JP2005193175A - Method and apparatus for treating exhaust gas from gas engine - Google Patents

Method and apparatus for treating exhaust gas from gas engine Download PDF

Info

Publication number
JP2005193175A
JP2005193175A JP2004003222A JP2004003222A JP2005193175A JP 2005193175 A JP2005193175 A JP 2005193175A JP 2004003222 A JP2004003222 A JP 2004003222A JP 2004003222 A JP2004003222 A JP 2004003222A JP 2005193175 A JP2005193175 A JP 2005193175A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
temperature
gas engine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003222A
Other languages
Japanese (ja)
Inventor
Riyouji Honma
理陽司 本間
Teruhiro Sakurai
輝浩 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004003222A priority Critical patent/JP2005193175A/en
Publication of JP2005193175A publication Critical patent/JP2005193175A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To purify an exhaust gas from a gas engine at high efficiency using a catalyst. <P>SOLUTION: In removing hazardous components contained in the exhaust gas from a gas engine, the untreated exhaust gas passes through a catalyst after heating by a heating means 20 up to a temperature not lower than the temperature at which the catalyst in a catalyst bed 30 is active. Heat is exchanged between the treated high-temperature exhaust gas from the catalyst bed and the untreated low-temperature exhaust gas in a heat exchanger 10 to save an energy cost. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスエンジン排ガス処理方法及び装置に関する。   The present invention relates to a gas engine exhaust gas treatment method and apparatus.

ガスエンジンは、ガソリンや重油を燃料とする内燃機関と比較して高い熱効率での運転が可能であり、コージェネレーションシステムの動力源などとして広く用いられている。また、ガスエンジンからの排ガスは通常の内燃機関からの排ガスと比較して、未燃炭化水素や窒素酸化物などの有害成分の排出量が少なく、環境に対する汚染度も少ない。しかし、比較して少ないとはいえ、未燃炭化水素や窒素酸化物が含まれているのは事実であり、その無害化処理が望まれる。そのために、触媒を用いて排ガス中の有害成分である未燃炭化水素及び窒素酸化物を処理することが行われる。   A gas engine can be operated with higher thermal efficiency than an internal combustion engine using gasoline or heavy oil as a fuel, and is widely used as a power source for a cogeneration system. Further, the exhaust gas from the gas engine has less emission of harmful components such as unburned hydrocarbons and nitrogen oxides and less pollution to the environment than the exhaust gas from a normal internal combustion engine. However, although it is relatively small, it is true that unburned hydrocarbons and nitrogen oxides are contained, and detoxification treatment is desired. For this purpose, a catalyst is used to treat unburned hydrocarbons and nitrogen oxides, which are harmful components in the exhaust gas.

しかし、ガスエンジンは熱効率が高いことから排ガスの温度が低く、酸化触媒あるいは脱硝触媒などの触媒活性温度以下の温度で排出されるのが普通であり、そのまま排ガスと触媒とを接触させただけでは、十分な触媒による浄化処理が進行しない。そのために、特許文献1(特開2002−266631号公報)には、触媒層を一対の蓄熱体で挟むようにし、そこにガスエンジンからの排ガスを流通方向を正逆交互に切り換えて通過させることにより排ガス浄化効率を上げるようにした、ガスエンジン排ガスの処理方法と装置が提案されている。
特開2002−266631号公報
However, because the gas engine has high thermal efficiency, the temperature of the exhaust gas is low, and it is usually discharged at a temperature below the catalyst activation temperature such as an oxidation catalyst or a denitration catalyst. Just by contacting the exhaust gas and the catalyst as they are, The purification process with a sufficient catalyst does not proceed. Therefore, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-266331), a catalyst layer is sandwiched between a pair of heat accumulators, and exhaust gas from a gas engine is passed through the flow direction by switching the flow direction alternately. A gas engine exhaust gas treatment method and apparatus have been proposed in which the exhaust gas purification efficiency is improved by the above.
JP 2002266663 A

