper 20 opens one of the three communication ports 44 provided on the bottom surface 14 of each chamber 12 to allow each chamber 12 and the selected flow path to communicate with each other. Therefore, the damper 20 has a selection port 24 that overlaps with the communication port 44. In addition, the other two communication ports 44 are closed at a portion other than the selection port 24. The pressure of the purge gas PG and the harmful gas HG may reach several atmospheres, and the damper 20 is heavy so that the damper 20 does not lift up.

<低摩擦層>
ダンパー20の裏面とダンパースライド部18の底面14との間には、低摩擦層22が形成されている。低摩擦層22は、テフロン(登録商標)や、二硫化モリブデン、有機モリブデン化合物、グラファイト、PTFE(ポリテトラフルオロエチレン)、銅といった固体であって、潤滑能を有する材料が好適に用いられる。低摩擦層22は、ダンパー20側に設けられていてもよいし、底面14上に設けられていてもよい。
<Low friction layer>
A low friction layer 22 is formed between the back surface of the damper 20 and the bottom surface 14 of the damper slide portion 18. As the low friction layer 22, a solid material such as Teflon (registered trademark), molybdenum disulfide, an organic molybdenum compound, graphite, PTFE (polytetrafluoroethylene), and copper, which has a lubricating ability, is preferably used. The low friction layer 22 may be provided on the damper 20 side or may be provided on the bottom surface 14.

<開口部>
開口部16はダンパースライド部18の底面14(室12の底面14でもある。)に設けられている。各室12の開口部16には有害ガスHGの流入流路46、流出流路48、パージ流路50の連通口44を有する。開口部16に設けられた流入流路46との連通口44をガス流入口40、流出流路48との連通口44をガス流出口42、パージ流路50との連通口44をパージガス流入口41とする。これらの連通口44は底面14に設けられている。
<Opening>
The opening 16 is provided on the bottom surface 14 of the damper slide portion 18 (which is also the bottom surface 14 of the chamber 12). The opening 16 of each chamber 12 has an inflow flow path 46 for harmful gas HG, an outflow flow path 48, and a communication port 44 for the purge flow path 50. The communication port 44 with the inflow flow path 46 provided in the opening 16 is the gas inflow port 40, the communication port 44 with the outflow flow path 48 is the gas outflow port 42, and the communication port 44 with the purge flow path 50 is the purge gas inflow port. Let it be 41. These communication ports 44 are provided on the bottom surface 14.

流入流路46、流出流路48、パージ流路50の3つの流路は各室12の厚み方向(図2(a)、(b)、(c)のT方向)で分離壁43(図2(a)、(b)、(c)参照)によって隔てられている。しかし、各室12の開口部16とは連通している。つまり、流入流路46、流出流路48、パージ流路50は、各室12間で連通している。しかし、流入流路46、流出流路48、パージ流路50間は分離壁43によって分離されている。 The three flow paths of the inflow flow path 46, the outflow flow path 48, and the purge flow path 50 are separated walls 43 (FIG. 2) in the thickness direction of each chamber 12 (T direction in FIGS. 2A, 2B, and 2C). 2 (a), (b), (c)). However, it communicates with the opening 16 of each room 12. That is, the inflow flow path 46, the outflow flow path 48, and the purge flow path 50 communicate with each other between the chambers 12. However, the inflow flow path 46, the outflow flow path 48, and the purge flow path 50 are separated by a separation wall 43.

このため、各流路間でガスが混じることはない。また、各室12は、流入流路46、流出流路48、パージ流路50と連通することができる。 Therefore, gas does not mix between the flow paths. Further, each chamber 12 can communicate with the inflow flow path 46, the outflow flow path 48, and the purge flow path 50.

<制御装置>
制御装置60はMPU(Micro Processor Unit)とメモリによって構成される。制御装置60にはタイマー62も備えられている。制御のためのプログラムは、メモリ中に保存されていてもよい。もちろん、これ以外の構成であってもよい。制御装置60は、スライド駆動装置(図示せず)と接続され、各室12のダンパー20の動きを指示信号Csを送信することで制御する。具体的には、選択口24を底面14に設けられたガス流入口40か、パージガス流入口41か、ガス流出口42のいずれかの位置に移動させる。言いかえると制御装置60は客室12の流入流路46、流出流路48、パージ流路50との間の連通状態を遷移させる。
<Control device>
The control device 60 is composed of an MPU (Micro Processor Unit) and a memory. The control device 60 is also provided with a timer 62. The control program may be stored in memory. Of course, other configurations may be used. The control device 60 is connected to a slide drive device (not shown) and controls the movement of the damper 20 in each chamber 12 by transmitting an instruction signal Cs. Specifically, the selection port 24 is moved to any of the gas inflow port 40 provided on the bottom surface 14, the purge gas inflow port 41, and the gas outflow port 42. In other words, the control device 60 transitions the communication state between the inflow flow path 46, the outflow flow path 48, and the purge flow path 50 of the cabin 12.

