WO2015041037A1 - Catalytic regenerative combustion apparatus - Google Patents

Catalytic regenerative combustion apparatus Download PDF

Info

Publication number
WO2015041037A1
WO2015041037A1 PCT/JP2014/072971 JP2014072971W WO2015041037A1 WO 2015041037 A1 WO2015041037 A1 WO 2015041037A1 JP 2014072971 W JP2014072971 W JP 2014072971W WO 2015041037 A1 WO2015041037 A1 WO 2015041037A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
exhaust gas
catalyst
temperature
combustion apparatus
Prior art date
Application number
PCT/JP2014/072971
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 飯島
市川 秀樹
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2015537627A priority Critical patent/JP6341466B2/en
Priority to CN201480043808.6A priority patent/CN105452770B/en
Publication of WO2015041037A1 publication Critical patent/WO2015041037A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means

Definitions

  • the present invention generally relates to a catalytic regenerative combustion apparatus, and more specifically, recovers the heat of treated exhaust gas while detoxifying combustible harmful components contained in the exhaust gas by treatment by catalytic combustion.
  • the present invention relates to a catalytic heat storage combustion apparatus used for preheating treatment exhaust gas.
  • Exhaust gas exhausted from various production facilities and treatment facilities and containing combustible harmful components such as harmful components or volatile organic compounds cannot be directly released into the atmosphere from the viewpoint of pollution prevention. For this reason, such exhaust gas is detoxified by the exhaust gas treatment device and then released into the atmosphere.
  • a heat storage chamber containing a heat storage material is connected to the combustion chamber, the heat storage material is heated with a high-temperature treated gas in which combustible harmful components are burned, and untreated exhaust gas is discharged into the combustion chamber.
  • a heat storage combustion apparatus that reduces the running cost by preheating with a heat storage material that has been heated before being introduced into the battery (for example, Patent Document 1).
  • Patent Document 2 a catalytic heat storage combustion apparatus in which a heating unit is installed between a catalyst for decomposing flammable harmful components and a heat storage body has also been proposed (for example, Patent Document 2).
  • Patent Document 2 a catalytic heat storage combustion apparatus in which a heating unit is installed between a catalyst for decomposing flammable harmful components and a heat storage body has also been proposed.
  • a combustion apparatus for example, Patent Document 3 in which a second heat storage layer is installed on the heating chamber side of the catalyst or a hot air generator is provided outside, and the hot air generator and the heating chamber are provided.
  • a catalyst is connected by a hot air supply duct to prevent overheating of the catalyst due to radiant heat from the heating means (for example, Patent Document 4).
  • Patent Document 3 in the combustion device in which the second heat storage layer is installed on the heating chamber side of the catalyst, the pressure loss increases due to the resistance in the second heat storage layer, and the power consumption of the blower and the like increases. There is a problem that the running cost increases. Moreover, it is necessary to remove the second heat storage layer every time the catalyst is replaced, and there is a problem that maintenance is not easy. Further, if the space for taking out the catalyst is provided between the catalyst and the second heat storage layer in order to facilitate maintenance, there is a problem that the combustion apparatus becomes large.
  • Patent Document 4 a separate hot air generator is provided, and in the combustion device in which the hot air generator and the heating chamber are connected by a duct, a high-temperature gas duct and a damper for connecting both of them are additionally required.
  • the combustion apparatus of patent document 4 is a system which heats exhaust gas indirectly with a hot air, the gas flow volume in a thermal storage combustion apparatus increases with the hot air for a heating, the pressure loss of an apparatus increases, There is a problem that the running cost increases, and there is a problem that the apparatus must be enlarged in order to keep the pressure loss low.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a catalytic regenerative combustion apparatus in which a catalyst is not overheated, maintenance work is easy, and operation is possible at a low running cost. .
  • a catalytic thermal storage combustion device that purifies exhaust gas by burning flammable harmful components in the exhaust gas, A plurality of heat storage and purification chambers in which a heat storage body through which exhaust gas can pass and a catalyst that burns the combustible harmful components are sequentially arranged and disposed inside, A heating chamber that heats the exhaust gas, the heating chamber connected to each of the plurality of heat storage purification chambers on the side where the catalyst of each of the heat storage purification chambers is disposed; Gas flow switching means for switching the flow of the exhaust gas so as to selectively supply the exhaust gas to one of the plurality of heat storage purification chambers, which is connected to the side where the heat storage body is disposed of the plurality of heat storage purification chambers. And comprising The heating unit is disposed at a position where radiation from the heating unit does not reach the catalyst.
  • a catalytic heat storage combustion apparatus is provided.
  • the combustible harmful component contained in the exhaust gas refers to, for example, a combustible harmful component such as toluene or ethyl acetate or a volatile organic compound.
  • the catalyst is arranged at a position where the radiation from the heating part of the heating chamber does not reach the catalyst, so that it is not overheated by the radiant heat from the heating part. For this reason, the life of the catalyst is extended, the number of replacements is reduced, and the running cost can be reduced.
  • the heating chamber is disposed offset from the catalyst in the arrangement direction of the heat storage body and the catalyst.
  • the catalyst can be disposed at a position where it can be reliably shielded from the radiation of the heating unit, and the combustion apparatus can be miniaturized.
  • a first temperature measuring means is provided between the catalyst and the heating chamber, The operation of the heating unit is controlled based on the detection result of the first temperature measuring means.
  • the temperature control of the heating chamber can be accurately performed. Furthermore, since excessive heating in the heating chamber can be prevented, the running cost can be suppressed.
  • a second temperature measuring means is provided between the catalyst and the heat storage body, The gas flow switching means is activated based on the measurement result of the second temperature measuring means.
  • the gas flow switching means is configured such that the temperature measured by the second temperature measuring means provided in the heat storage and purification chamber to which the exhaust gas is supplied is combusted by the catalyst with combustible harmful components contained in the exhaust gas. When the temperature drops to a temperature higher than the starting combustion start temperature, the flow direction of the exhaust gas is switched.
  • a catalytic regenerative combustion apparatus in which the catalyst is not overheated, maintenance work is easy, and operation is possible at a low running cost.
  • FIG. 2 is a cross-sectional view of the catalytic heat storage combustion device of FIG. 1
  • (A) is a longitudinal cross-sectional view of the catalytic heat storage combustion device
  • (B) is a vertical cross-sectional view of the left-right direction. It is drawing for demonstrating switching of the gas flow direction of waste gas in the catalyst type thermal storage combustion apparatus of FIG. It is a time chart for demonstrating operation
  • (A) is a longitudinal cross-sectional view of the left-right direction of one modification
  • (B) is the left-right direction of another modification
  • (C) is sectional drawing of another modification. It is a longitudinal cross-section of the front-back direction of the catalytic thermal storage combustion apparatus of the other embodiment of the catalytic thermal storage combustion apparatus of this invention. It is drawing of the catalyst type thermal storage combustion apparatus of another embodiment of the catalytic type thermal storage combustion apparatus of this invention, (A) is a typical perspective view of the catalytic type thermal storage combustion apparatus of another embodiment, (B) is a schematic longitudinal cross-sectional view of the left-right direction.
  • (A) is a typical perspective view of the catalytic-type thermal storage combustion apparatus of another embodiment.
  • (B) is a schematic longitudinal sectional view in the left-right direction.
  • the catalytic thermal storage combustion apparatus 1 is a so-called catalytic thermal storage combustion apparatus that purifies exhaust gas by burning combustible harmful components in the exhaust gas.
  • exhaust gas refers to a gas that is exhausted from various production facilities and processing facilities and contains a combustible harmful component such as a harmful component or a volatile organic compound.
  • the combustible harmful component contained in the exhaust gas refers to a combustible harmful component such as toluene or ethyl acetate or a volatile organic compound.
  • FIG. 1 is a schematic perspective view of a catalytic heat storage combustion apparatus 1 according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the catalytic heat storage combustion apparatus 1.
  • the catalytic heat storage combustion apparatus 1 includes two heat storage purification chambers 10 and 20 for purifying the exhaust gas by burning combustible harmful components contained in the exhaust gas, and the exhaust gas. And a heating chamber 30 for heating the.
  • the two heat storage purification chambers 10 and 20 are integrally formed in a parallel arrangement state, and are divided into individual heat storage purification chambers 10 and 20 by a partition wall 10a disposed in the center. Note that the heat storage and purification chambers 10 and 20 may be separated from each other.
  • heat storage bodies 11, 21 and catalyst layers 12, 22 are arranged in each heat storage purification chamber 10, 20, heat storage bodies 11, 21 and catalyst layers 12, 22 are arranged.
  • the heat storage bodies 11 and 21 are arranged in a lower region of the heat storage purification chambers 10 and 20 while being spaced apart from the bottom surfaces of the heat storage purification chambers 10 and 20 by a predetermined distance. That is, a space is formed below the heat storage bodies 11 and 21.
  • a heat storage material having a sufficient heat exchange capacity under the operating temperature condition is used. Specifically, various materials such as sand, ceramics, and metal are used as the heat storage material.
  • the shape of the heat storage material is also a shape capable of circulating exhaust gas such as a porous material, a honeycomb shape, and a granular material.
  • the heat storage materials 11 and 21 are the above-described heat storage materials that are accommodated in a container in a state in which exhaust gas can flow inside.
  • the catalyst layers 12, 22 are spaced apart from the heat storage bodies 11, 21 by a predetermined distance and have a predetermined distance downward from the ceiling portion of the heat storage purification chambers 10, 20. They are arranged at positions separated by an interval. That is, in the catalytic heat storage combustion apparatus 1 of the present embodiment, between the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 and between the catalyst layers 12 and 22 and the ceiling portion of the heat storage purification chambers 10 and 20. Each has a space. And in the catalyst type thermal storage combustion apparatus 1 of this embodiment, the thermal storage bodies 11 and 21 and the catalyst layers 12 and 22 are arrange
  • the catalyst layers 12 and 22 are arranged as catalyst layers 12 and 22 in which a catalyst capable of burning and decomposing combustible harmful components contained in exhaust gas is held in a container.
  • the catalyst held in the catalyst layers 12 and 22 is capable of decomposing flammable harmful components contained in the untreated exhaust gas, and known catalysts made of noble metals, base metal oxides, and the like are used.
  • the catalyst has a shape that allows exhaust gas such as porous, honeycomb, and granular materials to flow through the inside of the catalyst layer, and the catalyst layers 12 and 22 have a structure that allows the exhaust gas to pass through the inside. Yes.
  • Connection ducts 13 and 23 for introducing and discharging exhaust gas into the heat storage and purification chambers 10 and 20 are connected to the lower portions of the heat storage and purification chambers 10 and 20. As shown in FIG. 1, the connection ducts 13 and 23 are disposed so as to communicate with the heat storage purification chambers 10 and 20 below the heat storage bodies 11 and 21 (that is, the side on which the heat storage body is disposed). ing. Therefore, the connection ducts 13 and 23 introduce exhaust gas into the space below the heat storage bodies 11 and 21, and discharge the treated exhaust gas from the space below the heat storage bodies 11 and 21.
  • each of the connection ducts 13 and 23 is connected to two connection portions of a four-way valve 40 (gas flow switching means).
  • a gas supply duct 41 that supplies untreated exhaust gas to the catalytic thermal storage combustion apparatus 1 and an exhaust duct 42 that exhausts from the catalytic thermal storage combustion apparatus 1 are connected to other connection parts of the four-way valve 40, respectively. ing.
  • the four-way valve 40 is used as the gas flow switching means, the flow of the exhaust gas can be switched by one switching valve, and the structure of the catalytic heat storage combustion apparatus 1 can be simplified.
  • the gas flow switching means other valves such as a butterfly type on / off valve, a poppet type on / off valve, and a three-way valve can also be used.
  • an air cylinder method using compressed air is adopted as a driving method of the gas flow switching means, but a driving method using a hydraulic cylinder, an electric cylinder, or the like can also be adopted.
  • the heat storage purification chambers 10 and 20 are connected to the heating chamber 30 so that the space above the catalyst layers 12 and 22 communicates with the inside of the heating chamber 30 through the connection ports 14 and 24.
  • the heating chamber 30 is disposed adjacent to the back side of each of the heat storage and purification chambers 10 and 20. Therefore, in the catalytic heat storage combustion apparatus 1 of the present embodiment, the heating chamber 30 does not overlap the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 arranged in the vertical direction in a plan view (side). It is arranged in an offset state. That is, in the catalytic heat storage combustion apparatus 1 of the present embodiment, the heating chamber 30 is in a positional relationship offset from the catalyst layers 12 and 22 in the arrangement direction of the heat storage bodies 11 and 21 and the catalyst layers 12 and 22, that is, in the vertical direction. It is arranged with.
  • the heating chamber 30 has a height substantially equal to that of the heat storage purification chambers 10 and 20, and is divided into an upper region 30b and a lower region 30c by a horizontal partition wall 30a disposed above. ing. Further, the upper region 30b is divided into upper sections 30e and 30e corresponding to the respective heat storage and purification chambers 10 and 20 by a vertical partition wall 30d.
  • an electric heater 31 as a heating unit is arranged in the heating chamber 30, an electric heater 31 as a heating unit is arranged.
  • the electric heater 31 is a heating device for heating the introduced exhaust gas to a temperature at which the combustible and harmful components can be combusted in the catalyst layers 12 and 22, and is inserted into the heating chamber 30 from the ceiling to the heating chamber 30. 30 is attached.
  • Each electric heater 31 includes three elongate heater elements h having a distal end portion disposed in the pipe member 30f.
  • the tip side portion disposed in the pipe member 30f of the heater element h is a heat generating portion (heating portion) 31 'that generates radiant heat. Therefore, in the catalytic thermal storage combustion apparatus 1 of the present embodiment, the heat generating portion 31 ′ that generates radiant heat is disposed in the pipe member 30 f. With such a configuration, radiation from the heat generating portion 31 ′ does not reach the catalyst in the heat storage purification chamber 10, 20.
  • the heating chamber 30 is configured such that the exhaust gas contacts the electric heater 31 at a predetermined flow rate that is faster than the flow rate in the heat storage and purification chambers 10 and 20.
  • the predetermined flow rate is a flow rate that prevents local heating of the exhaust gas and enables uniform heating.
  • the flow rate of the exhaust gas is increased by the flow path portion 32 which is an elongated space between the elongated heat generating portion 31 ′ of the electric heater 31 and the pipe portion 30 f disposed around the elongated heating portion 31 ′, and the predetermined flow rate is increased. Have achieved.
  • first temperature measurement means 15, 25 are provided in spaces between the catalyst layers 12, 22 and the ceiling of the heat storage purification chamber 10, 20, respectively.
  • the first temperature measuring means 15 and 25 are composed of a thermocouple or the like, and between the catalyst layers 12 and 22 and the ceiling of the heat storage and purification chambers 10 and 20 in order to control the operation of the electric heater 31 of the heating chamber 30. Measure the temperature in the space.
  • second temperature measurement means 16 and 26 are provided in spaces between the heat storage bodies 11 and 21 and the catalyst layers 12 and 22, respectively.
  • the second temperature measuring means 16 and 26 are also composed of thermocouples or the like, and the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 are used to perform switching control of the flow direction of the exhaust gas in the respective heat storage and purification chambers by the gas flow switching means. Measure the temperature in the space between.
  • the catalytic heat storage combustion apparatus 1 includes a control device (not shown) including a personal computer.
  • This control device controls the overall operation of the catalytic regenerative combustion apparatus 1, for example, the control of the electric heater 31 in the heating chamber 30 based on the temperature detected by the first temperature measuring means 15, 25, and the second temperature measuring means 16, 26. Control of switching the flow direction of exhaust gas based on the detected temperature is performed.
  • the target temperature in the heating chamber 30 is required to heat the exhaust gas in the heating chamber up to a temperature at which the flammable harmful components are completely burned in the catalyst layers 12 and 22.
  • a certain heating target temperature T1 a gas flow switching temperature T2 at which the gas flow direction is switched by the four-way valve 40, and a combustion start temperature T3 at which the combustible harmful components start to burn by the catalyst in the catalyst layers 12 and 22 are set. .
  • the catalytic heat storage combustion apparatus 1 When the catalytic heat storage combustion apparatus 1 is started, first, a blower (not shown) for introducing exhaust gas into the heat storage purification chambers 10 and 20 is started, and the four-way valve 40 is stored in the atmosphere or untreated exhaust gas on one side. The direction is set in the direction of introduction into the purification chamber 10. Next, the electric heater 31 in the heating chamber 30 is activated. In the catalytic thermal storage combustion apparatus 1, the four-way valve 40 is set until the start-up is completed, that is, until it is determined that the inside of the heating chamber 30 has reached the heating target temperature T1 based on the temperature detected by the first temperature measurement means 15 It switches every time and the heat storage bodies 11 and 21 are heated.
  • the exhaust gas treatment process performed after the start-up is completed will be described along the time chart of FIG.