特許文献1に記載の方法及び装置は、蓄熱体の熱容量を有効に利用することにより、排ガス温度が低い場合でも少ない触媒量で効率的に排ガスを浄化できることが期待される。しかし、蓄熱体を常備することや排ガスの流通方向を正逆交互に切り換える手段を必要とするなど、構成的な複雑さを伴う。また、流通方向の切り換え時に未処理ガスが発生するというのような不都合もある。   The method and apparatus described in Patent Document 1 are expected to efficiently purify the exhaust gas with a small amount of catalyst even when the exhaust gas temperature is low by effectively utilizing the heat capacity of the heat storage body. However, there is a structural complexity such as requiring a heat storage body and a means for alternately switching the flow direction of the exhaust gas alternately. There is also a disadvantage that untreated gas is generated when the flow direction is switched.

本発明は上記のような事情に鑑みてなされたものであり、触媒の活性温度よりも低温であることが多いガスエンジンからの排ガスを効率的に浄化するための、より改良された排ガス処理方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an improved exhaust gas treatment method for efficiently purifying exhaust gas from a gas engine, which is often lower than the activation temperature of the catalyst. And an apparatus.

本発明によるガスエンジン排ガス処理方法は、ガスエンジンの排ガス中に含まれる有害成分を触媒により処理するに際し、排ガスの温度を加熱手段により触媒活性温度以上にまで昇温させた後、触媒を通過させることを特徴とする。   In the gas engine exhaust gas treatment method according to the present invention, when a harmful component contained in the exhaust gas of a gas engine is treated with a catalyst, the temperature of the exhaust gas is raised to a catalyst activation temperature or higher by a heating means, and then the catalyst is allowed to pass through. It is characterized by that.

通常、ハニカム基材にPtとPdとを混在させて担持させてなるような酸化触媒は活性温度が400℃〜500℃であり、また、アルミナ、銀のような脱硝触媒は活性温度が500℃〜600℃である。一方、前記したように、高効率型のガスエンジンの排ガスは定常運転において400℃前後か400℃以下の温度で排出される。本発明では、ガスエンジンから排出されるそのような低温の排ガスを、電気ヒーターやガスバーナーのような適宜の加熱手段により触媒の活性温度である例えば400℃〜600℃以上に昇温させた後、触媒を通過させるようにする。それにより、常時、排ガスの高い浄化率を確実に達成することが可能となる。   Usually, an oxidation catalyst in which Pt and Pd are mixedly supported on a honeycomb substrate has an activation temperature of 400 ° C. to 500 ° C., and a denitration catalyst such as alumina and silver has an activation temperature of 500 ° C. ~ 600 ° C. On the other hand, as described above, the exhaust gas of the high-efficiency gas engine is discharged at a temperature of about 400 ° C. or less than 400 ° C. in steady operation. In the present invention, after such low-temperature exhaust gas discharged from the gas engine is heated to a catalyst activation temperature of, for example, 400 ° C. to 600 ° C. or higher by an appropriate heating means such as an electric heater or a gas burner. Let the catalyst pass through. Thereby, it is possible to always reliably achieve a high purification rate of exhaust gas.

好ましくは、加熱前の未処理の排ガスと触媒を通過した後の高温排ガスとの間で熱交換を行う。それにより、加熱手段が投入した熱量を有効に回収することができ、燃費の節減が可能となる。また、好ましくは、排ガス温度及び/又は触媒温度を温度センサにより測定し、その出力により加熱手段の発熱量を制御する。この場合には、運転条件などによりガスエンジンからの排ガス温度が変動する場合に、温度センサの出力に応じて加熱手段の投入熱量を制御することで、常に触媒活性上の最低温度を創出することができ、高い処理効率のもとで、高い浄化率を安定して達成可能となる。   Preferably, heat exchange is performed between the untreated exhaust gas before heating and the high temperature exhaust gas after passing through the catalyst. Thereby, the amount of heat input by the heating means can be effectively recovered, and fuel consumption can be reduced. Preferably, the exhaust gas temperature and / or the catalyst temperature is measured by a temperature sensor, and the heating value of the heating means is controlled by the output. In this case, when the exhaust gas temperature from the gas engine fluctuates due to operating conditions, etc., the minimum amount of catalyst activity is always created by controlling the amount of heat input to the heating means according to the output of the temperature sensor. Therefore, a high purification rate can be stably achieved with high processing efficiency.