また、制御装置60は、加熱部温度センサ32および加熱装置30と接続され、加熱部28内の温度を制御するようにしてもよい。具体的には、制御装置60は加熱部温度センサ32からは温度を表す信号Stを受信し、その信号Stに基づいて加熱装置30に、指示信号Chを送信することで加熱部28内の温度を設定値T0に基づいて制御する。 Further, the control device 60 may be connected to the heating unit temperature sensor 32 and the heating device 30 to control the temperature inside the heating unit 28. Specifically, the control device 60 receives a signal St representing the temperature from the heating unit temperature sensor 32, and transmits an instruction signal Ch to the heating device 30 based on the signal St to generate the temperature inside the heating unit 28. Is controlled based on the set value T0.

<動作説明>
以上のような構成を有する有害成分加熱浄化装置1の動作について説明する。図1および図2を参照する。有害成分加熱浄化装置1の1つの室12は、有害ガスHGが流入する流入状態、浄化された浄化ガスDGが流出する流出状態、パージガスPGが流入するパージ状態の3つの状態を流入状態、パージ状態、流出状態の順で繰り返される。
<Operation explanation>
The operation of the harmful component heating purification device 1 having the above configuration will be described. See FIGS. 1 and 2. One chamber 12 of the hazardous component heating purification device 1 has three states: an inflow state in which the harmful gas HG flows in, an outflow state in which the purified purified gas DG flows out, and a purge state in which the purge gas PG flows in. It is repeated in the order of state and outflow state.

このサイクルを3つの室12で行う場合は、それぞれの室12でこのサイクルの順番にずれを持たせることで、有害成分加熱浄化装置1をスムースに稼働させることができる。また、処理能力も高くなる。図1および図2では、X室12xはパージ流路50、Y室12yは流入流路46、Z室12zは流出流路48に連通されている。 When this cycle is performed in three chambers 12, the harmful component heat purification device 1 can be operated smoothly by giving a deviation in the order of the cycles in each chamber 12. In addition, the processing capacity is also increased. In FIGS. 1 and 2, the X chamber 12x communicates with the purge flow path 50, the Y chamber 12y communicates with the inflow flow path 46, and the Z chamber 12z communicates with the outflow flow path 48.

図2を参照すると、図2(a)では、X室12xのダンパー20xの選択口24xは、X室12xの開口部16xの連通口44xの内パージガス流入口41xを連通状態にし、他の連通口44xは塞いでいる。図2(b)では、Y室12yのダンパー20yの選択口24yは、Y室12yの開口部16yの連通口44yの内のガス流入口40yを連通状態にし、他の連通口44yは塞いでいる。また図2(c)では、Z室12zのダンパー20zの選択口24zは、Z室12zの開口部16zの連通口44zの内のガス流出口42zを連通状態にし、他の連通口44zは塞いでいる。 Referring to FIG. 2, in FIG. 2A, the selection port 24x of the damper 20x of the X chamber 12x makes the inner purge gas inflow port 41x of the communication port 44x of the opening 16x of the X chamber 12x communicate with each other. The mouth 44x is closed. In FIG. 2B, the selection port 24y of the damper 20y of the Y chamber 12y makes the gas inflow port 40y in the communication port 44y of the opening 16y of the Y chamber 12y in a communicating state, and the other communication ports 44y are closed. There is. Further, in FIG. 2C, the selection port 24z of the damper 20z of the Z chamber 12z makes the gas outlet 42z in the communication port 44z of the opening 16z of the Z chamber 12z in a communicating state, and the other communication ports 44z are closed. I'm out.

<定常状態の説明>
再び図1を参照する。以上のような状態に基づいて有害成分加熱浄化装置1の定常状態について説明する。Y室12yに流入した有害ガスHGは、蓄熱体部26yを通過し、加熱部28yに至る。有害ガスHGは蓄熱体部26yを通過する際に蓄熱体部26yから熱を受け温度が上昇する。
<Explanation of steady state>
See FIG. 1 again. The steady state of the hazardous component heating purification device 1 will be described based on the above states. The harmful gas HG flowing into the Y chamber 12y passes through the heat storage body portion 26y and reaches the heating portion 28y. When the harmful gas HG passes through the heat storage body portion 26y, it receives heat from the heat storage body portion 26y and its temperature rises.

逆に蓄熱体部26yの温度は下がる。加熱部28yに進んだ有害ガスHGの温度Tgが、加熱部28yの温度Tより低ければ加熱部28yの温度Tまでは加熱される。一方、有害ガスHGの温度Tgが、加熱部28yの温度Tより高ければ、加熱部28yに熱量を与えて、次の段階に進む。 On the contrary, the temperature of the heat storage body portion 26y decreases. If the temperature Tg of the harmful gas HG advancing to the heating unit 28y is lower than the temperature T of the heating unit 28y, the temperature T of the heating unit 28y is heated. On the other hand, if the temperature Tg of the harmful gas HG is higher than the temperature T of the heating unit 28y, heat is given to the heating unit 28y to proceed to the next step.