  • the time ts point is set as the start point of the exhaust gas treatment process.
  • the four-way valve 40 is operated, and as shown in FIG. 3A, untreated exhaust gas containing combustible harmful components supplied from an unillustrated exhaust gas emission source is connected from an untreated gas supply duct 41 to a connection duct. 13 is introduced into the space below the one heat storage purification chamber 10 (the space below the heat storage body 11).
  • the untreated exhaust gas introduced into the lower space of the heat storage purification chamber 10 passes through the heat storage body 11 and the catalyst layer 12 and is supplied to the heating chamber 30. Since the heat storage body 11 is heated to a predetermined temperature, the untreated exhaust gas is heated by the heat storage body 11 when passing through the heat storage body 11. For this reason, when exhaust gas passes the catalyst layer 12, at least a part of combustible harmful component is burned.
  • the temperature of the heat storage body 11 decreases due to heat exchange with the exhaust gas.
  • the exhaust gas temperature T2a detected by the second temperature measuring means 16 disposed between the heat storage body 11 and the catalyst layer 12 is the gas flow. While the temperature is equal to or higher than the switching temperature T2 (for example, 200 ° C.), the exhaust gas is introduced into the space below the heat storage purification chamber 10 and passes through the heat storage body 11 and the catalyst layer 12, and thus passes through the catalyst layer 12. At this time, since the catalyst layer 12 is maintained at a temperature higher than the combustion start temperature T3, at least a part of the combustible harmful component in the exhaust gas is combusted.
  • the exhaust gas that has passed through the catalyst layer 12 is introduced into the upper section 30e of the heating chamber 30 corresponding to the heat storage purification chamber 10.
  • the exhaust gas introduced into the upper section 30e first contacts the heat generating section 31 'disposed in the flow path section 32 at a predetermined flow rate in the flow path section 32 formed below the upper section 30e. , Flowing downwards. Then, it flows into the lower region 30 c of the heating chamber 30.
  • the exhaust gas that has flowed into the lower region 30c is then disposed in the flow channel portion 32 at a predetermined flow rate at the flow channel portion 32 formed below the upper section 30e of the heating chamber 30 corresponding to the other heat storage purification chamber 20. It flows upward while in contact with the generated heat generating portion 31 ′ and flows into the upper section 30 e of the heating chamber 30 corresponding to the heat storage purification chamber 20. While the exhaust gas flows through the flow path portion 32, the heat generation portion 31 ′ is heated to a temperature at which the combustible harmful components are completely decomposed in the catalyst layer 22.
  • the flow rate of the exhaust gas in the flow path part 32 is set so as to prevent local heating of the exhaust gas, uniformly heat the exhaust gas, and not to increase the pressure loss.
  • it is set to about 5 to 30 m / s.
  • the exhaust gas passes through the vicinity of the surface of the heat generating portion 31 ′ of the electric heater 31 at a relatively high speed, so that the surface temperature of the heat generating portion 31 ′ does not rise significantly from the set temperature, and the electric heater 31 is long. It can be a lifetime.
  • the output of the electric heater 31 is controlled so that the temperature T1b detected by the first temperature measuring means 25 on the downstream side of the heating chamber 30 becomes the heating target temperature T1.
  • the high-temperature exhaust gas in which combustible harmful components are decomposed (combusted) in the catalyst layer 22 passes through the heat storage body 21. At this time, heat exchange is performed between the heat storage body 21 and the high-temperature exhaust gas, and the heat storage body 21 is heated.
  • the treated exhaust gas that has passed through the heat accumulator 21 is exhausted from the connection duct 23 via the four-way valve 40 and the exhaust duct 42.
  • the temperature of the heat storage body 11 decreases due to heat exchange with the exhaust gas, and the untreated exhaust gas cannot be sufficiently heated. For this reason, the flow direction of the exhaust gas is switched in order to effectively use the waste heat stored in the heat storage bodies 11 and 21.
  • the gas flow direction switching timing is determined based on the exhaust gas temperature detected by the second temperature measuring means 16 on the upstream side of the heating chamber 30. That is, in the regenerative exhaust gas purification apparatus 1 of the present embodiment, when the control device (not shown) determines that the exhaust gas temperature T2a detected by the second temperature measuring means 16 is lower than the gas flow switching temperature T2, the four-way valve As shown in FIG. 3B, the flow direction of the exhaust gas is adjusted so that the untreated exhaust gas is supplied to the heat storage purification chamber 20 and the treated exhaust gas is exhausted from the heat storage purification chamber 10. Switch.
  • untreated exhaust gas is sent into the heat storage purification chamber 20, preheated by the high-temperature heat storage body 21 in the heat storage purification chamber 20, then passed through the catalyst layer 22 and sent into the heating chamber 30. Further heating.
  • the preheated exhaust gas passes through the catalyst layer 22, and at least a part of the combustible harmful components is combusted.
  • the electric heater 31 is controlled such that the temperature T1a detected by the first temperature measuring means 15 on the downstream side of the heating chamber 30 becomes the heating target temperature T1.
  • the exhaust gas further heated is sent to the heat storage purification chamber 10 where the flammable harmful substances are decomposed in the catalyst layer 12.
  • the treated exhaust gas in which the flammable harmful components are decomposed in the catalyst layer 12 passes through the heat storage body 11. At this time, heat exchange is performed between the heat storage body 11 and the treated exhaust gas, and the heat storage body 11 is heated.
  • the treated exhaust gas that has passed through the heat storage body 11 is exhausted from the connection duct 13 via the four-way valve 40 and the exhaust duct 42 to the outside of the system.
  • the gas flow direction switching timing is determined based on the exhaust gas temperature detected by the second temperature measuring means 26 on the upstream side of the heating chamber 30.
  • the control device determines that the exhaust gas temperature T2b detected by the second temperature measuring means 26 is lower than the gas flow switching temperature T2, the control device operates the four-way valve 40, The gas flow direction is switched to the state shown in FIG.
  • the untreated exhaust gas is alternately flowed into the heat storage purification chambers 10 and 20, and the heat stored in the heat storage bodies 11 and 21 is used for preheating the untreated exhaust gas. While being used, the flammable harmful components are decomposed.
  • the output control of the electric heater 31 is detected by the first temperature measuring means 15, 25 located on the downstream side of the heating chamber 30 in the exhaust gas flow direction among the first temperature measuring means 15, 25. Performed based on exhaust gas temperature. According to such a configuration, the output of the electric heater 31 is reduced by the amount by which the exhaust gas is heated by the combustion heat of the combustible harmful component in the catalyst layer located on the upstream side of the heating chamber 30 in the exhaust gas flow direction. Running costs can be reduced. Moreover, even if the concentration of the flammable harmful component contained in the untreated exhaust gas varies, the flow direction of the exhaust gas can be controlled at an appropriate timing without being greatly affected.
  • the exhaust gas is preheated by the combustion heat of combustible harmful components in the catalyst layers 12 and 22 located on the upstream side of the heating chamber 30, and the first temperature measuring means 15 on the upstream side of the heating chamber 30.
  • the output of the electric heater 31 is controlled to zero immediately, thereby preventing excessive heating by the electric heater 31 and running cost. Can be reduced.
  • the heat generating portion 31 ′ of the heating chamber 30 is disposed at a position where the catalyst layers 12 and 22 are not heated by radiation. 22 is not overheated. Thereby, the catalyst life is extended, the replacement frequency is lowered, and the running cost of the catalytic heat storage combustion apparatus can be reduced. Further, since the heating unit is not disposed above the catalyst layer, the catalyst layers 12 and 22 can be easily exchanged, and the maintenance of the catalytic heat storage combustion apparatus is simplified.
  • the heating chamber 30 is arrange
  • the heat storage purification chambers 10 and 20 are connected in a direction substantially orthogonal to the direction.
  • the catalyst layers 12 and 22 can be arrange
  • combustible harmful components of the exhaust gas in the catalyst layers 12 and 22 are based on the exhaust gas temperatures T1a and T1b detected by the first temperature measuring means 15 and 25. Since the output control of the electric heater 31 can be performed so as to reach the heating target temperature T1, which is the target temperature for heating the exhaust gas to a temperature at which it can be completely combusted, the electric power in the electric heater 31 is excessively consumed. It is suppressed.
  • the gas flow switching temperature T2 which is set higher than the combustion start temperature T3 at which the combustible harmful components start to be burned by the catalyst in the catalyst layers 12 and 22, and the second temperature measuring means 16 and 26. Based on the detected exhaust gas temperatures T2a and T2b, the four-way valve 40 is operated to switch the gas flow direction.
  • the untreated exhaust gas is caused to flow into the one heat storage body 11 through the connection duct 13 by the operation of the four-way valve 40, the heat of the heat storage body 11 is deprived by the untreated exhaust gas and the heat storage body 11
  • the exhaust gas temperature T2a in the space between the catalyst layers 12 decreases.
  • the four-way valve 40 is switched so that untreated exhaust gas flows into the other heat storage body 12.
  • the one heat accumulator 11 and the catalyst layer 12 into which the untreated gas has flown until now become the downstream side of the heating chamber 30, and the space between the heat accumulator 11 and the catalyst layer 12 has a high temperature after catalytic combustion.
  • the exhaust gas temperature T2a in this region rises from the gas switching temperature T2, and is always maintained at the switching temperature T2 or higher.
  • the exhaust gas temperature T2a of the space temperature between the heat storage body and the catalyst layer is always maintained at a temperature equal to or higher than the combustion start temperature of the flammable harmful component by switching the four-way valve 40 as described above. It is possible to suppress the operation of the heater disposed in the heating chamber 30 and reduce energy consumption.
  • the regenerative exhaust gas purification apparatus 1 of the above embodiment when the temperature of the untreated exhaust gas passes through the regenerators 11 and 21 located upstream of the heating chamber in the exhaust gas flow direction, Since it is heated to the combustion start temperature T3 or higher, at least a part of the combustible harmful components can be combusted even when passing through the catalyst layers 12 and 22 on the upstream side of the heating chamber 30. Thereafter, the exhaust gas in which at least a part of the combustible harmful component is burned is further heated in the heating chamber 30, so that the combustible harmful component can be burned by the downstream catalyst and completely decomposed.
  • the electric heater 31 is used as a heating unit, a fuel pipe, a blower for combustion air, and the like are unnecessary, and thus a simple structure can be achieved.
  • the heating chamber may employ other various structures in which the electric heater is disposed at a position where the catalyst layer cannot be heated by radiation from the heat generating portion.
  • the number of electric heaters and the arrangement position in the heating chamber can be arbitrarily set.
  • an electric heater is used as the heating unit of the heating chamber 30, but other heating means such as a burner may be employed.
  • two pipes are used to form the flow path portion 32 in the heating chamber 30, but other structures may be used as long as the exhaust gas flow rate can be set to a predetermined flow rate.
  • FIG. 5 (A) which is a longitudinal cross-sectional view of the left-right direction of other embodiment of the heating chamber 30 may be sufficient.
  • the lower ends of the left and right hanging portions corresponding to the pipe portion 30f in the above embodiment and extending downward are connected to form a U-shaped region below the heating chamber 30, and this U-shaped lower region
  • the inner space is used as a flow path part.
  • the heat generating portion (heating portion) 31 ′ is disposed only in the drooping portion on the left side of the U-shaped lower region.
  • the electric heater 31 is disposed only on the right-side hanging portion or a configuration in which the electric heater 31 is provided on the left and right hanging portions may be employed. Also in these configurations, the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
  • FIG. 5B which is a vertical cross-sectional view in the left-right direction of another embodiment of the heating chamber 30, it is possible to adopt a configuration in which the flow path portion 32 is partitioned by a horizontal partition wall 33.
  • the partition wall 33 is a component corresponding to the horizontal partition wall 30a of the embodiment of FIG.
  • the upper section 30e and the lower region 30c of the heating chamber 30 are communicated with each other by the openings formed on the left and right tip sides of the horizontal partition wall 33.
  • a heating part (heating part) 31 ′ is inserted into the lower area 30 c (flow path part 32) from the side surface of the heating chamber 30 in the inner space of the lower area 30 c partitioned by the horizontal partition wall 33. Is the flow path portion 32. Also in this configuration, the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
  • FIG. 5C which is a vertical cross-sectional view of another embodiment of the heating chamber 30, the insertion direction of the heat generating portion (heating portion) 31 ′ may be changed.
  • the heat generating part (heating part) 31 ′ is inserted into the lower region 30 c (flow path part 32) from the bottom surface of the heating chamber 30.
  • the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
  • the heating chamber is not separated from the heat storage purification chambers 10 and 20 by a partition wall, but is disposed apart from the heat storage purification chambers 10 and 20 as shown in FIG.
  • the structure connected with each of the thermal storage purification chambers 10 and 20 may be sufficient.
  • FIG. 7 a configuration in which the heating chamber 30 is arranged via the partition wall 17 between the heat storage purification chamber 10 and the heat storage purification chamber 20 may be adopted.
  • a minimum switching time t1 and a maximum switching time t2 are set, and the four-way valve 40 is controlled by combining these t1 and t2 with the exhaust gas temperature detected by the second temperature measuring means 16 and 26.
  • the structure to do may be sufficient.
  • the minimum switching time t1 is a time during which the four-way valve 40 is not operated until the minimum switching time t1 is exceeded even if the exhaust gas temperature detected by the second temperature measuring means 16, 26 falls below the gas flow switching temperature T2.
  • the maximum switching time t2 is for operating the four-way valve 40 when the exhaust gas temperature detected by the second temperature measuring means 16 and 26 exceeds the maximum switching time t2 even if it does not fall below the gas flow switching temperature T2. It's time.
  • the above t1 and t2 are used when the amount of untreated gas to be processed fluctuates or when the amount of combustible harmful components contained in the untreated gas fluctuates.
  • the amount of untreated exhaust gas flowing into the apparatus decreases (for example, becomes half of the rated treatment amount)
  • the heat storage body 11 on the side to which the untreated exhaust gas is supplied and the catalyst layer 12 The rate of decrease in the exhaust gas temperature T2a in the space becomes lower. For this reason, the time required for the exhaust gas temperature T2a in the space between the heat storage body 11 and the catalyst layer 12 to fall to the switching temperature T2 becomes longer.
  • the temperature of the treated exhaust gas exhausted from the opposite (exhaust side) heat storage body increases with the passage of time.
  • the four-way valve is forcibly operated with the maximum switching time t2 as an upper limit to switch the inflow direction of the exhaust gas.
  • the exhaust gas temperature T2a in the space between the heat storage body and the catalyst layer on the downstream side of the heating chamber rises, and then the untreated gas is supplied. Since the time required for the exhaust gas temperature T2a in this portion to decrease to the switching temperature T2 becomes longer, the same processing is performed.
  • the number of times the four-way valve is activated during a predetermined time (for example, 1 hour) is reduced.
  • a predetermined time for example, 1 hour
  • the untreated inside the heat storage body upstream of the heating chamber, the lower space of the heat storage body, the duct connecting the lower space of the heat storage body and the switching valve The exhaust gas may flow back to the duct that discharges the treated gas to the atmosphere by switching the four-way valve, and may be discharged into the atmosphere without being treated.
  • the untreated exhaust gas supply duct and the duct that releases the treated gas to the atmosphere are communicated via the four-way valve, and the exhaust gas supply duct is connected. Untreated exhaust gas may be released to the atmosphere through a discharge duct. Therefore, if the four-way valve is actuated many times in a predetermined time, the removal rate of combustible harmful components is reduced, and the desired removal performance cannot be obtained. For this reason, the minimum switching time t2 is set as a lower limit, the number of operations of the four-way valve per predetermined time is limited, and the reduction in the removal rate of combustible harmful components is suppressed.
  • the catalytic heat storage combustion apparatus 1 of the said embodiment is the structure provided with the two heat storage purification chambers 10 and 20, this invention can also be set as the structure provided with the 3 or more heat storage purification chambers.
  • the structure further provided with the heat storage chamber 30 of the structure similar to the heat storage purification chambers 10 and 20 may be sufficient.
  • 31 is a heat storage body
  • 32 is a catalyst layer
  • 33 is a connection duct
  • 35 is a first temperature measuring means
  • 36 is a second temperature measuring means.
  • three gas flow switching means 40 are provided in order to purify the exhaust gas by sequentially switching two heat storage chambers among the three heat storage chambers.
  • FIG. 8B shows a state in which untreated exhaust gas is supplied to the heat storage chamber 10 and the treated exhaust gas is discharged from the heat storage chamber 20.
  • Control of the electric heater 31 in the heating chamber 30 and switching of the gas flow direction are based on the exhaust gas temperature detected by the first temperature measuring means and the second temperature measuring means, as in the case of two heat storage chambers. Do it.
  • untreated exhaust gas is supplied to the heat storage chamber 20
  • the flow of exhaust gas is switched to a state where the treated exhaust gas is discharged from the heat storage chamber 30, and then the heat storage Untreated exhaust gas is supplied to the chamber 30, and the state is switched to a state in which the treated exhaust gas is discharged from the heat storage chamber 10. Thereafter, the state is returned to the state shown in FIG. 8B, and thereafter the same switching is performed.