好ましくは、本発明によるガスエンジン排ガス処理装置は、全体が一つのユニットとして組み立てられる。ユニット化することにより可搬性となり、既設のガスエンジンに対して後付けすることも可能となる。そのために、既に稼働しているコージェネレーションシステムなどで使用されているガスエンジンの排ガス浄化に大きく貢献することができる。   Preferably, the gas engine exhaust gas treatment apparatus according to the present invention is assembled as a unit as a whole. By making it a unit, it becomes portable and can be retrofitted to an existing gas engine. Therefore, it can greatly contribute to exhaust gas purification of gas engines used in cogeneration systems that are already in operation.

さらに、本発明のガスエンジン排ガス処理装置は、基本的に電気ヒーターやガスバーナーのような単純な加熱部と熱交換器と触媒層を備えればよく、また排ガスの流れ方向も一方向ですむので、蓄熱層や流路切り替え手段を設ける必要はなく、構成が簡素化される利点もある。   Furthermore, the gas engine exhaust gas treatment apparatus of the present invention basically only needs to include a simple heating unit such as an electric heater or a gas burner, a heat exchanger, and a catalyst layer, and the flow direction of the exhaust gas is only one direction. Therefore, there is no need to provide a heat storage layer or flow path switching means, and there is an advantage that the configuration is simplified.

本発明によるガスエンジン排ガス処理方法及び装置によれば、簡単な構成でありながら、触媒活性化温度よりも低い温度で通常排出されるガスエンジンの排ガスに対して、触媒による浄化処理を、高い処理効率で、かつ、低燃費で行うことが可能となる。   According to the gas engine exhaust gas treatment method and apparatus according to the present invention, although it has a simple configuration, a high-purity catalyst purification process is performed on exhaust gas from a gas engine that is normally discharged at a temperature lower than the catalyst activation temperature. It is possible to carry out with high efficiency and low fuel consumption.

以下、本発明を実施の形態に基づき説明する。図1に本発明によるガスエンジンの排ガス処理方法及び装置の概念図を示す。図1において、10は熱交換器であり、気体間での熱交換を行うことのできるタイプのものであれば従来知られた任意のものであってよい。20は加熱部であり、バーナ、電気ヒータなど任意の加熱手段を備える。30は触媒層であり、従来知られた酸化触媒及び脱硝触媒が少なくとも配置される。40、41は熱交換器10及び触媒層30に備えられる熱電対のような温度センサであり、50は該温度センサ40、41からの出力に応じて加熱部20での加熱手段による投入熱量を制御するための制御装置である。   Hereinafter, the present invention will be described based on embodiments. FIG. 1 is a conceptual diagram of an exhaust gas treatment method and apparatus for a gas engine according to the present invention. In FIG. 1, reference numeral 10 denotes a heat exchanger, which may be any conventionally known one as long as it is of a type that can exchange heat between gases. Reference numeral 20 denotes a heating unit, which includes arbitrary heating means such as a burner and an electric heater. Reference numeral 30 denotes a catalyst layer on which at least a conventionally known oxidation catalyst and denitration catalyst are disposed. 40 and 41 are temperature sensors such as thermocouples provided in the heat exchanger 10 and the catalyst layer 30, and 50 indicates the amount of heat input by the heating means in the heating unit 20 according to the output from the temperature sensors 40 and 41. It is a control device for controlling.

図示しないガスエンジンからの400℃前後あるいは400℃以下である排ガスは、熱交換器10の第1の流路に送られ、そこを通過して加熱部20に流入する。加熱部20ではガスバーナーのような適宜の加熱手段から熱が投入されており、排ガスの温度を例えば600℃〜700℃程度にまで上昇させる。昇温した排ガスは、次いで触媒層30に流入する。   Exhaust gas from a gas engine (not shown) at around 400 ° C. or below 400 ° C. is sent to the first flow path of the heat exchanger 10, passes through it, and flows into the heating unit 20. In the heating unit 20, heat is input from an appropriate heating means such as a gas burner, and the temperature of the exhaust gas is raised to, for example, about 600 ° C to 700 ° C. The heated exhaust gas then flows into the catalyst layer 30.