加熱された有害ガスHGは触媒部34yに到達し、触媒部34yを抜ける際には改質され浄化ガスDGとなる。この浄化ガスDGは高温のガスである。浄化ガスDGは、Z室12zの触媒部34zを通過し、Z室12zの加熱部28zを通過し、Z室12zの蓄熱体部26zを通過する。蓄熱体部26zを通過する際には、浄化ガスDGから蓄熱体部26zに熱を受け渡す。結果浄化ガスDGは温度が下がり、Z室12zの蓄熱体部26zは温度が上がる。 The heated harmful gas HG reaches the catalyst unit 34y, and when it exits the catalyst unit 34y, it is reformed to become a purified gas DG. This purification gas DG is a high temperature gas. The purification gas DG passes through the catalyst portion 34z of the Z chamber 12z, passes through the heating portion 28z of the Z chamber 12z, and passes through the heat storage body portion 26z of the Z chamber 12z. When passing through the heat storage body portion 26z, heat is transferred from the purification gas DG to the heat storage body portion 26z. As a result, the temperature of the purified gas DG decreases, and the temperature of the heat storage body portion 26z of the Z chamber 12z increases.

一方、X室12xは、図1の状態になる前には有害ガスHGが流入する流入状態であった室12である。そして、現在は、パージガスPGが流入するパージ状態である。パージガスPGがX室12xに入ると、蓄熱体部26xから熱を奪い、蓄熱体部26xを冷やす。この際、蓄熱体部26x中に残った有害ガスHGを一緒に蓄熱体部26xから追い出す。 On the other hand, the X chamber 12x is a chamber 12 in which the harmful gas HG flows in before the state shown in FIG. And now, it is in a purge state in which the purge gas PG flows in. When the purge gas PG enters the X chamber 12x, it takes heat from the heat storage body portion 26x and cools the heat storage body portion 26x. At this time, the harmful gas HG remaining in the heat storage body 26x is expelled from the heat storage body 26x together.

蓄熱体部26xは加熱部28xに隣接しているので、加熱部28xに近い部分では温度が高く、パージガスPGによって有害ガスHGは追い出されやすい。したがって、多孔質なセラミックス製の蓄熱体72が好適に利用できる。逆にガス流入口40xに近い側は、温度が低いので、パージガスPGで追い出されにくい。そこで、ガス流入口40x側の蓄熱体部26xを金属製の蓄熱体70で構成させれておけば、有害ガスHGが吸着しにくく、パージガスPGでも追い出しやすい。 Since the heat storage body portion 26x is adjacent to the heating portion 28x, the temperature is high in the portion close to the heating portion 28x, and the harmful gas HG is easily expelled by the purge gas PG. Therefore, the heat storage body 72 made of porous ceramics can be preferably used. On the contrary, since the temperature on the side close to the gas inflow port 40x is low, it is difficult to be expelled by the purge gas PG. Therefore, if the heat storage body portion 26x on the gas inflow port 40x side is composed of the metal heat storage body 70, the harmful gas HG is less likely to be adsorbed and the purge gas PG can be easily expelled.

パージガスPGが、加熱部28xに入ると、加熱部28xの温度よりパージガスPGの温度が低ければ加熱部28xで加熱される。また、加熱部28xの温度よりパージガスPGの温度の方が高ければ、一定の熱量を加熱部28xで放出し、触媒部34xに移動する。加熱部28xでのパージガスPGの加熱はパージガスPG中の有害ガスHGを加熱するので、有害ガスHGの改質に役立つ。 When the purge gas PG enters the heating unit 28x, it is heated by the heating unit 28x if the temperature of the purge gas PG is lower than the temperature of the heating unit 28x. If the temperature of the purge gas PG is higher than the temperature of the heating unit 28x, a certain amount of heat is released by the heating unit 28x and moved to the catalyst unit 34x. Heating the purge gas PG in the heating unit 28x heats the harmful gas HG in the purge gas PG, which is useful for reforming the harmful gas HG.

触媒部34xに入ったパージガスPGはそのまま触媒部34xを通過する。一方、パージガスPGに混じった有害ガスHGは、触媒部34xで改質され浄化ガスDGになる。したがって、パージガスPGと浄化ガスDGが連通部36に入る。連通部36に到達したパージガスPGと浄化ガスDGは、Y室12yを通って浄化された浄化ガスDGと一緒にZ室12zから排出される。 The purge gas PG that has entered the catalyst section 34x passes through the catalyst section 34x as it is. On the other hand, the harmful gas HG mixed in the purge gas PG is reformed by the catalyst unit 34x to become the purified gas DG. Therefore, the purge gas PG and the purification gas DG enter the communication portion 36. The purge gas PG and the purifying gas DG that have reached the communication portion 36 are discharged from the Z chamber 12z together with the purified gas DG that has passed through the Y chamber 12y.