Abstract

 The purpose of the present invention is to provide a catalytic regenerative combustion apparatus in which the catalyst does not overheat, and with which ease of maintenance operations and operation at low running cost are possible. This catalytic regenerative combustion apparatus (1) combusts combustible toxic components within exhaust gases to purify the exhaust gases, the catalytic regenerative combustion apparatus being provided with: a plurality of regenerative purification chambers (10, 20) in the interior of which are arranged in succession regeneration bodies (11, 21) through which exhaust gases are able to pass and catalysts (12, 22) for combusting combustible toxic components; a heating chamber (30) which has a heating part (31') for heating exhaust gases, and which connects individually to the plurality of regenerative purification chambers at the side thereof at which the catalyst is situated in the regenerative purification chambers; and a gas flow switching means (40) which is connected to the plurality of regenerative purification chambers at the side thereof at which the regeneration body is situated, and which switches the flow of exhaust gases so as to selectively supply the exhaust gases to one of the plurality of regenerative purification chambers. The heating part is situated at a location such that radiation from the heating part does not reach the catalyst.

Description

触媒式蓄熱燃焼装置Catalytic heat storage combustion equipment
 本発明は、概略的には、触媒式蓄熱燃焼装置に関し、詳細には、排ガス中に含まれる可燃性有害成分を触媒燃焼による処理で無害化しながら、処理済の排ガスの熱を回収して未処理排ガスの予備加熱に利用する触媒式蓄熱燃焼装置に関する。 The present invention generally relates to a catalytic regenerative combustion apparatus, and more specifically, recovers the heat of treated exhaust gas while detoxifying combustible harmful components contained in the exhaust gas by treatment by catalytic combustion. The present invention relates to a catalytic heat storage combustion apparatus used for preheating treatment exhaust gas.
 各種生産設備や処理設備から排気され、有害成分あるいは揮発性有機化合物などの可燃性有害成分を含む排ガスは、公害防止の観点から直接、大気中に放出することができない。このため、このような排ガスは、排ガス処理装置によって無害化された後に大気に放出されている。 Exhaust gas exhausted from various production facilities and treatment facilities and containing combustible harmful components such as harmful components or volatile organic compounds cannot be directly released into the atmosphere from the viewpoint of pollution prevention. For this reason, such exhaust gas is detoxified by the exhaust gas treatment device and then released into the atmosphere.
 このような排ガス処理装置として、蓄熱材を収容した蓄熱室を燃焼室に連結し、可燃性有害成分が燃焼させられた高温の処理済みガスで蓄熱材を加熱し、未処理の排ガスを燃焼室内に導入する前に加熱された蓄熱材で予備加熱することによりランニングコストを低下させる蓄熱燃焼装置が提案されている(例えば、特許文献1)。 As such an exhaust gas treatment device, a heat storage chamber containing a heat storage material is connected to the combustion chamber, the heat storage material is heated with a high-temperature treated gas in which combustible harmful components are burned, and untreated exhaust gas is discharged into the combustion chamber. There has been proposed a heat storage combustion apparatus that reduces the running cost by preheating with a heat storage material that has been heated before being introduced into the battery (for example, Patent Document 1).
 また、可燃性有害成分を分解する触媒と蓄熱体との間に、加熱手段を設置した触媒式蓄熱燃焼装置も提案されている(例えば、特許文献2)。
 この方式によれば、未処理の排ガスを蓄熱体によって予備加熱できるという蓄熱燃焼装置のメリットを生かしつつ、触媒燃焼により比較的低温度領域で可燃性有害成分を分解できるため、ランニングコストを大幅に削減できる。
In addition, a catalytic heat storage combustion apparatus in which a heating unit is installed between a catalyst for decomposing flammable harmful components and a heat storage body has also been proposed (for example, Patent Document 2).
According to this method, while taking advantage of the heat storage combustion device that can preheat untreated exhaust gas with a heat storage body, it is possible to decompose combustible harmful components in a relatively low temperature region by catalytic combustion, greatly increasing the running cost. Can be reduced.
 しかし、上記特許文献2の触媒式蓄熱燃焼装置では、加熱手段が触媒に対向して設置されているので、加熱手段からの輻射熱によって触媒が過熱し劣化が促進されるため、触媒の頻繁な交換が必要となりランニングコストが増大するという問題がある。さらに、加熱手段が触媒に対向して設置されているので、劣化した触媒を交換するたびに加熱手段を取り外さなければならないという問題があった。 However, in the catalyst-type regenerative combustion apparatus of Patent Document 2, since the heating means is installed opposite to the catalyst, the catalyst is overheated by the radiant heat from the heating means and the deterioration is accelerated. There is a problem that running cost is increased. Furthermore, since the heating means is installed facing the catalyst, there is a problem that the heating means must be removed every time the deteriorated catalyst is replaced.
 このような問題を解決するために、触媒の加熱室側に第二の蓄熱層を設置した燃焼装置(例えば、特許文献3)や、熱風発生装置を外部に設け、この熱風発生装置と加熱室を熱風供給ダクトで接続することによって、加熱手段からの輻射熱による触媒の過熱を防止した燃焼装置が提案されている(例えば、特許文献4)。 In order to solve such a problem, a combustion apparatus (for example, Patent Document 3) in which a second heat storage layer is installed on the heating chamber side of the catalyst or a hot air generator is provided outside, and the hot air generator and the heating chamber are provided. Has been proposed in which a catalyst is connected by a hot air supply duct to prevent overheating of the catalyst due to radiant heat from the heating means (for example, Patent Document 4).
特開平5-332523号公報JP-A-5-332523 特開平5-66005号公報Japanese Patent Laid-Open No. 5-66005 特開平9-262437号公報JP-A-9-262437 特開平9-253449号公報Japanese Patent Laid-Open No. 9-253449
 しかしながら、特許文献3のように、触媒の加熱室側に第二の蓄熱層を設置する燃焼装置では、第二の蓄熱層における抵抗によって、圧力損失が増大し送風機等の電力消費量が増加し、ランニングコストが増大するという問題があった。また、触媒を交換するたびに第二の蓄熱層を取り外す必要があり、メンテナンスが容易でないという問題もあった。さらに、メンテナンスを容易にすべく、触媒と第二の蓄熱層の間に触媒を取り出すための空間を設けた構成とすると、燃焼装置が大型化するという問題点があった。 However, as in Patent Document 3, in the combustion device in which the second heat storage layer is installed on the heating chamber side of the catalyst, the pressure loss increases due to the resistance in the second heat storage layer, and the power consumption of the blower and the like increases. There is a problem that the running cost increases. Moreover, it is necessary to remove the second heat storage layer every time the catalyst is replaced, and there is a problem that maintenance is not easy. Further, if the space for taking out the catalyst is provided between the catalyst and the second heat storage layer in order to facilitate maintenance, there is a problem that the combustion apparatus becomes large.
 一方、特許文献4のように、別体の熱風発生装置を設け、この熱風発生装置と加熱室をダクトで接続する燃焼装置では、両者を接続する高温ガス用ダクトとダンパが付加的に必要となる。さらに、特許文献4の燃焼装置は、熱風によって間接的に排ガスを加熱する方式であるため、加熱用の熱風によって蓄熱燃焼装置内のガス流量が増加し、装置の圧力損失が増大し、装置のランニングコストが増加するという問題点、圧力損失を低く保つためには、装置を大型化しなければならないという問題があった。 On the other hand, as in Patent Document 4, a separate hot air generator is provided, and in the combustion device in which the hot air generator and the heating chamber are connected by a duct, a high-temperature gas duct and a damper for connecting both of them are additionally required. Become. Furthermore, since the combustion apparatus of patent document 4 is a system which heats exhaust gas indirectly with a hot air, the gas flow volume in a thermal storage combustion apparatus increases with the hot air for a heating, the pressure loss of an apparatus increases, There is a problem that the running cost increases, and there is a problem that the apparatus must be enlarged in order to keep the pressure loss low.
 本発明はこのような点に鑑みてなされたものであり、触媒が過熱されず、メンテナンス作業が容易であり且つ低いランニングコストで運転が可能な触媒式蓄熱燃焼装置を提供することを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to provide a catalytic regenerative combustion apparatus in which a catalyst is not overheated, maintenance work is easy, and operation is possible at a low running cost. .
 本発明によれば、
 排ガス中の可燃性有害成分を燃焼して排ガスを浄化する触媒式蓄熱燃焼装置であって、
 排ガスが通過可能な蓄熱体と前記可燃性有害成分を燃焼させる触媒とが順次に配列されて内部に配置された複数の蓄熱浄化室と、
 前記排ガスを加熱する加熱部を有し、前記各蓄熱浄化室の前記触媒が配置されている側で、前記複数の蓄熱浄化室間の各々と接続されている加熱室と、
 前記複数の蓄熱浄化室の前記蓄熱体が配置されている側に接続され、前記複数の蓄熱浄化室の一つに前記排ガスを選択的に供給するように前記排ガスの流れを切り換えるガス流切り換え手段と、を備え、
 前記加熱部は、該加熱部からの輻射が、前記触媒に達しない位置に配置されている、
 ことを特徴とする触媒式蓄熱燃焼装置が提供される。
According to the present invention,
A catalytic thermal storage combustion device that purifies exhaust gas by burning flammable harmful components in the exhaust gas,
A plurality of heat storage and purification chambers in which a heat storage body through which exhaust gas can pass and a catalyst that burns the combustible harmful components are sequentially arranged and disposed inside,
A heating chamber that heats the exhaust gas, the heating chamber connected to each of the plurality of heat storage purification chambers on the side where the catalyst of each of the heat storage purification chambers is disposed;
Gas flow switching means for switching the flow of the exhaust gas so as to selectively supply the exhaust gas to one of the plurality of heat storage purification chambers, which is connected to the side where the heat storage body is disposed of the plurality of heat storage purification chambers. And comprising
The heating unit is disposed at a position where radiation from the heating unit does not reach the catalyst.
A catalytic heat storage combustion apparatus is provided.
 なお、本発明において排ガスに含有されている可燃性有害成分とは、例えば、トルエン、酢酸エチルなどの可燃性有害成分あるいは揮発性有機化合物などを指す。 In the present invention, the combustible harmful component contained in the exhaust gas refers to, for example, a combustible harmful component such as toluene or ethyl acetate or a volatile organic compound.
 このような構成によれば、触媒は、加熱室の加熱部からの輻射が触媒に達しない位置に配置されているので、加熱部からの輻射熱によって過熱されることがない。このため、触媒の寿命が延びて交換回数が減少し、ランニングコストを低減することができる。 According to such a configuration, the catalyst is arranged at a position where the radiation from the heating part of the heating chamber does not reach the catalyst, so that it is not overheated by the radiant heat from the heating part. For this reason, the life of the catalyst is extended, the number of replacements is reduced, and the running cost can be reduced.
 本発明の他の好ましい態様によれば、
 前記加熱室は、前記蓄熱体と前記触媒との配列方向において、前記触媒とオフセットして配置されている。
According to another preferred embodiment of the invention,
The heating chamber is disposed offset from the catalyst in the arrangement direction of the heat storage body and the catalyst.
 このような構成によれば、加熱部の輻射から確実に遮蔽できる位置に触媒を配置することができるとともに、燃焼装置を小型化することができる。 According to such a configuration, the catalyst can be disposed at a position where it can be reliably shielded from the radiation of the heating unit, and the combustion apparatus can be miniaturized.
 本発明の他の好ましい態様によれば、
 前記触媒と前記加熱室との間に、第1の温度測定手段が設けられ、
 前記第1の温度測定手段の検出結果に基づいて、前記加熱部の作動が制御される。
According to another preferred embodiment of the invention,
A first temperature measuring means is provided between the catalyst and the heating chamber,
The operation of the heating unit is controlled based on the detection result of the first temperature measuring means.
 このような構成によれば、触媒を通過した排ガスの温度、および触媒に供給される排ガスの温度が測定されるので、加熱室の温度制御を正確に行うことができる。さらに、加熱室における過剰な加熱を防ぐことができるので、ランニングコストを抑制できる。 According to such a configuration, since the temperature of the exhaust gas that has passed through the catalyst and the temperature of the exhaust gas supplied to the catalyst are measured, the temperature control of the heating chamber can be accurately performed. Furthermore, since excessive heating in the heating chamber can be prevented, the running cost can be suppressed.
 本発明の他の好ましい態様によれば、
 前記触媒と前記蓄熱体との間に、第2の温度測定手段が設けられ、
 該第2の温度測定手段の測定結果に基づいて、前記ガス流切り換え手段が作動させられる。
According to another preferred embodiment of the invention,
A second temperature measuring means is provided between the catalyst and the heat storage body,
The gas flow switching means is activated based on the measurement result of the second temperature measuring means.
 このような構成によれば、第2の温度測定手段により測定された排ガスの温度に基づいて適切なタイミングで排ガスの流れ方向の切換制御を行うことができる。 According to such a configuration, it is possible to perform the switching control of the flow direction of the exhaust gas at an appropriate timing based on the temperature of the exhaust gas measured by the second temperature measuring means.
 本発明の他の好ましい態様によれば、
 前記ガス流切り換え手段は、前記排ガスが供給されている蓄熱浄化室に設けられた第2の温度測定手段により計測された温度が、該排ガス中に含まれる可燃性有害成分が前記触媒で燃焼を開始する燃焼開始温度より高い温度まで低下したときに、前記排ガスの流れ方向を切換える。
According to another preferred embodiment of the invention,
The gas flow switching means is configured such that the temperature measured by the second temperature measuring means provided in the heat storage and purification chamber to which the exhaust gas is supplied is combusted by the catalyst with combustible harmful components contained in the exhaust gas. When the temperature drops to a temperature higher than the starting combustion start temperature, the flow direction of the exhaust gas is switched.
 本発明によれば、触媒が過熱されず、メンテナンス作業が容易であり且つ低いランニングコストで運転が可能な触媒式蓄熱燃焼装置が提供される。 According to the present invention, a catalytic regenerative combustion apparatus is provided in which the catalyst is not overheated, maintenance work is easy, and operation is possible at a low running cost.
本発明の好ましい実施形態の触媒式蓄熱燃焼装置の構造を示す模式的な斜視図である。It is a typical perspective view which shows the structure of the catalyst type thermal storage combustion apparatus of preferable embodiment of this invention. 図1の触媒式蓄熱燃焼装置の断面図であり、(A)は触媒式蓄熱燃焼装置の前後方向の縦断面であり、(B)は、左右方向の縦断面図である。FIG. 2 is a cross-sectional view of the catalytic heat storage combustion device of FIG. 1, (A) is a longitudinal cross-sectional view of the catalytic heat storage combustion device, and (B) is a vertical cross-sectional view of the left-right direction. 図1の触媒式蓄熱燃焼装置における、排ガスのガス流れ方向の切換えを説明するための図面である。It is drawing for demonstrating switching of the gas flow direction of waste gas in the catalyst type thermal storage combustion apparatus of FIG. 図1の触媒式蓄熱燃焼装置の動作の説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the catalytic type thermal storage combustion apparatus of FIG. 図1の触媒式蓄熱燃焼装置の加熱室の変更例の図面であり、(A)は、一の変形例の左右方向の縦断面図であり、(B)は、別の変形例の左右方向の縦断面図であり、(C)は、さらに別の変形例の断面図である。It is drawing of the example of a change of the heating chamber of the catalyst type thermal storage combustion apparatus of FIG. 1, (A) is a longitudinal cross-sectional view of the left-right direction of one modification, (B) is the left-right direction of another modification. (C) is sectional drawing of another modification. 本発明の触媒式蓄熱燃焼装置の他の実施態様の触媒式蓄熱燃焼装置の前後方向の縦断面である。It is a longitudinal cross-section of the front-back direction of the catalytic thermal storage combustion apparatus of the other embodiment of the catalytic thermal storage combustion apparatus of this invention. 本発明の触媒式蓄熱燃焼装置のもう一つの実施態様の触媒式蓄熱燃焼装置の図面であり、(A)は、更に別の実施態様の触媒式蓄熱燃焼装置の模式的な斜視図であり、(B)は左右方向の模式的な縦断面図である。It is drawing of the catalyst type thermal storage combustion apparatus of another embodiment of the catalytic type thermal storage combustion apparatus of this invention, (A) is a typical perspective view of the catalytic type thermal storage combustion apparatus of another embodiment, (B) is a schematic longitudinal cross-sectional view of the left-right direction. 本発明の触媒式蓄熱燃焼装置の更にもう一つの実施態様の触媒式蓄熱燃焼装置の図面であり、(A)は、更にもう一つの実施態様の触媒式蓄熱燃焼装置の模式的な斜視図であり、(B)は、左右方向の模式的な縦断面図である。It is drawing of the catalytic-type thermal storage combustion apparatus of another embodiment of the catalytic-type thermal storage combustion apparatus of this invention, (A) is a typical perspective view of the catalytic-type thermal storage combustion apparatus of another embodiment. (B) is a schematic longitudinal sectional view in the left-right direction.
 以下、本発明の好ましい実施形態の触媒式蓄熱燃焼装置1について図面を参照して説明する。
 触媒式蓄熱燃焼装置1は、排ガス中の可燃性有害成分を燃焼して排ガスを浄化するいわゆる触媒式蓄熱燃焼装置である。本明細書において、排ガスとは、各種生産設備や処理設備から排気され、有害成分あるいは揮発性有機化合物などの可燃性有害成分を含むガスを指す。また、排ガスに含まれる可燃性有害成分とは、トルエン、酢酸エチルなどの可燃性有害成分あるいは揮発性有機化合物などを指す。
Hereinafter, a catalytic heat storage combustion apparatus 1 according to a preferred embodiment of the present invention will be described with reference to the drawings.
The catalytic thermal storage combustion apparatus 1 is a so-called catalytic thermal storage combustion apparatus that purifies exhaust gas by burning combustible harmful components in the exhaust gas. In the present specification, exhaust gas refers to a gas that is exhausted from various production facilities and processing facilities and contains a combustible harmful component such as a harmful component or a volatile organic compound. The combustible harmful component contained in the exhaust gas refers to a combustible harmful component such as toluene or ethyl acetate or a volatile organic compound.