触媒層30に収容されている酸化触媒(例えば、Pt,Pdなど)及び脱硝触媒(例えば、アルミナ、銀など)の触媒活性温度はそれぞれ400℃〜500℃及び500℃〜600℃程度であるが、流入する排ガスの持つ熱により、いずれの触媒も容易にその活性温度まで昇温する。それにより、排ガス中含まれる未燃炭化水素類の酸化処理及び及び窒素酸化物の脱硝処理が迅速かつ完全に進行し、触媒による高い浄化率が得られる。   The catalyst activation temperatures of the oxidation catalyst (for example, Pt, Pd, etc.) and the denitration catalyst (for example, alumina, silver, etc.) accommodated in the catalyst layer 30 are about 400 ° C. to 500 ° C. and 500 ° C. to 600 ° C., respectively. Any catalyst easily rises to its activation temperature by the heat of the inflowing exhaust gas. Thereby, the oxidation treatment of unburned hydrocarbons contained in the exhaust gas and the denitration treatment of nitrogen oxide proceed quickly and completely, and a high purification rate by the catalyst can be obtained.

触媒層30を通過した排ガスは熱交換器10の第2の流路を通過して大気に放出される。触媒層30を通過した排ガスは依然として高温状態であり、熱交換器10の第1の流路を通過する低温の未処理排ガスと熱交換して未処理排ガスを予熱する。それにより、加熱部20で投入された熱の回収が行われ、燃費の削減が図られる。   The exhaust gas that has passed through the catalyst layer 30 passes through the second flow path of the heat exchanger 10 and is released to the atmosphere. The exhaust gas that has passed through the catalyst layer 30 is still in a high temperature state, and heat exchange with the low-temperature untreated exhaust gas that passes through the first flow path of the heat exchanger 10 preheats the untreated exhaust gas. Thereby, the heat input by the heating unit 20 is recovered, and fuel consumption is reduced.

熱交換器10で昇温した後の排ガス温度は温度センサ40により検知され、信号が制御装置50に出力される。また、触媒層30に取り付けた温度センサ41からの触媒温度信号も制御装置50に出力される。制御装置50は、2つの信号を比較して、触媒層30内の触媒を常時触媒活性上の最低温度を創出できるだけの熱量を排ガスに投入できるよう、加熱部20に信号を出力する。このように、加熱部20での投入熱量をガスエンジンの排ガス温度に応じて制御することで、常に触媒温度を最低温度に保つことができため、運転条件により処理効率が変動することはない。   The exhaust gas temperature after the temperature is raised by the heat exchanger 10 is detected by the temperature sensor 40, and a signal is output to the control device 50. Further, a catalyst temperature signal from a temperature sensor 41 attached to the catalyst layer 30 is also output to the control device 50. The control device 50 compares the two signals and outputs a signal to the heating unit 20 so that an amount of heat that can create a minimum temperature for the catalyst activity in the catalyst layer 30 at all times can be input to the exhaust gas. In this way, by controlling the amount of heat input in the heating unit 20 according to the exhaust gas temperature of the gas engine, the catalyst temperature can always be kept at the minimum temperature, so that the processing efficiency does not vary depending on the operating conditions.

図2は本発明によるガスエンジン排ガス装置の一例であり、一つのユニットとして組み付けられている。熱交換器10としてクロスフロー型(交差流型)の熱交換器が用いられており、図で手前から奥方向である第1の流路11と、それと直交する右から左方向である第2の流路12とを備える。第1の流路11は未処理排ガスの流入路であり、該第1の流路11の出口側には熱電対である温度センサ40が取り付けてある。   FIG. 2 shows an example of a gas engine exhaust gas apparatus according to the present invention, which is assembled as one unit. A cross-flow type (cross-flow type) heat exchanger is used as the heat exchanger 10, and the first flow path 11 that is in the back direction from the front in the figure and the second that is in the right-to-left direction orthogonal thereto. The flow path 12 is provided. The first flow path 11 is an inflow path of untreated exhaust gas, and a temperature sensor 40 that is a thermocouple is attached to the outlet side of the first flow path 11.