<状態遷移の説明>
上記の説明では、X室12xはパージ状態、Y室12yは流入状態、Z室12zは流出状態であった。これらの状態は一定の規則に基づいて切り替えが行われる。これを状態遷移と呼ぶ。状態遷移は、各室12のダンパー20が移動して選択口24の位置を変更することで行われる。したがって、制御装置60による操作である。
<Explanation of state transition>
In the above description, the X chamber 12x was in the purge state, the Y chamber 12y was in the inflow state, and the Z chamber 12z was in the outflow state. These states are switched according to certain rules. This is called a state transition. The state transition is performed by moving the damper 20 of each chamber 12 to change the position of the selection port 24. Therefore, it is an operation by the control device 60.

図4には、状態遷移の模式図を示す。図4(a)には図1および図2で示した定常状態である。すなわち、X室12xはパージ状態、Y室12yは流入状態、Z室12zは流出状態である。各室12は、流入状態、パージ状態、流出状態の順で状態が変更される。したがって、図4(a)の定常状態からは図4(d)に示すように、X室12xは流出状態、Y室12yはパージ状態、Z室12zは流入状態という定常状態に移行することになる。 FIG. 4 shows a schematic diagram of the state transition. FIG. 4A shows the steady state shown in FIGS. 1 and 2. That is, the X chamber 12x is in the purge state, the Y chamber 12y is in the inflow state, and the Z chamber 12z is in the outflow state. The state of each chamber 12 is changed in the order of inflow state, purge state, and outflow state. Therefore, as shown in FIG. 4D, the steady state of FIG. 4A shifts to the steady state of the X chamber 12x in the outflow state, the Y chamber 12y in the purge state, and the Z chamber 12z in the inflow state. Become.

図4(a)の定常状態であった有害成分加熱浄化装置1は、基本的に一定時間が経過すると定常状態から次の定常状態に向かって状態遷移を行う。状態遷移が始まると、最初にパージ状態であった室12が流出状態に遷移する。図4(b)ではX室12xがパージ状態から流出状態に状態遷移を行った状態を示している。より具体的には、X室12xのダンパー20xが移動し選択口24xをガス流出口42xに合わせる。この際に、重いダンパー20は低摩擦層22の存在によって、低電力で移動させることができる。 The harmful component heating and purifying device 1 which was in the steady state of FIG. 4A basically makes a state transition from the steady state to the next steady state after a certain period of time has elapsed. When the state transition starts, the chamber 12 that was initially in the purge state transitions to the outflow state. FIG. 4B shows a state in which the X chamber 12x has undergone a state transition from a purge state to an outflow state. More specifically, the damper 20x of the X chamber 12x moves to match the selection port 24x with the gas outlet 42x. At this time, the heavy damper 20 can be moved with low power due to the presence of the low friction layer 22.

パージ状態であった室12xは、室12x内に残っていた有害ガスHGを全て追い出したと考え、直ちに流出状態に移行する。したがって、X室12x内には連通部36からの浄化ガスDGが流れる。つまり、1つの流入状態の室12と2つの流出状態の室12ができる。このような状態を「遷移状態1」と呼ぶ。なお、遷移状態1は一定時間が経過したら、完了したと判断される。 The chamber 12x, which was in the purged state, is considered to have expelled all the harmful gas HG remaining in the chamber 12x, and immediately shifts to the outflow state. Therefore, the purifying gas DG from the communication portion 36 flows in the X chamber 12x. That is, one chamber 12 in the inflow state and two chambers 12 in the outflow state are formed. Such a state is called "transition state 1". The transition state 1 is determined to be completed after a certain period of time has elapsed.

遷移状態1が完了したら、次に流出状態にあった室12を流入状態に遷移させる。図4(c)では、流出状態にあったZ室12zを流入状態に遷移させた状態を示している。流出状態では浄化ガスDGが流出していたので、直ちに有害ガスHGの流入状態に切り替えても、流出状態であるX室12xから有害ガスHGが流出することはない。Z室12zの触媒部34zが流入した有害ガスHGを改質するからである。 When the transition state 1 is completed, the chamber 12 that was in the outflow state is then transitioned to the inflow state. FIG. 4C shows a state in which the Z chamber 12z that was in the outflow state is changed to the inflow state. Since the purified gas DG was outflowing in the outflow state, the harmful gas HG does not flow out from the outflow state X chamber 12x even if the inflow state of the harmful gas HG is immediately switched. This is because the harmful gas HG inflowed by the catalyst portion 34z of the Z chamber 12z is reformed.

この遷移も具体的にはZ室12zのダンパー20zの選択口24zをガス流出口42zからガス流入口40zに移動させる。そして重いダンパー20zは低摩擦層22zによって低電力で移動させることができる。この遷移の結果、2つの流入状態と1つの流出状態の室12ができる。これを「遷移状態2」とする。遷移状態2が完了するのは、Z室12zのダンパー20zが移動の完了を以て、遷移状態2が完成したと解してよい。 Specifically, this transition also moves the selection port 24z of the damper 20z of the Z chamber 12z from the gas outlet 42z to the gas inlet 40z. The heavy damper 20z can be moved with low power by the low friction layer 22z. As a result of this transition, a chamber 12 having two inflow states and one outflow state is created. This is referred to as "transition state 2". It can be understood that the transition state 2 is completed when the damper 20z of the Z chamber 12z completes the movement.