 図1は本発明の好ましい実施形態の触媒式蓄熱燃焼装置1の模式的な斜視図である。図2は、触媒式蓄熱燃焼装置1の内部構造を示す模式的な縦断面図である。 FIG. 1 is a schematic perspective view of a catalytic heat storage combustion apparatus 1 according to a preferred embodiment of the present invention. FIG. 2 is a schematic longitudinal sectional view showing the internal structure of the catalytic heat storage combustion apparatus 1.
 図1及び図2に示されているように、触媒式蓄熱燃焼装置1は、排ガスに含まれる可燃性有害成分を燃焼して排ガスを浄化するための2つの蓄熱浄化室10、20と、排ガスを加熱するための加熱室30と、を備えている。 As shown in FIGS. 1 and 2, the catalytic heat storage combustion apparatus 1 includes two heat storage purification chambers 10 and 20 for purifying the exhaust gas by burning combustible harmful components contained in the exhaust gas, and the exhaust gas. And a heating chamber 30 for heating the.
 2つの蓄熱浄化室10、20は、並列配置状態で一体的に形成されており、中央に配置された仕切り壁10aによって個々の蓄熱浄化室10、20に分割されている。尚、蓄熱浄化室10、20は、それぞれが分離した構造としてもよい。 The two heat storage purification chambers 10 and 20 are integrally formed in a parallel arrangement state, and are divided into individual heat storage purification chambers 10 and 20 by a partition wall 10a disposed in the center. Note that the heat storage and purification chambers 10 and 20 may be separated from each other.
 各蓄熱浄化室10、20の内部には、蓄熱体11、21と触媒層12、22とが配置されている。 In each heat storage purification chamber 10, 20, heat storage bodies 11, 21 and catalyst layers 12, 22 are arranged.
 蓄熱体11、21は、蓄熱浄化室10、20の底面から所定距離だけ上方に離間した状態で、蓄熱浄化室10、20の下方領域に配置されている。すなわち、蓄熱体11、21の下方には空間部が形成されている。 The heat storage bodies 11 and 21 are arranged in a lower region of the heat storage purification chambers 10 and 20 while being spaced apart from the bottom surfaces of the heat storage purification chambers 10 and 20 by a predetermined distance. That is, a space is formed below the heat storage bodies 11 and 21.
 蓄熱体11、21には、使用温度条件下において十分な熱交換能力を有する蓄熱材が使用されている。蓄熱材としては、具体的には、砂、セラミックス、金属等各種材料が使用される。また、蓄熱材の形状も多孔質材料、ハニカム状、粒状体等の排ガスを流通可能な形状をされている。
 本実施形態では、上記のような蓄熱材が内部を排ガスが流通可能な状態で容器に収容されものが、蓄熱体11、21とされている。
For the heat storage bodies 11 and 21, a heat storage material having a sufficient heat exchange capacity under the operating temperature condition is used. Specifically, various materials such as sand, ceramics, and metal are used as the heat storage material. The shape of the heat storage material is also a shape capable of circulating exhaust gas such as a porous material, a honeycomb shape, and a granular material.
In the present embodiment, the heat storage materials 11 and 21 are the above-described heat storage materials that are accommodated in a container in a state in which exhaust gas can flow inside.
 このような構造により、処理済(燃焼後)の高温状態の排ガスが、低温の蓄熱体11、21の内部を通過すると、低温の蓄熱材に高温の排ガスから熱が伝達され、蓄熱材が加熱される。一方、低温の未処理の排ガスが、高温状態の蓄熱体11、21の内部を通過すると、未処理の排ガスに高温の蓄熱材から熱が伝達され、排ガスが予備加熱される。 With this structure, when the treated (after combustion) high-temperature exhaust gas passes through the low-temperature heat storage bodies 11 and 21, heat is transferred from the high-temperature exhaust gas to the low-temperature heat storage material, and the heat storage material is heated. Is done. On the other hand, when the low-temperature untreated exhaust gas passes through the high-temperature heat storage bodies 11 and 21, heat is transferred from the high-temperature heat storage material to the untreated exhaust gas, and the exhaust gas is preheated.
 図1および図2に示されているように、触媒層12、22は、蓄熱体11、21から上方に所定の間隔だけ離間し、且つ蓄熱浄化室10、20の天井部分から下方に所定の間隔だけ離間した位置に配置されている。すなわち、本実施形態の触媒式蓄熱燃焼装置1では、蓄熱体11、21と触媒層12、22との間、および触媒層12、22と蓄熱浄化室10、20の天井部分との間には、それぞれ、空間部が形成されている。そして、本実施形態の触媒式蓄熱燃焼装置1では、蓄熱体11、21と触媒層12、22とが、それぞれ、順次に配置されていることになる。 As shown in FIGS. 1 and 2, the catalyst layers 12, 22 are spaced apart from the heat storage bodies 11, 21 by a predetermined distance and have a predetermined distance downward from the ceiling portion of the heat storage purification chambers 10, 20. They are arranged at positions separated by an interval. That is, in the catalytic heat storage combustion apparatus 1 of the present embodiment, between the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 and between the catalyst layers 12 and 22 and the ceiling portion of the heat storage purification chambers 10 and 20. Each has a space. And in the catalyst type thermal storage combustion apparatus 1 of this embodiment, the thermal storage bodies 11 and 21 and the catalyst layers 12 and 22 are arrange | positioned sequentially, respectively.
 触媒層12、22は、排ガス中に含まれる可燃性有害成分を燃焼させて分解することができる触媒が容器内に保持されて触媒層12、22として配置されている。
 触媒層12、22内に保持される触媒は、未処理の排ガスに含まれる可燃性有害成分を分解できるものであり、貴金属、卑金属酸化物などからなる公知の触媒が用いられている。また、触媒の形状は、多孔質、ハニカム状、粒状体などの排ガスが触媒層の内部を流通可能な形状とされ、触媒層12、22は、内部を排ガスが通過できるような構造とされている。
The catalyst layers 12 and 22 are arranged as catalyst layers 12 and 22 in which a catalyst capable of burning and decomposing combustible harmful components contained in exhaust gas is held in a container.
The catalyst held in the catalyst layers 12 and 22 is capable of decomposing flammable harmful components contained in the untreated exhaust gas, and known catalysts made of noble metals, base metal oxides, and the like are used. The catalyst has a shape that allows exhaust gas such as porous, honeycomb, and granular materials to flow through the inside of the catalyst layer, and the catalyst layers 12 and 22 have a structure that allows the exhaust gas to pass through the inside. Yes.
 蓄熱浄化室10、20の下方部分には、蓄熱浄化室10、20内への排ガスの導入・排出を行う接続ダクト13、23が接続されている。図1に示されているように、接続ダクト13、23は、蓄熱体11、21の下方(すなわち、蓄熱体が配置されている側)で蓄熱浄化室10、20に連通するように配置されている。したがって、接続ダクト13、23は、蓄熱体11、21の下方の空間に排ガスを導入し、また蓄熱体11、21の下方の空間から処理済み排ガスを排出する。 Connection ducts 13 and 23 for introducing and discharging exhaust gas into the heat storage and purification chambers 10 and 20 are connected to the lower portions of the heat storage and purification chambers 10 and 20. As shown in FIG. 1, the connection ducts 13 and 23 are disposed so as to communicate with the heat storage purification chambers 10 and 20 below the heat storage bodies 11 and 21 (that is, the side on which the heat storage body is disposed). ing. Therefore, the connection ducts 13 and 23 introduce exhaust gas into the space below the heat storage bodies 11 and 21, and discharge the treated exhaust gas from the space below the heat storage bodies 11 and 21.
 図3に示されているように、接続ダクト13、23は、それぞれが、四方弁40(ガス流切換手段)の2つの接続部位に接続されている。四方弁40の他の接続部位には、未処理の排ガスを触媒式蓄熱燃焼装置1に供給するガス給気ダクト41と、触媒式蓄熱燃焼装置1から排出する排気ダクト42とが、それぞれ接続されている。 As shown in FIG. 3, each of the connection ducts 13 and 23 is connected to two connection portions of a four-way valve 40 (gas flow switching means). A gas supply duct 41 that supplies untreated exhaust gas to the catalytic thermal storage combustion apparatus 1 and an exhaust duct 42 that exhausts from the catalytic thermal storage combustion apparatus 1 are connected to other connection parts of the four-way valve 40, respectively. ing.
 ガス流切換手段として四方弁40が用いられているので、1つの切換弁で排ガスの流れを切り換えることができ、触媒式蓄熱燃焼装置1の構造を簡単な構造とすることができる。
 しかしながら、ガス流切換手段として、他の弁、例えば、バタフライ式開閉弁、ポペット式の開閉弁、3方弁などを用いることもできる。
 また、本実施形態では、ガス流切換手段の駆動方法として、圧縮エアを使用したエアシリンダ方式が採用されているが、油圧シリンダ、電動シリンダなどを用いた駆動方法を採用することもできる。
Since the four-way valve 40 is used as the gas flow switching means, the flow of the exhaust gas can be switched by one switching valve, and the structure of the catalytic heat storage combustion apparatus 1 can be simplified.
However, as the gas flow switching means, other valves such as a butterfly type on / off valve, a poppet type on / off valve, and a three-way valve can also be used.
In this embodiment, an air cylinder method using compressed air is adopted as a driving method of the gas flow switching means, but a driving method using a hydraulic cylinder, an electric cylinder, or the like can also be adopted.
 各蓄熱浄化室10、20は、触媒層12、22の上方空間が、接続口14、24を介して加熱室30の内部に連通するように加熱室30に接続されている。 The heat storage purification chambers 10 and 20 are connected to the heating chamber 30 so that the space above the catalyst layers 12 and 22 communicates with the inside of the heating chamber 30 through the connection ports 14 and 24.
 加熱室30は、各蓄熱浄化室10、20の背面側に隣接して配置されている。したがって、本実施形態の触媒式蓄熱燃焼装置1では、加熱室30は、上下方向に整列して配置されている蓄熱体11、21と触媒層12、22と、平面視で、重ならない(側方にオフセットした)状態で配置されていることになる。すなわち、本実施形態の触媒式蓄熱燃焼装置1では、加熱室30は、蓄熱体11、21と触媒層12、22との配列方向、すなわち垂直方向において、触媒層12、22とオフセットした位置関係で配置される。 The heating chamber 30 is disposed adjacent to the back side of each of the heat storage and purification chambers 10 and 20. Therefore, in the catalytic heat storage combustion apparatus 1 of the present embodiment, the heating chamber 30 does not overlap the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 arranged in the vertical direction in a plan view (side). It is arranged in an offset state. That is, in the catalytic heat storage combustion apparatus 1 of the present embodiment, the heating chamber 30 is in a positional relationship offset from the catalyst layers 12 and 22 in the arrangement direction of the heat storage bodies 11 and 21 and the catalyst layers 12 and 22, that is, in the vertical direction. It is arranged with.
 図2に示されているように、加熱室30は、蓄熱浄化室10、20と略等しい高さを有し、上方に配置された水平隔壁30aによって、上方領域30bと下方領域30cに分割されている。さらに、上方領域30bは、垂直隔壁30dによって、各蓄熱浄化室10、20に対応した、上方区分30e、30eに分割されている。 As shown in FIG. 2, the heating chamber 30 has a height substantially equal to that of the heat storage purification chambers 10 and 20, and is divided into an upper region 30b and a lower region 30c by a horizontal partition wall 30a disposed above. ing. Further, the upper region 30b is divided into upper sections 30e and 30e corresponding to the respective heat storage and purification chambers 10 and 20 by a vertical partition wall 30d.
 各上方区分30e、30eの底部を構成する水平隔壁30aには、開口が形成され、この開口に筒状のパイプ部材30fの上端が接続されている。パイプ部材30fの下端は、加熱室30の下方領域30c内で終端している。したがって、加熱室30は、両上方区分30e、30eが、パイプ部材30fを介して、下方領域30cと連通されていることになる。 An opening is formed in the horizontal partition wall 30a constituting the bottom of each upper section 30e, 30e, and the upper end of a cylindrical pipe member 30f is connected to this opening. The lower end of the pipe member 30 f terminates in the lower region 30 c of the heating chamber 30. Therefore, both upper sections 30e and 30e of the heating chamber 30 are communicated with the lower region 30c via the pipe member 30f.
 加熱室30の内部には、加熱部である電気ヒータ31が配置されている。電気ヒータ31は、導入された排ガスを、触媒層12、22において可燃性有害成分を燃焼できる温度まで加熱するための加熱装置であり、加熱室30の天井から内部に挿入されことによって、加熱室30に取付けられている。 In the heating chamber 30, an electric heater 31 as a heating unit is arranged. The electric heater 31 is a heating device for heating the introduced exhaust gas to a temperature at which the combustible and harmful components can be combusted in the catalyst layers 12 and 22, and is inserted into the heating chamber 30 from the ceiling to the heating chamber 30. 30 is attached.
 各電気ヒータ31は、先端側部分がパイプ部材30f内に配置された3本の細長いヒータ要素hを備えている。本実施形態の電気ヒータ31では、ヒータ要素hのうちパイプ部材30f内に配置された先端側部分が、輻射熱を発生させる発熱部(加熱部)31’である。したがって、本実施形態の触媒式蓄熱燃焼装置1では、輻射熱を発生させる発熱部31’が、パイプ部材30f内に配置されている。このような構成によって、発熱部31’からの輻射が、蓄熱浄化室10、20内の触媒に達することがない。 Each electric heater 31 includes three elongate heater elements h having a distal end portion disposed in the pipe member 30f. In the electric heater 31 of the present embodiment, the tip side portion disposed in the pipe member 30f of the heater element h is a heat generating portion (heating portion) 31 'that generates radiant heat. Therefore, in the catalytic thermal storage combustion apparatus 1 of the present embodiment, the heat generating portion 31 ′ that generates radiant heat is disposed in the pipe member 30 f. With such a configuration, radiation from the heat generating portion 31 ′ does not reach the catalyst in the heat storage purification chamber 10, 20.
 加熱室30は、排ガスが蓄熱浄化室10、20内での流速よりも早い所定の流速で電気ヒータ31と接触するように構成されている。ここで、所定の流速とは、排ガスの局所的な加熱を防止し、均一な加熱が可能な流速である。
 本実施形態では、電気ヒータ31の細長い発熱部31’と、その周囲に配置されたパイプ部30fとの間の細長い空間である流路部32によって排ガスの流速を増大させ、上記所定の流速を達成している。
The heating chamber 30 is configured such that the exhaust gas contacts the electric heater 31 at a predetermined flow rate that is faster than the flow rate in the heat storage and purification chambers 10 and 20. Here, the predetermined flow rate is a flow rate that prevents local heating of the exhaust gas and enables uniform heating.
In the present embodiment, the flow rate of the exhaust gas is increased by the flow path portion 32 which is an elongated space between the elongated heat generating portion 31 ′ of the electric heater 31 and the pipe portion 30 f disposed around the elongated heating portion 31 ′, and the predetermined flow rate is increased. Have achieved.
 また、各蓄熱浄化室10、20内において、触媒層12、22と蓄熱浄化室10、20の天井との間の空間には、第1温度測定手段15、25がそれぞれ設けられている。
 この第1温度測定手段15、25は、熱電対等で構成され、加熱室30の電気ヒータ31の作動制御を行うために、触媒層12、22と蓄熱浄化室10、20の天井との間の空間内の温度を測定する。
Further, in each heat storage purification chamber 10, 20, first temperature measurement means 15, 25 are provided in spaces between the catalyst layers 12, 22 and the ceiling of the heat storage purification chamber 10, 20, respectively.
The first temperature measuring means 15 and 25 are composed of a thermocouple or the like, and between the catalyst layers 12 and 22 and the ceiling of the heat storage and purification chambers 10 and 20 in order to control the operation of the electric heater 31 of the heating chamber 30. Measure the temperature in the space.
 さらに、各蓄熱浄化室10、20内において、蓄熱体11、21と触媒層12、22との間の空間には、第2温度測定手段16、26がそれぞれ設けられている。
 この第2温度測定手段16、26も熱電対等で構成され、ガス流切換手段により前記各蓄熱浄化室における排ガスの流れ方向の切換制御を行うために、蓄熱体11、21と触媒層12、22との間の空間内の温度を測定する。
Further, in each of the heat storage purification chambers 10 and 20, second temperature measurement means 16 and 26 are provided in spaces between the heat storage bodies 11 and 21 and the catalyst layers 12 and 22, respectively.
The second temperature measuring means 16 and 26 are also composed of thermocouples or the like, and the heat storage bodies 11 and 21 and the catalyst layers 12 and 22 are used to perform switching control of the flow direction of the exhaust gas in the respective heat storage and purification chambers by the gas flow switching means. Measure the temperature in the space between.
 さらに、触媒式蓄熱燃焼装置1は、パ2ーソナルコンピュータなどからなる制御装置(図示せず)を備えている。この制御装置は、触媒式蓄熱燃焼装置1全体の動作の制御、例えば、第1温度測定手段15、25による検出温度に基づく加熱室30の電気ヒータ31の制御や第2温度測定手段16、26による検出温度に基づく排ガスの流れ方向の切換制御などを行う。 Furthermore, the catalytic heat storage combustion apparatus 1 includes a control device (not shown) including a personal computer. This control device controls the overall operation of the catalytic regenerative combustion apparatus 1, for example, the control of the electric heater 31 in the heating chamber 30 based on the temperature detected by the first temperature measuring means 15, 25, and the second temperature measuring means 16, 26. Control of switching the flow direction of exhaust gas based on the detected temperature is performed.
 次に、触媒式蓄熱燃焼装置1を用いた排ガス処理方法について説明する。 Next, an exhaust gas treatment method using the catalytic heat storage combustion apparatus 1 will be described.
 本実施形態の触媒式蓄熱燃焼装置1では、可燃性有害成分が触媒層12、22で完全に燃焼される温度まで、排ガスを加熱室で加熱するために必要な加熱室30内の目標温度である加熱目標温度T1、四方弁40によりガス流れ方向の切り替えを行うガス流切換温度T2、および触媒層12、22において触媒によって可燃性有害成分が燃焼を開始する燃焼開始温度T3が設定されている。 In the catalytic thermal storage combustion apparatus 1 of the present embodiment, the target temperature in the heating chamber 30 is required to heat the exhaust gas in the heating chamber up to a temperature at which the flammable harmful components are completely burned in the catalyst layers 12 and 22. A certain heating target temperature T1, a gas flow switching temperature T2 at which the gas flow direction is switched by the four-way valve 40, and a combustion start temperature T3 at which the combustible harmful components start to burn by the catalyst in the catalyst layers 12 and 22 are set. .
 触媒式蓄熱燃焼装置1の起動時には、まず、蓄熱浄化室10、20に排ガスを導入するための送風機(図示せず)を起動させ、四方弁40を、大気あるいは未処理の排ガスを一方の蓄熱浄化室10に導入する方向に設定する。
 次いで、加熱室30の電気ヒータ31を作動させる。触媒式蓄熱燃焼装置1では、起動完了、すなわち、第1温度測定手段15、25による検出温度に基づいて加熱室30内が加熱目標温度T1に到達したと判断されるまで、四方弁40を所定時間ごとに切り換え、蓄熱体11、21を加熱する。
When the catalytic heat storage combustion apparatus 1 is started, first, a blower (not shown) for introducing exhaust gas into the heat storage purification chambers 10 and 20 is started, and the four-way valve 40 is stored in the atmosphere or untreated exhaust gas on one side. The direction is set in the direction of introduction into the purification chamber 10.
Next, the electric heater 31 in the heating chamber 30 is activated. In the catalytic thermal storage combustion apparatus 1, the four-way valve 40 is set until the start-up is completed, that is, until it is determined that the inside of the heating chamber 30 has reached the heating target temperature T1 based on the temperature detected by the first temperature measurement means 15 It switches every time and the heat storage bodies 11 and 21 are heated.