図2において、熱交換器10の右側方には触媒層30が組み付けられている。触媒層30には、例えばハニカム基材に適宜の酸化触媒及び脱硝触媒を担持させた触媒が配置されると共に、熱電対である温度センサ41がやはり取り付けてある。触媒層30の右側方には加熱室20が組み付けてあり、加熱室20には、この例では電気ヒーター21が加熱源として取り付けてある。   In FIG. 2, a catalyst layer 30 is assembled on the right side of the heat exchanger 10. For example, a catalyst in which an appropriate oxidation catalyst and a denitration catalyst are supported on a honeycomb base material is disposed on the catalyst layer 30, and a temperature sensor 41 that is a thermocouple is also attached. A heating chamber 20 is assembled on the right side of the catalyst layer 30, and an electric heater 21 is attached to the heating chamber 20 as a heating source in this example.

熱交換器10の第1の流路11から流出した未処理の排ガスは排ガス流路60を通過して加熱室20内に入る。未処理排ガスは加熱室20内で電気ヒーター21により所要温度に加熱された後、触媒層30に流入する。そこで、触媒活性温度までの触媒加熱と触媒による浄化処理が行われ、依然として高温状態である処理済み排ガスは、熱交換器10の第2の流路12を通って大気に放出される。そのときに、第1の流路11を流れる未処理排ガスと熱交換が行われる。第1の流路11を通過した未処理排ガスの温度は温度センサ40で測定され、また、触媒の温度は温度センサ41で測定される。その信号は、図示しない電力負荷制御装置に送られ、加熱用電気ヒーター21への入力電力量が制御される。   The untreated exhaust gas flowing out from the first flow path 11 of the heat exchanger 10 passes through the exhaust gas flow path 60 and enters the heating chamber 20. The untreated exhaust gas is heated to a required temperature by the electric heater 21 in the heating chamber 20 and then flows into the catalyst layer 30. Therefore, catalyst heating up to the catalyst activation temperature and purification treatment with the catalyst are performed, and the treated exhaust gas that is still in a high temperature state is released to the atmosphere through the second flow path 12 of the heat exchanger 10. At that time, heat exchange with the untreated exhaust gas flowing through the first flow path 11 is performed. The temperature of the untreated exhaust gas that has passed through the first flow path 11 is measured by the temperature sensor 40, and the temperature of the catalyst is measured by the temperature sensor 41. The signal is sent to a power load control device (not shown), and the amount of power input to the heating electric heater 21 is controlled.

図2に示すように、ガスエンジン排ガス処理装置はユニット化されており、そのまま既存のガスエンジン施設に搬入し、その熱交換器10の第1の流路11の流入側をガスエンジンの排気ポート(図示しない)に接続することにより、該ガスガスエンジンからの排ガスの触媒による浄化処理を容易かつ確実に行うことができる。なお、熱交換器10はクロスフロー型(交差流型)でなく並行流式や対向流式であってもよく、加熱手段は電気ヒーター21に変えてガスバーナーであってもよい。   As shown in FIG. 2, the gas engine exhaust gas treatment apparatus is unitized, and is carried into an existing gas engine facility as it is. The inflow side of the first flow path 11 of the heat exchanger 10 is connected to the exhaust port of the gas engine. By connecting to (not shown), it is possible to easily and reliably purify the exhaust gas from the gas gas engine with a catalyst. The heat exchanger 10 may be a parallel flow type or a counter flow type instead of the cross flow type (cross flow type), and the heating means may be a gas burner instead of the electric heater 21.

本発明によるガスエンジンの排ガス処理方法及び装置の概念図。The conceptual diagram of the exhaust gas treatment method and apparatus of the gas engine by this invention. 本発明によるガスエンジン排ガス処理装置の一実施の形態を説明する図であり、図2aは各部材を分解して示しており、図2bは一つのユニットとして組み付けた状態を示している。It is a figure explaining one Embodiment of the gas engine waste gas processing apparatus by this invention, FIG. 2a has decomposed | disassembled and shown each member, FIG. 2b has shown the state assembled | attached as one unit.