最後に流入状態であった室12をパージ状態に遷移させる。図4(d)では、流入状態であったY室12yをパージ状態に遷移させた状態を示している。流入状態であった室12yは室12y内に有害ガスHGが多く残留しているので、それをパージガスPGで追い出すものである。 Finally, the chamber 12 that was in the inflow state is changed to the purge state. FIG. 4D shows a state in which the Y chamber 12y, which was in the inflow state, is changed to the purge state. Since a large amount of harmful gas HG remains in the chamber 12y in the inflow state, the purging gas PG is used to expel it.

この遷移も具体的にはY室12yのダンパー20yの選択口24yをガス流入口40yからパージガス流入口41yに移動させることで行う。そして重いダンパー20yは低摩擦層22yによって低電力で移動させることができる。この遷移の結果、1つの流入状態と1つの流出状態と1つのパージ状態の室12ができる。これを「遷移状態3」とする。遷移状態3は状態遷移の最終段階で、前の定常状態からの次の定常状態である。遷移状態3が完成するのは、Y室12yのダンパー20yが移動の完了を以て、遷移状態3が完成したと解してよい。 Specifically, this transition is also performed by moving the selection port 24y of the damper 20y of the Y chamber 12y from the gas inflow port 40y to the purge gas inflow port 41y. The heavy damper 20y can be moved with low power by the low friction layer 22y. As a result of this transition, a chamber 12 having one inflow state, one outflow state, and one purge state is created. This is referred to as "transition state 3". The transition state 3 is the final stage of the state transition and is the next steady state from the previous steady state. It can be understood that the transition state 3 is completed when the damper 20y of the Y chamber 12y completes the movement.

<制御装置のフローの説明>
状態遷移は、制御装置60の処理によるものであるので、制御装置60のフローについて説明する。図5に制御装置60のフローを示す。適宜図4を参照しながら図5のフローについて説明する。定常状態から次の定常状態への遷移のきっかけは、基本的に設定時間であるが、本発明に係る有害成分加熱浄化装置1では、加熱部28の温度も遷移のきっかけのために考慮する。
<Explanation of control device flow>
Since the state transition is due to the processing of the control device 60, the flow of the control device 60 will be described. FIG. 5 shows the flow of the control device 60. The flow of FIG. 5 will be described with reference to FIG. 4 as appropriate. The trigger for the transition from the steady state to the next steady state is basically the set time, but in the harmful component heating purification device 1 according to the present invention, the temperature of the heating unit 28 is also considered for the trigger of the transition.

処理がスタートすると(ステップS100)、終了判断を行う(ステップS102)。終了の判断は、人の手による供給電源の停止や、有害成分加熱浄化装置1内に設けられた安全装置の異常による自発的な終了であってもよい。終了する場合(ステップS102のY分岐)は、装置を停止させる(ステップS104)。そうでない場合(ステップS102のN分岐)は、処理を次に進める。 When the process starts (step S100), the end determination is made (step S102). The determination of termination may be a voluntary termination due to a manual shutdown of the power supply or an abnormality in the safety device provided in the harmful component heating purification device 1. When terminating (Y branch in step S102), the device is stopped (step S104). If not (N branch in step S102), the process proceeds to the next step.

次に定常状態に遷移してからの経過時間tが予め設定された設定時間tsを過ぎたか否かを判断する(ステップS106)。定常状態は時間tsの間は維持するという趣旨である。経過時間が設定時間を過ぎていなければ(ステップS106のN分岐)、さらに待機する。定常状態が一定時間経過したら(ステップS106のY分岐)、処理を次に進める。 Next, it is determined whether or not the elapsed time t after the transition to the steady state has passed the preset set time ts (step S106). The purpose is to maintain the steady state for the time ts. If the elapsed time has not passed the set time (N branch in step S106), the process waits further. When the steady state elapses for a certain period of time (Y branch in step S106), the process proceeds to the next step.

ステップS108では、流入状態にある室12の加熱部28中の温度TがT0+αより低いか否かを判断する。ここで、T0は加熱装置30のON/OFF切り替え温度であり、αは遷移状態切り替えのための閾値温度である。 In step S108, it is determined whether or not the temperature T in the heating unit 28 of the chamber 12 in the inflow state is lower than T0 + α. Here, T0 is the ON / OFF switching temperature of the heating device 30, and α is the threshold temperature for switching the transition state.

有害成分加熱浄化装置1では、有害ガスHGは触媒部34によって浄化ガスDGに改質される。この改質では、発熱反応も起こり得る。したがって、有害成分加熱浄化装置1に流入し加熱された有害ガスHGの温度よりも高い温度の浄化ガスDGになる場合もある。この高温の浄化ガスDGは流出状態の室12の蓄熱体部26に大量の熱量を残して排出される。 In the harmful component heating purification device 1, the harmful gas HG is reformed into a purified gas DG by the catalyst unit 34. Exothermic reactions can also occur with this modification. Therefore, the purified gas DG may have a temperature higher than the temperature of the harmful gas HG that has flowed into the harmful component heating purification device 1 and is heated. This high-temperature purification gas DG is discharged to the heat storage body portion 26 of the outflowing chamber 12 leaving a large amount of heat.