 起動完了後に実施される排ガスの処理工程について、図4のタイムチャートに沿って説明する。
 時刻ts点を排ガス処理工程の始点とする。まず、四方弁40を作動させ、図3(A)に示すように、図示しない排ガス排出源から供給された可燃性有害成分を含む未処理の排ガスを、未処理ガス給気ダクト41から接続ダクト13を介して、一方の蓄熱浄化室10の下方の空間部(蓄熱体11の下方の空間部)に導入する。
The exhaust gas treatment process performed after the start-up is completed will be described along the time chart of FIG.
The time ts point is set as the start point of the exhaust gas treatment process. First, the four-way valve 40 is operated, and as shown in FIG. 3A, untreated exhaust gas containing combustible harmful components supplied from an unillustrated exhaust gas emission source is connected from an untreated gas supply duct 41 to a connection duct. 13 is introduced into the space below the one heat storage purification chamber 10 (the space below the heat storage body 11).
 蓄熱浄化室10の下部空間に導入された未処理の排ガスは、蓄熱体11、触媒層12を通過して加熱室30に供給される。蓄熱体11は所定温度に加熱されているので、未処理の排ガスは、蓄熱体11を通過するとき、蓄熱体11によって加熱される。このため、排ガスは、触媒層12を通過するとき、可燃性有害成分の少なくとも一部が燃焼させられる。 The untreated exhaust gas introduced into the lower space of the heat storage purification chamber 10 passes through the heat storage body 11 and the catalyst layer 12 and is supplied to the heating chamber 30. Since the heat storage body 11 is heated to a predetermined temperature, the untreated exhaust gas is heated by the heat storage body 11 when passing through the heat storage body 11. For this reason, when exhaust gas passes the catalyst layer 12, at least a part of combustible harmful component is burned.
 未処理の排ガスを蓄熱体11に供給し続けると、蓄熱体11の温度は、排ガスとの熱交換により低下していく。本実施形態では、蓄熱体11と触媒層12との間に配置された第2温度測定手段16により検出される排ガス温度T2a(すなわち、蓄熱体11によって加熱された排ガスの温度)が、ガス流切換温度T2(例えば、200℃)以上の温度である間は、排ガスを蓄熱浄化室10の下方の空間部に導入し、蓄熱体11、触媒層12を通過させるので、触媒層12を通過するとき、触媒層12は燃焼開始温度T3よりも高い温度に保持されているので、排ガス中の可燃性有害成分の少なくとも一部は燃焼させられることになる。 If the untreated exhaust gas is continuously supplied to the heat storage body 11, the temperature of the heat storage body 11 decreases due to heat exchange with the exhaust gas. In the present embodiment, the exhaust gas temperature T2a detected by the second temperature measuring means 16 disposed between the heat storage body 11 and the catalyst layer 12 (that is, the temperature of the exhaust gas heated by the heat storage body 11) is the gas flow. While the temperature is equal to or higher than the switching temperature T2 (for example, 200 ° C.), the exhaust gas is introduced into the space below the heat storage purification chamber 10 and passes through the heat storage body 11 and the catalyst layer 12, and thus passes through the catalyst layer 12. At this time, since the catalyst layer 12 is maintained at a temperature higher than the combustion start temperature T3, at least a part of the combustible harmful component in the exhaust gas is combusted.
 このように触媒層12を通過した排ガスは、蓄熱浄化室10に対応した加熱室30の上方区分30eに導入される。この上方区分30eに導入された排ガスは、まず、上方区分30eの下方に形成された流路部32内を、所定の流速で流路部32内に配置された発熱部31’に接触しながら、下方に向かって流れる。そして、加熱室30の下方領域30cに流入する。 Thus, the exhaust gas that has passed through the catalyst layer 12 is introduced into the upper section 30e of the heating chamber 30 corresponding to the heat storage purification chamber 10. The exhaust gas introduced into the upper section 30e first contacts the heat generating section 31 'disposed in the flow path section 32 at a predetermined flow rate in the flow path section 32 formed below the upper section 30e. , Flowing downwards. Then, it flows into the lower region 30 c of the heating chamber 30.
 下方領域30cに流入した排ガスは、次いで、他方の蓄熱浄化室20に対応した加熱室30の上方区分30eの下方に形成された流路部32を、所定の流速で流路部32内に配置された発熱部31’に接触しながら、上方に向かって流れ、蓄熱浄化室20に対応した加熱室30の上方区分30eに流入する。
 排ガスは、流路部32内を流れる間、可燃性有害成分が触媒層22において完全に分解される温度まで発熱部31’により加熱される。
The exhaust gas that has flowed into the lower region 30c is then disposed in the flow channel portion 32 at a predetermined flow rate at the flow channel portion 32 formed below the upper section 30e of the heating chamber 30 corresponding to the other heat storage purification chamber 20. It flows upward while in contact with the generated heat generating portion 31 ′ and flows into the upper section 30 e of the heating chamber 30 corresponding to the heat storage purification chamber 20.
While the exhaust gas flows through the flow path portion 32, the heat generation portion 31 ′ is heated to a temperature at which the combustible harmful components are completely decomposed in the catalyst layer 22.
 流路部32内における排ガスの流速は、排ガスの局部的な加熱を防止し、排ガスを均一に加熱するとともに、圧損が大きくならないように設定されることが好ましい。例えば、5~30m/s程度に設定される。この速度域では、排ガスが電気ヒータ31の発熱部31’表層付近を比較的高速で通過するため、発熱部31’の表面温度が設定温度より大幅に上昇することがなく、電気ヒータ31を長寿命とすることができる。 It is preferable that the flow rate of the exhaust gas in the flow path part 32 is set so as to prevent local heating of the exhaust gas, uniformly heat the exhaust gas, and not to increase the pressure loss. For example, it is set to about 5 to 30 m / s. In this speed range, the exhaust gas passes through the vicinity of the surface of the heat generating portion 31 ′ of the electric heater 31 at a relatively high speed, so that the surface temperature of the heat generating portion 31 ′ does not rise significantly from the set temperature, and the electric heater 31 is long. It can be a lifetime.
 電気ヒータ31の出力は、加熱室30の下流側の第1温度測定手段25により検出された温度T1bが加熱目標温度T1となるように出力制御される。 The output of the electric heater 31 is controlled so that the temperature T1b detected by the first temperature measuring means 25 on the downstream side of the heating chamber 30 becomes the heating target temperature T1.
 加熱室30で加熱された排ガスは、蓄熱浄化室20の触媒層22を通過する際、可燃性有害成分が燃焼され浄化される。 When the exhaust gas heated in the heating chamber 30 passes through the catalyst layer 22 of the heat storage purification chamber 20, combustible harmful components are combusted and purified.
 触媒層22において可燃性有害成分が分解(燃焼)された高温の排ガスは、蓄熱体21を通過する。このとき、蓄熱体21と高温の排ガスとの間で熱交換が行われ、蓄熱体21が加熱される。蓄熱体21を通過した処理済みの排ガスは、接続ダクト23から四方弁40、および排気ダクト42を経由して系外に排気される。 The high-temperature exhaust gas in which combustible harmful components are decomposed (combusted) in the catalyst layer 22 passes through the heat storage body 21. At this time, heat exchange is performed between the heat storage body 21 and the high-temperature exhaust gas, and the heat storage body 21 is heated. The treated exhaust gas that has passed through the heat accumulator 21 is exhausted from the connection duct 23 via the four-way valve 40 and the exhaust duct 42.
 処理が継続されると、排ガスとの熱交換により、蓄熱体11の温度は低下し、未処理の排ガスを十分に加熱することができなくなってくる。このため、蓄熱体11、21において蓄熱される廃熱を有効利用すべく、排ガスの流れ方向が切換えられる。 If the treatment is continued, the temperature of the heat storage body 11 decreases due to heat exchange with the exhaust gas, and the untreated exhaust gas cannot be sufficiently heated. For this reason, the flow direction of the exhaust gas is switched in order to effectively use the waste heat stored in the heat storage bodies 11 and 21.
 ガス流れ方向の切換タイミングは、加熱室30の上流側の第2温度測定手段16により検出される排ガス温度に基づいて決定される。すなわち、本実施形態の蓄熱式排ガス浄化装置1では、制御装置(不図示)が、第2温度測定手段16により検出される排ガス温度T2aが、ガス流切換温度T2を下回ったと判断すると、四方弁40を作動させ、図3(B)に示すように、未処理の排ガスが蓄熱浄化室20に供給され、かつ処理済みの排ガスが蓄熱浄化室10から排気されるように、排ガスの流れ方向を切換える。 The gas flow direction switching timing is determined based on the exhaust gas temperature detected by the second temperature measuring means 16 on the upstream side of the heating chamber 30. That is, in the regenerative exhaust gas purification apparatus 1 of the present embodiment, when the control device (not shown) determines that the exhaust gas temperature T2a detected by the second temperature measuring means 16 is lower than the gas flow switching temperature T2, the four-way valve As shown in FIG. 3B, the flow direction of the exhaust gas is adjusted so that the untreated exhaust gas is supplied to the heat storage purification chamber 20 and the treated exhaust gas is exhausted from the heat storage purification chamber 10. Switch.
 この切り換えにより、未処理の排ガスが、蓄熱浄化室20に送り込まれ、蓄熱浄化室20内の高温の蓄熱体21により予備加熱された後に、触媒層22を通過して加熱室30に送り込まれてさらに加熱される。予備加熱された排ガスは、触媒層22を通過し、可燃性有害成分の少なくとも一部が燃焼させられる。
 電気ヒータ31は、加熱室30の下流側の第1温度測定手段15により検出された温度T1aが加熱目標温度T1となるように制御される。
By this switching, untreated exhaust gas is sent into the heat storage purification chamber 20, preheated by the high-temperature heat storage body 21 in the heat storage purification chamber 20, then passed through the catalyst layer 22 and sent into the heating chamber 30. Further heating. The preheated exhaust gas passes through the catalyst layer 22, and at least a part of the combustible harmful components is combusted.
The electric heater 31 is controlled such that the temperature T1a detected by the first temperature measuring means 15 on the downstream side of the heating chamber 30 becomes the heating target temperature T1.
 加熱室30において、さらに加熱された排ガスは、蓄熱浄化室10に送り込まれて触媒層12において可燃性有害物質が分解される。 In the heating chamber 30, the exhaust gas further heated is sent to the heat storage purification chamber 10 where the flammable harmful substances are decomposed in the catalyst layer 12.
 触媒層12において可燃性有害成分が分解された処理済みの排ガスは、蓄熱体11を通過する。このとき、蓄熱体11と処理済みの排ガスとの間で熱交換が行われ、蓄熱体11が加熱される。 The treated exhaust gas in which the flammable harmful components are decomposed in the catalyst layer 12 passes through the heat storage body 11. At this time, heat exchange is performed between the heat storage body 11 and the treated exhaust gas, and the heat storage body 11 is heated.
 蓄熱体11を通過した処理済みの排ガスは、接続ダクト13から四方弁40、排気ダクト42を経由して系外に排気される。 The treated exhaust gas that has passed through the heat storage body 11 is exhausted from the connection duct 13 via the four-way valve 40 and the exhaust duct 42 to the outside of the system.
 ガス流れ方向の切換タイミングは、加熱室30の上流側の第2温度測定手段26により検出される排ガス温度に基づいて決定される。本実施形態の触媒式蓄熱燃焼装置1では、制御装置は、第2温度測定手段26により検出される排ガス温度T2bが、ガス流切換温度T2を下回ったと判断すると、四方弁40を作動させて、図3(A)に示す状態にガスの流れ方向を切換える。 The gas flow direction switching timing is determined based on the exhaust gas temperature detected by the second temperature measuring means 26 on the upstream side of the heating chamber 30. In the catalytic thermal storage combustion apparatus 1 of the present embodiment, when the control device determines that the exhaust gas temperature T2b detected by the second temperature measuring means 26 is lower than the gas flow switching temperature T2, the control device operates the four-way valve 40, The gas flow direction is switched to the state shown in FIG.
 以後、同様に、ガス流れ方向を交互に切換えることによって、未処理の排ガスを蓄熱浄化室10、20に交互に流入させ、蓄熱体11、21に蓄熱した熱を未処理の排ガスの予備加熱に利用しながら可燃性有害成分の分解処理が行われる。 Thereafter, similarly, by alternately switching the gas flow direction, the untreated exhaust gas is alternately flowed into the heat storage purification chambers 10 and 20, and the heat stored in the heat storage bodies 11 and 21 is used for preheating the untreated exhaust gas. While being used, the flammable harmful components are decomposed.
 上述した実施形態では、電気ヒータ31の出力制御が、第1温度測定手段15、25のうち、排ガス流れ方向において加熱室30の下流側に位置する第1温度測定手段15、25により検出された排ガス温度に基づいて行われる。
 このような構成によれば、排ガス流れ方向において加熱室30の上流側に位置する触媒層での可燃性有害成分の燃焼熱により排ガスが加熱された分だけ、電気ヒータ31の出力を減少させることができ、ランニングコストを低減することができる。
 また、未処理の排ガスに含まれる可燃性有害成分の濃度が変動しても大きな影響を受けることなく、適切なタイミングで排ガスの流れ方向の切換制御を行うことができる。
In the embodiment described above, the output control of the electric heater 31 is detected by the first temperature measuring means 15, 25 located on the downstream side of the heating chamber 30 in the exhaust gas flow direction among the first temperature measuring means 15, 25. Performed based on exhaust gas temperature.
According to such a configuration, the output of the electric heater 31 is reduced by the amount by which the exhaust gas is heated by the combustion heat of the combustible harmful component in the catalyst layer located on the upstream side of the heating chamber 30 in the exhaust gas flow direction. Running costs can be reduced.
Moreover, even if the concentration of the flammable harmful component contained in the untreated exhaust gas varies, the flow direction of the exhaust gas can be controlled at an appropriate timing without being greatly affected.
 更に、排ガス流れ方向において、加熱室30の上流側に位置する触媒層12、22での可燃性有害成分の燃焼熱により排ガスが予備加熱され、加熱室30の上流側の第1温度測定手段15、25により検出された排ガス温度T1a、T1bが加熱目標温度T1を超えたときに、電気ヒータ31の出力を即時ゼロに制御することで、電気ヒータ31による過剰な加熱を防止し、かつランニングコストを低減することができる。 Further, in the exhaust gas flow direction, the exhaust gas is preheated by the combustion heat of combustible harmful components in the catalyst layers 12 and 22 located on the upstream side of the heating chamber 30, and the first temperature measuring means 15 on the upstream side of the heating chamber 30. 25, when the exhaust gas temperatures T1a and T1b detected by the electric heater 25 exceed the heating target temperature T1, the output of the electric heater 31 is controlled to zero immediately, thereby preventing excessive heating by the electric heater 31 and running cost. Can be reduced.
 上述した本実施形態の触媒式蓄熱燃焼装置1によれば、加熱室30の発熱部31’が、触媒層12、22を輻射により加熱しない位置に配置されているため、輻射熱によって触媒層12、22が過熱されることがない。これにより、触媒寿命が延び、交換頻度が低下させられ、触媒式蓄熱燃焼装置のランニングコストを低減することができる。
 また、加熱部が触媒層の上方に配置されていないので、触媒層12、22の交換が容易であり、触媒式蓄熱燃焼装置のメンテナンスが簡略化される。
According to the catalytic heat storage combustion apparatus 1 of the present embodiment described above, the heat generating portion 31 ′ of the heating chamber 30 is disposed at a position where the catalyst layers 12 and 22 are not heated by radiation. 22 is not overheated. Thereby, the catalyst life is extended, the replacement frequency is lowered, and the running cost of the catalytic heat storage combustion apparatus can be reduced.
Further, since the heating unit is not disposed above the catalyst layer, the catalyst layers 12 and 22 can be easily exchanged, and the maintenance of the catalytic heat storage combustion apparatus is simplified.
 本実施形態では、加熱室30は、断熱材を備えた隔壁17を介して蓄熱浄化室10、20と隣接して配置され、蓄熱体11、21と触媒層12、22とが配列されている方向と略直交する方向に、蓄熱浄化室10、20に接続されている。これにより、触媒層12、22が電気ヒータ31の発熱部31’からの輻射熱を受けない位置に配置することができ、さらに、触媒式蓄熱燃焼装置1を小型化することができる。 In this embodiment, the heating chamber 30 is arrange | positioned adjacent to the thermal storage purification chambers 10 and 20 via the partition 17 provided with the heat insulating material, and the thermal storage bodies 11 and 21 and the catalyst layers 12 and 22 are arranged. The heat storage purification chambers 10 and 20 are connected in a direction substantially orthogonal to the direction. Thereby, the catalyst layers 12 and 22 can be arrange | positioned in the position which does not receive the radiant heat from heat-emitting part 31 'of the electric heater 31, and also the catalytic thermal storage combustion apparatus 1 can be reduced in size.
 上述した本実施形態の触媒式蓄熱燃焼装置1によれば、第1温度測定手段15、25により検出された排ガス温度T1a、T1bに基づいて、触媒層12、22において排ガスの可燃性有害成分が完全に燃焼可能な温度まで排ガスを加熱するための目標温度である加熱目標温度T1となるように電気ヒータ31の出力制御を行うことができるので、電気ヒータ31での電力が過剰に消費されることが抑制される。 According to the catalytic heat storage combustion apparatus 1 of the present embodiment described above, combustible harmful components of the exhaust gas in the catalyst layers 12 and 22 are based on the exhaust gas temperatures T1a and T1b detected by the first temperature measuring means 15 and 25. Since the output control of the electric heater 31 can be performed so as to reach the heating target temperature T1, which is the target temperature for heating the exhaust gas to a temperature at which it can be completely combusted, the electric power in the electric heater 31 is excessively consumed. It is suppressed.
 また、本実施形態では、触媒層12、22において触媒によって可燃性有害成分が燃焼を開始する燃焼開始温度T3より高く設定されているガス流切換温度T2、及び第2温度測定手段16、26により検出された排ガス温度T2a、T2bに基づいて四方弁40を作動させてガス流れ方向を切換えている。 In the present embodiment, the gas flow switching temperature T2 which is set higher than the combustion start temperature T3 at which the combustible harmful components start to be burned by the catalyst in the catalyst layers 12 and 22, and the second temperature measuring means 16 and 26. Based on the detected exhaust gas temperatures T2a and T2b, the four-way valve 40 is operated to switch the gas flow direction.
 具体的には、四方弁40の作動により、接続ダクト13を介して未処理の排ガスを一方の蓄熱体11に流入させると、未処理の排ガスによって蓄熱体11の熱が奪われ蓄熱体11と触媒層12の間の空間の排ガス温度T2aが低下していく。排ガス温度T2aが切換温度T2まで低下すると、未処理の排ガスを他方の蓄熱体12に流入させるように四方弁40を切換える。この結果、これまで未処理ガスが流入していた一方の蓄熱体11、および触媒層12は加熱室30の下流側となり、蓄熱体11と触媒層12の間の空間には触媒燃焼後の高温ガスが流入し、この領域における排ガス温度T2aはガス切換温度T2から上昇し、常に切換温度T2以上に保持される。
 このように、本実施形態では、上記のような四方弁40の切換えにより、蓄熱体と触媒層の間の空間温度の排ガス温度T2aを、常時、可燃有害成分の燃焼開始温度以上の温度に維持することができ、加熱室30に配置されたヒータの作動を抑制し、消費エネルギを低減することができる。