符号の説明Explanation of symbols

10…熱交換器、20…加熱部、30…触媒層、40…温度センサ、50…制御装置 DESCRIPTION OF SYMBOLS 10 ... Heat exchanger, 20 ... Heating part, 30 ... Catalyst layer, 40 ... Temperature sensor, 50 ... Control apparatus

Claims (8)

ガスエンジンの排ガス中に含まれる有害成分を触媒により処理するに際し、排ガスの温度を加熱手段により触媒活性温度以上にまで昇温させた後、触媒を通過させることを特徴とするガスエンジン排ガス処理方法。   A gas engine exhaust gas treatment method characterized in that when a harmful component contained in exhaust gas of a gas engine is treated with a catalyst, the temperature of the exhaust gas is raised to a catalyst activation temperature or higher by a heating means, and then the catalyst is allowed to pass through. . 触媒が、酸化触媒及び/又は脱硝触媒である請求項1記載のガスエンジン排ガス処理方法。   The gas engine exhaust gas treatment method according to claim 1, wherein the catalyst is an oxidation catalyst and / or a denitration catalyst. 加熱前の排ガスと触媒を通過した後の高温排ガスとの間で熱交換を行うことを特徴とする請求項1又は2記載のガスエンジン排ガス処理方法。   The gas engine exhaust gas treatment method according to claim 1 or 2, wherein heat exchange is performed between the exhaust gas before heating and the high temperature exhaust gas after passing through the catalyst. 排ガス温度及び/又は触媒温度を温度センサにより測定し、その出力により加熱手段の発熱量を制御することを特徴とする請求項1ないし3いずれか記載のガスエンジン排ガス処理方法。   The gas engine exhaust gas treatment method according to any one of claims 1 to 3, wherein the exhaust gas temperature and / or the catalyst temperature is measured by a temperature sensor, and the calorific value of the heating means is controlled by the output. ガスエンジン排ガス処理装置であって、第1の流路と第2の流路とを備えた熱交換器と加熱部と触媒層を備え、被処理排ガスは熱交換器の第1の流路と加熱部を通過して触媒層に流入し、触媒層を通過した処理済みの高温の排ガスは熱交換器の第2の流路を通過して、そこで流入する被処理排ガスと熱交換した後、大気に放出されるようになっていることを特徴とするガスエンジン排ガス処理装置。   A gas engine exhaust gas treatment apparatus comprising a heat exchanger having a first flow path and a second flow path, a heating unit, and a catalyst layer, wherein the exhaust gas to be treated is a first flow path of the heat exchanger After passing through the heating section and flowing into the catalyst layer, the treated high-temperature exhaust gas that has passed through the catalyst layer passes through the second flow path of the heat exchanger, and after heat exchange with the treated exhaust gas flowing there, A gas engine exhaust gas treatment apparatus characterized by being discharged into the atmosphere. 触媒層は、酸化触媒及び/又は脱硝触媒を備えることを特徴とする請求項5記載のガスエンジン排ガス処理装置。   The gas engine exhaust gas treatment apparatus according to claim 5, wherein the catalyst layer includes an oxidation catalyst and / or a denitration catalyst. 熱交換器の第1の流路出口及び触媒層には温度センサが備えられ、さらに、該温度センサの出力に応じて加熱部での発熱量を制御する制御手段をさらに備えることを特徴とする請求項6記載のガスエンジン排ガス処理装置。   The first flow path outlet and the catalyst layer of the heat exchanger are provided with a temperature sensor, and further includes control means for controlling the amount of heat generated in the heating unit according to the output of the temperature sensor. The gas engine exhaust gas treatment apparatus according to claim 6. 全体が一つのユニットとして組み立てられていることを特徴とする請求項6又は7記載のガスエンジン排ガス処理装置。   The gas engine exhaust gas treatment apparatus according to claim 6 or 7, wherein the whole is assembled as a single unit.
JP2004003222A 2004-01-08 2004-01-08 Method and apparatus for treating exhaust gas from gas engine Pending JP2005193175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003222A JP2005193175A (en) 2004-01-08 2004-01-08 Method and apparatus for treating exhaust gas from gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003222A JP2005193175A (en) 2004-01-08 2004-01-08 Method and apparatus for treating exhaust gas from gas engine