この大量の熱量を持った蓄熱体部26を冷却するのは、この蓄熱体部26を持った室12が流入状態に状態遷移した時の流入ガスつまり有害ガスHGである。大量の熱量を持った蓄熱体部26を通過する有害ガスHGは蓄熱体部26から熱を奪う。しかし、蓄積された熱量が多いと、定常状態の設定された継続時間tsの間有害ガスHGが流れても、蓄熱体部26の熱量が奪いきれず、有害成分加熱浄化装置1全体としての温度がどんどん上昇するという場合がある。 It is the inflow gas, that is, the harmful gas HG when the chamber 12 having the heat storage body 26 changes to the inflow state to cool the heat storage unit 26 having a large amount of heat. The harmful gas HG passing through the heat storage body unit 26 having a large amount of heat takes heat from the heat storage body unit 26. However, if the amount of accumulated heat is large, even if the harmful gas HG flows for the set duration ts in the steady state, the amount of heat of the heat storage body portion 26 cannot be taken away, and the temperature of the harmful component heating purification device 1 as a whole May rise steadily.

このため、流入状態になった室12の加熱部28の温度が一定温度以下にならない場合は、現在の定常状態を維持し続け、加熱部28および蓄熱体部26の温度の低下を待つという趣旨である。 Therefore, if the temperature of the heating unit 28 of the chamber 12 that has entered the inflow state does not fall below a certain temperature, the purpose is to continue maintaining the current steady state and wait for the temperature of the heating unit 28 and the heat storage body unit 26 to decrease. Is.

一方、加熱部28の温度がT0以下になってしまうと、今度は加熱部28の加熱装置30がONになる。これはせっかく蓄積した蓄熱体部26の熱量を有効に利用したとは言えない。そこで、切り替えのための閾値温度αを加熱装置30のON/OFF切り替え温度T0に上乗せしておく。閾値温度αは、流入する有害ガスHGの温度に基づいて動的に変換させてもよい。つまり、加熱部28の温度が低下する際に、切り替え温度T0に対してアンダーシュートして、加熱装置30がONにならないように、有害ガスHGの温度に、基づいて閾値温度αを変化させる。 On the other hand, when the temperature of the heating unit 28 becomes T0 or less, the heating device 30 of the heating unit 28 is turned on this time. It cannot be said that this effectively utilized the amount of heat accumulated in the heat storage body unit 26. Therefore, the threshold temperature α for switching is added to the ON / OFF switching temperature T0 of the heating device 30. The threshold temperature α may be dynamically converted based on the temperature of the inflowing harmful gas HG. That is, when the temperature of the heating unit 28 drops, the threshold temperature α is changed based on the temperature of the harmful gas HG so that the heating device 30 does not turn on by undershooting with respect to the switching temperature T0.

図5のフローでは、ステップS108で有害ガスHGが流入状態にある室12の加熱部28の温度TがT0+αより高ければ(ステップS108のN分岐)、設定された継続時間を過ぎてもさらに現在の定常状態を維持する。加熱部28の温度TがT0+αより低く成ったら(ステップS108のY分岐)処理を次に移す。 In the flow of FIG. 5, if the temperature T of the heating unit 28 of the chamber 12 in which the harmful gas HG is inflowing in step S108 is higher than T0 + α (N branch in step S108), even after the set duration has passed, it is still present. Maintain the steady state of. When the temperature T of the heating unit 28 becomes lower than T0 + α (Y branch in step S108), the process is moved to the next step.

ステップS106(所定の継続時間tsを経過)と、ステップS108(加熱部28の温度TがT0+αより低い)をクリアしたら、状態遷移に移る。図4で説明したように、遷移状態1に遷移し(ステップS110)、次に遷移状態2に遷移し(ステップS112)、最後に遷移状態3に遷移する(ステップS114)。遷移状態3は次の定常状態である。 After clearing step S106 (the predetermined duration ts has elapsed) and step S108 (the temperature T of the heating unit 28 is lower than T0 + α), the state transition is started. As described with reference to FIG. 4, it transitions to the transition state 1 (step S110), then to the transition state 2 (step S112), and finally to the transition state 3 (step S114). The transition state 3 is the next steady state.

なお、新たな定常状態が始まったらタイマー62をクリアし新たに経過時間tsを計測し始める(ステップS116)。そして、再び終了判定(ステップS102)に処理を移す。以上のようにして制御装置60は、有害成分加熱浄化装置1を運転する。 When a new steady state starts, the timer 62 is cleared and the elapsed time ts is newly measured (step S116). Then, the process is moved to the end determination (step S102) again. As described above, the control device 60 operates the harmful component heating purification device 1.