Specifically, when the untreated exhaust gas is caused to flow into the one heat storage body 11 through the connection duct 13 by the operation of the four-way valve 40, the heat of the heat storage body 11 is deprived by the untreated exhaust gas and the heat storage body 11 The exhaust gas temperature T2a in the space between the catalyst layers 12 decreases. When the exhaust gas temperature T2a decreases to the switching temperature T2, the four-way valve 40 is switched so that untreated exhaust gas flows into the other heat storage body 12. As a result, the one heat accumulator 11 and the catalyst layer 12 into which the untreated gas has flown until now become the downstream side of the heating chamber 30, and the space between the heat accumulator 11 and the catalyst layer 12 has a high temperature after catalytic combustion. Gas flows in, and the exhaust gas temperature T2a in this region rises from the gas switching temperature T2, and is always maintained at the switching temperature T2 or higher.
Thus, in this embodiment, the exhaust gas temperature T2a of the space temperature between the heat storage body and the catalyst layer is always maintained at a temperature equal to or higher than the combustion start temperature of the flammable harmful component by switching the four-way valve 40 as described above. It is possible to suppress the operation of the heater disposed in the heating chamber 30 and reduce energy consumption.
 上記実施形態の蓄熱式排ガス浄化装置1によれば、未処理の排ガスの温度は、排ガス流れ方向において加熱室の上流側に位置する蓄熱体11、21を通過したときに、可燃性有害成分の燃焼開始温度T3以上に加熱されるので、加熱室30の上流側の触媒層12、22を通過するときにも可燃性有害成分の少なくとも一部を燃焼させることができる。
 その後、可燃性有害成分の少なくとも一部が燃焼させられた排ガスを、加熱室30において更に加熱することにより、可燃性有害成分を下流側の触媒で燃焼させて完全に分解することができる。
According to the regenerative exhaust gas purification apparatus 1 of the above embodiment, when the temperature of the untreated exhaust gas passes through the regenerators 11 and 21 located upstream of the heating chamber in the exhaust gas flow direction, Since it is heated to the combustion start temperature T3 or higher, at least a part of the combustible harmful components can be combusted even when passing through the catalyst layers 12 and 22 on the upstream side of the heating chamber 30.
Thereafter, the exhaust gas in which at least a part of the combustible harmful component is burned is further heated in the heating chamber 30, so that the combustible harmful component can be burned by the downstream catalyst and completely decomposed.
 上記実施形態の蓄熱式排ガス浄化装置1では、加熱部として電気ヒータ31が用いられているので、燃料配管や燃焼空気用の送風機などが不要であるため簡単な構造とすることができる。 In the heat storage type exhaust gas purifying apparatus 1 of the above embodiment, since the electric heater 31 is used as a heating unit, a fuel pipe, a blower for combustion air, and the like are unnecessary, and thus a simple structure can be achieved.
 本発明は上記実施形態に限定されることなく、特許請求の範囲に記載された事項の範囲内で種々の変更又は変形が可能である。 The present invention is not limited to the above-described embodiment, and various changes or modifications can be made within the scope of the matters described in the claims.
 また、加熱室は、電気ヒータが発熱部による輻射により触媒層を加熱しえない位置に配置される他の各種構造を採用することができる。
 電気ヒータの本数、加熱室内での配置位置は任意に設定することができる。
The heating chamber may employ other various structures in which the electric heater is disposed at a position where the catalyst layer cannot be heated by radiation from the heat generating portion.
The number of electric heaters and the arrangement position in the heating chamber can be arbitrarily set.
 上述した実施形態では、加熱室30の加熱部として電気ヒータを用いたが、他の加熱手段、例えばバーナなどを採用することもできる。 In the above-described embodiment, an electric heater is used as the heating unit of the heating chamber 30, but other heating means such as a burner may be employed.
 上述した実施形態では、加熱室30内に流路部32を形成するために2本のパイプを用いたが、排ガスの流速を所定の流速とすることができれば他の構造でもよい。 In the above-described embodiment, two pipes are used to form the flow path portion 32 in the heating chamber 30, but other structures may be used as long as the exhaust gas flow rate can be set to a predetermined flow rate.
 例えば、加熱室30の他の実施形態の左右方向の縦断面図である図5(A)に示す構成でも良い。この構成では、上記実施形態におけるパイプ部分30fに相当し下方に向かって延びる左右の垂下部分の下端を接続して加熱室30の下方にU字状領域を形成し、このU字状の下方領域内の空間を流路部としている。ここで、図5(A)の構成では、U字状の下方領域の左側の垂下部分のみに発熱部(加熱部)31’を配置している。しかしながら、電気ヒータ31を右側の垂下部分のみに配置した構成、あるいは、左右両側の垂下部分に設けた構成でもよい。
 これら構成においても、加熱室30の発熱部(加熱部)31’が、触媒層12、22を輻射により加熱しない位置に配置されていることになる。
For example, the structure shown to FIG. 5 (A) which is a longitudinal cross-sectional view of the left-right direction of other embodiment of the heating chamber 30 may be sufficient. In this configuration, the lower ends of the left and right hanging portions corresponding to the pipe portion 30f in the above embodiment and extending downward are connected to form a U-shaped region below the heating chamber 30, and this U-shaped lower region The inner space is used as a flow path part. Here, in the configuration shown in FIG. 5A, the heat generating portion (heating portion) 31 ′ is disposed only in the drooping portion on the left side of the U-shaped lower region. However, a configuration in which the electric heater 31 is disposed only on the right-side hanging portion or a configuration in which the electric heater 31 is provided on the left and right hanging portions may be employed.
Also in these configurations, the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
 また、加熱室30のもう一つの実施形態の左右方向の縦断面図である図5(B)に示すように、水平隔壁33により流路部32を区切る構成を採用することができる。隔壁33は、図1の実施形態の水平隔壁30aに相当する構成要素である。
 図5(B)に示されているように、この構成では、水平隔壁33の左右の先端側に形成された開口部により、加熱室30の上方区分30eと下方領域30cとが連通される。そして、水平隔壁33によって上方側が区画された下方領域30cの内部空間に、加熱室30の側面から発熱部(加熱部)31’が下方領域30c(流路部32)に挿入され、この内部空間が流路部32とされている。
 この構成においても、加熱室30の発熱部(加熱部)31’が、触媒層12、22を輻射により加熱しない位置に配置されていることになる。
Further, as shown in FIG. 5B, which is a vertical cross-sectional view in the left-right direction of another embodiment of the heating chamber 30, it is possible to adopt a configuration in which the flow path portion 32 is partitioned by a horizontal partition wall 33. The partition wall 33 is a component corresponding to the horizontal partition wall 30a of the embodiment of FIG.
As shown in FIG. 5B, in this configuration, the upper section 30e and the lower region 30c of the heating chamber 30 are communicated with each other by the openings formed on the left and right tip sides of the horizontal partition wall 33. A heating part (heating part) 31 ′ is inserted into the lower area 30 c (flow path part 32) from the side surface of the heating chamber 30 in the inner space of the lower area 30 c partitioned by the horizontal partition wall 33. Is the flow path portion 32.
Also in this configuration, the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
 更に、加熱室30のもう一つの実施形態の左右方向の縦断面図である図5(C)に示すように、発熱部(加熱部)31’の挿入方向を変更した構成でもよい。図5(C)に示す構成では、発熱部(加熱部)31’が、加熱室30の底面から、下方領域30c(流路部32)に挿入されている。
 この構成においても、加熱室30の発熱部(加熱部)31’が、触媒層12、22を輻射により加熱しない位置に配置されていることになる。
Furthermore, as shown in FIG. 5C, which is a vertical cross-sectional view of another embodiment of the heating chamber 30, the insertion direction of the heat generating portion (heating portion) 31 ′ may be changed. In the configuration shown in FIG. 5C, the heat generating part (heating part) 31 ′ is inserted into the lower region 30 c (flow path part 32) from the bottom surface of the heating chamber 30.
Also in this configuration, the heat generating part (heating part) 31 ′ of the heating chamber 30 is arranged at a position where the catalyst layers 12 and 22 are not heated by radiation.
 また、加熱室が、隔壁によって蓄熱浄化室10、20から仕切られた構成ではなく、図6に示されているように、蓄熱浄化室10、20から離間して配置され、接続ダクト18等により蓄熱浄化室10、20のそれぞれと接続された構成でもよい。 In addition, the heating chamber is not separated from the heat storage purification chambers 10 and 20 by a partition wall, but is disposed apart from the heat storage purification chambers 10 and 20 as shown in FIG. The structure connected with each of the thermal storage purification chambers 10 and 20 may be sufficient.
 さらに、図7に示されているように、蓄熱浄化室10と蓄熱浄化室20との間に、加熱室30が隔壁17を介して配置されている構成でもよい。 Further, as shown in FIG. 7, a configuration in which the heating chamber 30 is arranged via the partition wall 17 between the heat storage purification chamber 10 and the heat storage purification chamber 20 may be adopted.
 また、制御装置において、最小切換時間t1及び最大切換時間t2を設定しておき、これらt1及びt2と、第2温度測定手段16、26により検出された排ガス温度とを組み合わせて四方弁40を制御する構成でもよい。 In the control device, a minimum switching time t1 and a maximum switching time t2 are set, and the four-way valve 40 is controlled by combining these t1 and t2 with the exhaust gas temperature detected by the second temperature measuring means 16 and 26. The structure to do may be sufficient.
 ここで、最小切換時間t1は、第2温度測定手段16、26により検出された排ガス温度がガス流切換温度T2を下回っても最小切換時間t1を超えるまでは四方弁40を動作させない時間である。
 また、最大切換時間t2は、第2温度測定手段16、26により検出された排ガス温度がガス流切換温度T2を下回らなくても最大切換時間t2を超えたときに四方弁40を動作させるための時間である。
Here, the minimum switching time t1 is a time during which the four-way valve 40 is not operated until the minimum switching time t1 is exceeded even if the exhaust gas temperature detected by the second temperature measuring means 16, 26 falls below the gas flow switching temperature T2. .
The maximum switching time t2 is for operating the four-way valve 40 when the exhaust gas temperature detected by the second temperature measuring means 16 and 26 exceeds the maximum switching time t2 even if it does not fall below the gas flow switching temperature T2. It's time.
 上記t1、t2は、処理する未処理ガスの量が変動した場合、あるいは未処理ガス中に含まれる可燃性有害成分の量が変動した場合などに利用される。
 例えば、装置に流入する未処理の排ガスの量が減少する(例えば、定格処理量の1/2になる)と、未処理の排ガスが供給されている側の蓄熱体11と触媒層12の間の空間の排ガス温度T2aの低下速度が低くなる。このため、蓄熱体11と触媒層12の間の空間の排ガス温度T2aが切換温度T2まで低下するために要する時間が長くなる。一方、反対側(排出側)の蓄熱体から排気される処理済み排ガスの温度は時間の経過とともに、上昇する。この結果、排出側の排ガス経路等の温度が過度に上昇して不具合が発生する可能性がある。このため、排ガスの流入量が減少した場合等には、最大切換時間t2を上限として、四方弁を強制的に作動させ、排ガスの流入方向を切り替える。
The above t1 and t2 are used when the amount of untreated gas to be processed fluctuates or when the amount of combustible harmful components contained in the untreated gas fluctuates.
For example, when the amount of untreated exhaust gas flowing into the apparatus decreases (for example, becomes half of the rated treatment amount), the heat storage body 11 on the side to which the untreated exhaust gas is supplied and the catalyst layer 12 The rate of decrease in the exhaust gas temperature T2a in the space becomes lower. For this reason, the time required for the exhaust gas temperature T2a in the space between the heat storage body 11 and the catalyst layer 12 to fall to the switching temperature T2 becomes longer. On the other hand, the temperature of the treated exhaust gas exhausted from the opposite (exhaust side) heat storage body increases with the passage of time. As a result, the temperature of the exhaust gas path and the like on the discharge side may rise excessively and cause problems. For this reason, when the inflow amount of the exhaust gas decreases, the four-way valve is forcibly operated with the maximum switching time t2 as an upper limit to switch the inflow direction of the exhaust gas.
 又、未処理ガス中に含まれる可燃性有害成分の濃度が増加したときには、加熱室の下流側の蓄熱体と触媒層間の空間の排ガス温度T2aが上昇し、次に未処理ガスが供給されたときにこの部分における排ガス温度T2aが切換温度T2まで低下するまでに要する時間が長くなるため、同様の処理が行われる。 Further, when the concentration of the combustible harmful component contained in the untreated gas increases, the exhaust gas temperature T2a in the space between the heat storage body and the catalyst layer on the downstream side of the heating chamber rises, and then the untreated gas is supplied. Since the time required for the exhaust gas temperature T2a in this portion to decrease to the switching temperature T2 becomes longer, the same processing is performed.
 逆に、蓄熱体と触媒層との間の空間の排ガス温度T2aが切換温度T2まで低下するまでに要する時間が短くなると、所定時間(例えば、1時間)の間に四方弁が作動する回数が増加する。ここで、蓄熱浄化室を2つ備えた構成では、加熱室の上流側の蓄熱体の内部、この蓄熱体の下方空間、この蓄熱体の下方空間と切換弁を接続するダクト内部にある未処理の排ガスが、四方弁の切換によって、処理済みのガスを大気に放出するダクトに逆流し、処理されることなく大気中に排出されることがある。
 さらに、四方弁が作動しているわずかな時間の間に、未処理の排ガス供給用のダクトと処理済みのガスを大気に放出するダクトとが四方弁を介して連通され、排ガス供給用のダクト中の未処理の排ガスが放出用ダクトを通して大気に放出されることもある。
 したがって、所定時間に、四方弁が多数回、作動すると、可燃性有害成分の除去率が低下し、所望の除去性能が得られなくなる。このため、最小切換時間t2を下限として設定し、所定時間あたりの四方弁の作動回数を制限し、可燃性有害成分の除去率の低下を抑制する。
Conversely, if the time required for the exhaust gas temperature T2a in the space between the heat storage body and the catalyst layer to decrease to the switching temperature T2 is reduced, the number of times the four-way valve is activated during a predetermined time (for example, 1 hour) is reduced. To increase. Here, in the structure provided with two heat storage purification chambers, the untreated inside the heat storage body upstream of the heating chamber, the lower space of the heat storage body, the duct connecting the lower space of the heat storage body and the switching valve The exhaust gas may flow back to the duct that discharges the treated gas to the atmosphere by switching the four-way valve, and may be discharged into the atmosphere without being treated.
Further, during a short period of time during which the four-way valve is operating, the untreated exhaust gas supply duct and the duct that releases the treated gas to the atmosphere are communicated via the four-way valve, and the exhaust gas supply duct is connected. Untreated exhaust gas may be released to the atmosphere through a discharge duct.
Therefore, if the four-way valve is actuated many times in a predetermined time, the removal rate of combustible harmful components is reduced, and the desired removal performance cannot be obtained. For this reason, the minimum switching time t2 is set as a lower limit, the number of operations of the four-way valve per predetermined time is limited, and the reduction in the removal rate of combustible harmful components is suppressed.
 さらに、上記実施形態の触媒式蓄熱燃焼装置1は、2つの蓄熱浄化室10、20を備えた構成であるが、本発明は3室以上の蓄熱浄化室を備えた構成とすることもできる。例えば、図8に示すように、蓄熱浄化室10、20と同様の構造の蓄熱室30をさらに備えた構成でもよい。図8中で、31は蓄熱体、32は触媒層、33は接続ダクト、35は第1温度測定手段、36は第2温度測定手段である。
 また、蓄熱室が3つの構成では、排ガスの浄化処理は、3つの蓄熱室のうち、2つの蓄熱室を順次切換えて使用するため、3つのガス流切換手段40が設けられている。
Furthermore, although the catalytic heat storage combustion apparatus 1 of the said embodiment is the structure provided with the two heat storage purification chambers 10 and 20, this invention can also be set as the structure provided with the 3 or more heat storage purification chambers. For example, as shown in FIG. 8, the structure further provided with the heat storage chamber 30 of the structure similar to the heat storage purification chambers 10 and 20 may be sufficient. In FIG. 8, 31 is a heat storage body, 32 is a catalyst layer, 33 is a connection duct, 35 is a first temperature measuring means, and 36 is a second temperature measuring means.
Further, in the configuration with three heat storage chambers, three gas flow switching means 40 are provided in order to purify the exhaust gas by sequentially switching two heat storage chambers among the three heat storage chambers.
 図8(B)は、蓄熱室10に未処理の排ガスを供給し、蓄熱室20から処理済の排ガスを排出する状態を示している。加熱室30の電気ヒータ31の制御、ガス流れ方向の切換などの制御は、蓄熱室が2室の場合と同様に、第1温度測定手段及び第2温度測定手段により検出される排ガス温度に基づいて行う。
 この実施形態では、図8(B)の状態に続き、蓄熱室20に未処理の排ガスを供給し、蓄熱室30から処理済の排ガスを排出する状態に排ガスの流れを切換え、続いて、蓄熱室30に未処理の排ガスを供給し、蓄熱室10から処理済の排ガスを排出する状態に切換える。その後、図8(B)の状態に戻し、以後、同様の切り換えを行っていく。
FIG. 8B shows a state in which untreated exhaust gas is supplied to the heat storage chamber 10 and the treated exhaust gas is discharged from the heat storage chamber 20. Control of the electric heater 31 in the heating chamber 30 and switching of the gas flow direction are based on the exhaust gas temperature detected by the first temperature measuring means and the second temperature measuring means, as in the case of two heat storage chambers. Do it.
In this embodiment, following the state of FIG. 8B, untreated exhaust gas is supplied to the heat storage chamber 20, the flow of exhaust gas is switched to a state where the treated exhaust gas is discharged from the heat storage chamber 30, and then the heat storage Untreated exhaust gas is supplied to the chamber 30, and the state is switched to a state in which the treated exhaust gas is discharged from the heat storage chamber 10. Thereafter, the state is returned to the state shown in FIG. 8B, and thereafter the same switching is performed.
1…触媒式蓄熱燃焼装置
10、20…蓄熱浄化室
11、21…蓄熱体
12、22…触媒層
13、23…接続ダクト
14、24…接続口
15、25…第1温度測定手段
16、26…第2温度測定手段
30…加熱室
31…電気ヒータ
31’…発熱部(加熱部)
32…流路部
40…四方弁(ガス流切換手段)
41…未処理ガス給気ダクト
42…排気ダクト
DESCRIPTION OF SYMBOLS 1 ... Catalytic thermal storage combustion apparatus 10, 20 ... Thermal storage purification chamber 11, 21 ... Thermal storage body 12, 22 ... Catalyst layer 13, 23 ... Connection duct 14, 24 ... Connection port 15, 25 ... First temperature measurement means 16, 26 ... second temperature measuring means 30 ... heating chamber 31 ... electric heater 31 '... heating unit (heating unit)
32 ... Channel part 40 ... Four-way valve (gas flow switching means)
41 ... Untreated gas supply duct 42 ... Exhaust duct