Publications (1)

Publication Number Publication Date
JP2005193175A true JP2005193175A (en) 2005-07-21

Family

ID=34818195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003222A Pending JP2005193175A (en) 2004-01-08 2004-01-08 Method and apparatus for treating exhaust gas from gas engine

Country Status (1)

Country Link
JP (1) JP2005193175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201649A (en) * 2007-02-22 2008-09-04 Osaka Gas Co Ltd Co2 feeder for plant cultivation utilizing exhaust gas
JP2010137188A (en) * 2008-12-15 2010-06-24 Meiki Co Ltd Deodorization apparatus and control method for deodorization apparatus
JP2011032931A (en) * 2009-07-31 2011-02-17 Isuzu Motors Ltd Catalyst temperature raising device
AT510408B1 (en) * 2011-01-13 2012-04-15 Integral Engineering Und Umwelttechnik Gmbh METHOD AND DEVICE FOR INCREASING TEMPERATURE OF AN ABC OR PROCESS GAS WITH AN OXIDIZABLE SHARE
JP2013010078A (en) * 2011-06-29 2013-01-17 Chugoku Electric Power Co Inc:The System and method for treating ammonia

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201649A (en) * 2007-02-22 2008-09-04 Osaka Gas Co Ltd Co2 feeder for plant cultivation utilizing exhaust gas
JP2010137188A (en) * 2008-12-15 2010-06-24 Meiki Co Ltd Deodorization apparatus and control method for deodorization apparatus
JP2011032931A (en) * 2009-07-31 2011-02-17 Isuzu Motors Ltd Catalyst temperature raising device
AT510408B1 (en) * 2011-01-13 2012-04-15 Integral Engineering Und Umwelttechnik Gmbh METHOD AND DEVICE FOR INCREASING TEMPERATURE OF AN ABC OR PROCESS GAS WITH AN OXIDIZABLE SHARE
DE102012200337A1 (en) 2011-01-13 2012-08-23 Integral Engineering Und Umwelttechnik Gmbh Method and device for increasing the temperature of a waste or process gas with an oxidizable fraction
JP2013010078A (en) * 2011-06-29 2013-01-17 Chugoku Electric Power Co Inc:The System and method for treating ammonia

Similar Documents

Publication Publication Date Title
ES2737849T3 (en) Procedure of heating an exhaust gas in an exhaust post-treatment system
JP5301291B2 (en) Exhaust gas aftertreatment system and exhaust gas cleaning method
JP2004316658A5 (en)
EP2098696B9 (en) Exhaust heat recuperation system
WO2015041037A1 (en) Catalytic regenerative combustion apparatus
WO2007010985A1 (en) Exhaust gas purifier
JP2015093222A (en) Non-catalyst nox removal system and non-catalyst nox removal method
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2005193175A (en) Method and apparatus for treating exhaust gas from gas engine
US8715580B2 (en) Thermal management exhaust treatment device and method of manufacture
JP2004138013A (en) Exhaust emission control structure
JP2006316728A (en) Exhaust particulate purification device
JP2008202511A (en) Exhaust emission control device for diesel engine
JP2011032931A (en) Catalyst temperature raising device
JP2010144524A (en) Exhaust emission control device of internal combustion engine
JP2789871B2 (en) Catalyst purification device
JP2021076047A (en) Exhaust emission control device
JP2015081519A (en) Exhaust gas purification system
US11834977B2 (en) Method for heating an exhaust system
JP6705294B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2017218914A (en) Exhaust emission control system and exhaust emission control method for internal combustion engine
JP2001200757A (en) Cogeneration system
JP6733383B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
KR101182355B1 (en) Indirect heating type active catalytic system and fuel reforming reactor having indirect heating type active catalyst
JPH10121946A (en) Exhaust emission control device for diesel engine