本発明に係る有害成分加熱浄化装置は、有害ガスを浄化するのに好適に利用することができる。 The harmful component heating purification device according to the present invention can be suitably used for purifying harmful gas.

1 有害成分加熱浄化装置
10 外郭
12、12x、12y、12z 室
13 壁
14 底面
16 開口部
18 ダンパースライド部
20 ダンパー
22 低摩擦層
24 選択口
26 蓄熱体部
28 加熱部
30 加熱装置
32 加熱部温度センサ
34 触媒部
36 連通部
40 ガス流入口
41 パージガス流入口
42 ガス流出口
43 分離壁
44 連通口
46 流入流路
48 流出流路
50 パージ流路
52 有害ガス送風用ファン
54 パージガス送風用ファン
56 冷却装置
56f 送風ファン
56p 金属パイプ
56t 温度センサ
60 制御装置
62 タイマー
70 金属製の蓄熱体
72 セラミックス製の蓄熱体
74 通気孔
HG 有害ガス
DG 浄化ガス
PG パージガス
1 Hazardous component heating and purification device 10 Outer shell 12, 12x, 12y, 12z Room 13 Wall 14 Bottom surface 16 Opening 18 Damper slide part 20 Damper 22 Low friction layer 24 Selection port 26 Heat storage body part 28 Heating part 30 Heating part 32 Heating part temperature Sensor 34 Catalyst part 36 Communication part 40 Gas inlet 41 Purge gas inlet 42 Gas outlet 43 Separation wall 44 Communication port 46 Inflow flow path 48 Outflow flow path 50 Purge flow path 52 Harmful gas blower fan 54 Purge gas blower fan 56 Cooling Device 56f Blower fan 56p Metal pipe 56t Temperature sensor 60 Control device 62 Timer 70 Metal heat storage body 72 Ceramic heat storage body 74 Vent hole HG Harmful gas DG Purification gas PG Purge gas

Claims (2)

上方で連通する連通部と、下方には開口部が形成された底面を有し、前記連通部以外は
壁によって仕切られた3つ以上の室と、
前記室に前記開口部側から前記連通部に向かって蓄熱体部と、加熱部と、触媒部が連設
され、
前記開口部には、
有害ガスを前記室内に導入する流入流路に連通するガス流入口と、
前記室から浄化ガスを排出する流出流路に連通するガス流出口と、
前記室にパージガスを導入するパージ流路に連通するパージガス流入口の3つの連通口が設けられ、
前記底面上と摺動可能に密着載置され、前記3つの連通口の内の1つを連通状態にする選択口が形成されたダンパーと、
前記底面と前記ダンパーとの摺動の間に配置された低摩擦層と、
前記ダンパーを移動させ前記連通口の開閉を制御する制御装置を有し、
前記連通部に冷却装置を設け、
前記加熱部に加熱部温度センサを有し、
前記制御装置は、
各室の連通状態を、流入流路との連通、パージ流路との連通および流出流路との連通の3つの状態を順に遷移させ、さらに各室毎の連通状態にずれを持たせ、
前記連通状態の遷移を制限時間と、前記流入流路と連通された前記室の前記加熱部の温度によって制御し、
前記加熱部の温度が所定温度以下でない場合は、前記制限時間が経過した後であっても、現在の前記連通状態を遷移させないことを特徴とする有害成分加熱浄化装置。
A communication portion that communicates above, and three or more chambers that have a bottom surface with an opening formed below and are separated by a wall except for the communication portion.
A heat storage body portion, a heating portion, and a catalyst portion are continuously provided in the chamber from the opening side toward the communication portion.
In the opening
A gas inlet that communicates with the inflow channel that introduces harmful gas into the room,
A gas outlet that communicates with the outflow channel that discharges purified gas from the chamber,
Three communication ports of a purge gas inflow port communicating with a purge flow path for introducing purge gas into the chamber are provided.
A damper that is slidably mounted on the bottom surface and has a selection port that allows one of the three communication ports to communicate with each other.
A low friction layer arranged between the bottom surface and the slide of the damper,
Have a control device to move the damper to control the opening and closing of the communication port,
A cooling device is provided in the communication portion,
The heating unit has a heating unit temperature sensor.
The control device is
The communication state of each room is changed in order from the three states of communication with the inflow flow path, communication with the purge flow path, and communication with the outflow flow path, and further, the communication state of each room is shifted.
The transition of the communication state is controlled by the time limit and the temperature of the heating unit in the chamber communicated with the inflow flow path.
A harmful component heating purification device, characterized in that the current communication state is not changed even after the time limit has elapsed when the temperature of the heating unit is not equal to or lower than a predetermined temperature .
前記蓄熱体部の前記連通口側には、前記有害ガスの低吸着材で構成されていることを特徴とする請求項1に記載された有害成分加熱浄化装置。 The harmful component heating and purifying device according to claim 1, wherein the communication port side of the heat storage body portion is composed of a low adsorbent for the harmful gas.
JP2020039032A 2020-03-06 2020-03-06 Hazardous component heating purification device Active JP6814494B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020039032A JP6814494B1 (en) 2020-03-06 2020-03-06 Hazardous component heating purification device
CN202110244230.2A CN113019116A (en) 2020-03-06 2021-03-05 Harmful component heating and purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039032A JP6814494B1 (en) 2020-03-06 2020-03-06 Hazardous component heating purification device