Claims (5)

  1.  排ガス中の可燃性有害成分を燃焼して排ガスを浄化する触媒式蓄熱燃焼装置であって、
     排ガスが通過可能な蓄熱体と前記可燃性有害成分を燃焼させる触媒とが順次に配列されて内部に配置された複数の蓄熱浄化室と、
     前記排ガスを加熱する加熱部を有し、前記各蓄熱浄化室の前記触媒が配置されている側で、前記複数の蓄熱浄化室間の各々と接続されている加熱室と、
     前記複数の蓄熱浄化室の前記蓄熱体が配置されている側に接続され、前記複数の蓄熱浄化室の一つに前記排ガスを選択的に供給するように前記排ガスの流れを切り換えるガス流切り換え手段と、を備え、
     前記加熱部は、該加熱部からの輻射が、前記触媒に達しない位置に配置されている、
     触媒式蓄熱燃焼装置。
    A catalytic thermal storage combustion device that purifies exhaust gas by burning flammable harmful components in the exhaust gas,
    A plurality of heat storage and purification chambers in which a heat storage body through which exhaust gas can pass and a catalyst that burns the combustible harmful components are sequentially arranged and disposed inside,
    A heating chamber that heats the exhaust gas, the heating chamber connected to each of the plurality of heat storage purification chambers on the side where the catalyst of each of the heat storage purification chambers is disposed;
    Gas flow switching means for switching the flow of the exhaust gas so as to selectively supply the exhaust gas to one of the plurality of heat storage purification chambers, which is connected to the side where the heat storage body is disposed of the plurality of heat storage purification chambers. And comprising
    The heating unit is disposed at a position where radiation from the heating unit does not reach the catalyst.
    Catalytic heat storage combustion device.
  2.  前記加熱室は、前記蓄熱体と前記触媒との配列方向において、前記触媒とオフセットして配置されている、
     請求項1に記載の触媒式蓄熱燃焼装置。
    The heating chamber is disposed offset from the catalyst in the arrangement direction of the heat storage body and the catalyst.
    The catalytic thermal storage combustion apparatus according to claim 1.
  3.  前記触媒と前記加熱室との間に、第1の温度測定手段が設けられ、
     前記第1の温度測定手段の検出結果に基づいて、前記加熱部の作動が制御される、
     請求項1または2に記載の触媒式蓄熱燃焼装置。
    A first temperature measuring means is provided between the catalyst and the heating chamber,
    Based on the detection result of the first temperature measuring means, the operation of the heating unit is controlled,
    The catalytic thermal storage combustion apparatus according to claim 1 or 2.
  4.  前記触媒と前記蓄熱体との間に、第2の温度測定手段が設けられ、
     該第2の温度測定手段の測定結果に基づいて、前記ガス流切り換え手段が作動させられる、
     請求項1ないし3のいずれか1項に記載の触媒式蓄熱燃焼装置。
    A second temperature measuring means is provided between the catalyst and the heat storage body,
    Based on the measurement result of the second temperature measuring means, the gas flow switching means is activated.
    The catalytic thermal storage combustion apparatus according to any one of claims 1 to 3.
  5.  前記ガス流切り換え手段は、前記排ガスが供給されている蓄熱浄化室に設けられた第2の温度測定手段により計測された温度が、該排ガス中に含まれる可燃性有害成分が前記触媒で燃焼を開始する燃焼開始温度より高い温度まで低下したときに、前記排ガスの流れ方向を切換える、
     請求項4に記載の触媒式蓄熱燃焼装置。
    The gas flow switching means is configured such that the temperature measured by the second temperature measuring means provided in the heat storage and purification chamber to which the exhaust gas is supplied is combusted by the catalyst with combustible harmful components contained in the exhaust gas. Switching the flow direction of the exhaust gas when the temperature drops to a temperature higher than the starting combustion temperature,
    The catalytic heat storage combustion apparatus according to claim 4.
PCT/JP2014/072971 2013-09-19 2014-09-02 Catalytic regenerative combustion apparatus WO2015041037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015537627A JP6341466B2 (en) 2013-09-19 2014-09-02 Catalytic heat storage combustion equipment
CN201480043808.6A CN105452770B (en) 2013-09-19 2014-09-02 Catalysis type heat storage burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-193873 2013-09-19
JP2013193873 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015041037A1 true WO2015041037A1 (en) 2015-03-26