Publications (2)

Publication Number Publication Date
JP6814494B1 true JP6814494B1 (en) 2021-01-20
JP2021139584A JP2021139584A (en) 2021-09-16

Family

ID=74164492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039032A Active JP6814494B1 (en) 2020-03-06 2020-03-06 Hazardous component heating purification device

Country Status (2)

Country Link
JP (1) JP6814494B1 (en)
CN (1) CN113019116A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584200U (en) * 1978-12-04 1980-06-10
JPH04326924A (en) * 1991-04-25 1992-11-16 Matsushita Electric Ind Co Ltd Intermittent type apparatus and method for purifying catalyst
JPH054026A (en) * 1991-06-27 1993-01-14 Matsushita Electric Ind Co Ltd Harmful component heating and cleaning device
JPH10238742A (en) * 1997-02-28 1998-09-08 Trinity Ind Corp Thermal storage type exhaust gas treating apparatus
JP2000193228A (en) * 1998-12-22 2000-07-14 Showa Engineering Co Ltd Combustion type deodorizer
JP2003294222A (en) * 2002-04-01 2003-10-15 Chugai Ro Co Ltd Heat-regenerative combustion type deodorization equipment
JP2005106286A (en) * 2003-09-09 2005-04-21 Kanagawa Acad Of Sci & Technol Slide type valve device
JP2016121859A (en) * 2014-12-25 2016-07-07 株式会社島川製作所 Harmful component heating and purifying device
JP6549344B1 (en) * 2018-11-12 2019-07-24 カンケンテクノ株式会社 Exhaust gas abatement system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452770B (en) * 2013-09-19 2017-09-01 新东工业株式会社 Catalysis type heat storage burner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584200U (en) * 1978-12-04 1980-06-10
JPH04326924A (en) * 1991-04-25 1992-11-16 Matsushita Electric Ind Co Ltd Intermittent type apparatus and method for purifying catalyst
JPH054026A (en) * 1991-06-27 1993-01-14 Matsushita Electric Ind Co Ltd Harmful component heating and cleaning device
JPH10238742A (en) * 1997-02-28 1998-09-08 Trinity Ind Corp Thermal storage type exhaust gas treating apparatus
JP2000193228A (en) * 1998-12-22 2000-07-14 Showa Engineering Co Ltd Combustion type deodorizer
JP2003294222A (en) * 2002-04-01 2003-10-15 Chugai Ro Co Ltd Heat-regenerative combustion type deodorization equipment
JP2005106286A (en) * 2003-09-09 2005-04-21 Kanagawa Acad Of Sci & Technol Slide type valve device
JP2016121859A (en) * 2014-12-25 2016-07-07 株式会社島川製作所 Harmful component heating and purifying device
JP6549344B1 (en) * 2018-11-12 2019-07-24 カンケンテクノ株式会社 Exhaust gas abatement system

Also Published As

Publication number Publication date
CN113019116A (en) 2021-06-25
JP2021139584A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6341466B2 (en) Catalytic heat storage combustion equipment
WO1995024593A1 (en) Change-over valve, and regenerative combustion apparatus and regenerative heat exchanger using same
JP6814494B1 (en) Hazardous component heating purification device
JP2007198682A (en) Thermal storage deodorizing system
JP2007309535A (en) Exhaust gas treatment device for metal scrap melting furnace
JP2004538436A (en) Module VOC confinement chamber for two-chamber regenerative oxidizer
KR102229551B1 (en) Air purifier using thermal catalyst
JPH07305824A (en) Operating method for heat storage type catalytic burner and controller
JP4541942B2 (en) Exhaust gas purification device for bean roasting machine
JP2616516B2 (en) Harmful component heating purification device and purification method
JP2016121859A (en) Harmful component heating and purifying device
JP6347007B1 (en) Organic solvent-containing gas treatment system
JP2000193228A (en) Combustion type deodorizer
KR100588067B1 (en) Multi-bed VOC oxidation system
JP5074352B2 (en) Gas treatment system
WO2022091226A1 (en) Heat storage combustion deodorizing device and method for operating heat storage combustion deodorizing device
JP6111743B2 (en) Regenerative combustion apparatus and gas combustion treatment method
CN102374545B (en) Heat-storage incinerator
JPH03232422A (en) Apparatus for storing perishables
KR20220114405A (en) bypass type ventilation system
JPH04117220A (en) Fresh material reservoir
JP2024093747A (en) Deodorizing Equipment
JPH04117221A (en) Fresh material reservoir
JPH0557147A (en) Equipment for heating and purifying harmful gas
JP2005172338A (en) Heat storage type gas treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200707

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6814494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250