Family

ID=52688691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072971 WO2015041037A1 (en) 2013-09-19 2014-09-02 Catalytic regenerative combustion apparatus

Country Status (4)

Country Link
JP (1) JP6341466B2 (en)
CN (1) CN105452770B (en)
TW (1) TWI626404B (en)
WO (1) WO2015041037A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020752A (en) * 2015-07-14 2017-01-26 株式会社大気社 Changeover mechanism at multi-column heat storage type deodorization device, multi-column heat storage type deodorization device and operational method for three-column heat storage type deodorization device
CN110410807A (en) * 2019-06-21 2019-11-05 山东皓隆环境科技有限公司 Catalysis burning all-in-one machine
CN113019116A (en) * 2020-03-06 2021-06-25 株式会社岛川制作所 Harmful component heating and purifying device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152691A (en) * 2017-06-22 2017-09-12 南京艾尔普特环保科技有限公司 Low NOx afterburnings and the efficient minimizing technologies of VOC and system based on RTO
TWI686579B (en) * 2018-11-15 2020-03-01 財團法人金屬工業研究發展中心 Flow path switching device for thermal fluid treatment of heat storage cabin
CN113483344A (en) * 2021-07-09 2021-10-08 陕西青朗万城环保科技有限公司 Microwave-enhanced heat-storage combustion waste gas treatment method and device
CN114307894A (en) * 2021-10-08 2022-04-12 河北天龙环保科技有限公司 High-temperature heat storage catalytic oxidation system based on catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549859A (en) * 1991-08-20 1993-03-02 Matsushita Electric Ind Co Ltd Catalyst purifying device
JPH07305824A (en) * 1994-05-11 1995-11-21 Daikin Ind Ltd Operating method for heat storage type catalytic burner and controller
JP2001113132A (en) * 1999-10-18 2001-04-24 Mitsubishi Heavy Ind Ltd Device for treating harmful gas containing co for closed space

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217909A (en) * 1996-02-13 1997-08-19 Sanyo Electric Co Ltd Incinerator
JPH09250729A (en) * 1996-03-19 1997-09-22 Matsushita Electric Ind Co Ltd Catalyst reactor
JP2001113121A (en) * 1999-10-14 2001-04-24 Mitsubishi Kakoki Kaisha Ltd Method for treating desulfurization waste water
CN201141595Y (en) * 2007-11-05 2008-10-29 中南大学 Honeycomb heat-accumulation burning type catalyzer initiation device
CN201448854U (en) * 2009-04-01 2010-05-05 曾荣辉 Heat accumulating type catalytic combustion device for organic exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549859A (en) * 1991-08-20 1993-03-02 Matsushita Electric Ind Co Ltd Catalyst purifying device
JPH07305824A (en) * 1994-05-11 1995-11-21 Daikin Ind Ltd Operating method for heat storage type catalytic burner and controller
JP2001113132A (en) * 1999-10-18 2001-04-24 Mitsubishi Heavy Ind Ltd Device for treating harmful gas containing co for closed space

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020752A (en) * 2015-07-14 2017-01-26 株式会社大気社 Changeover mechanism at multi-column heat storage type deodorization device, multi-column heat storage type deodorization device and operational method for three-column heat storage type deodorization device
CN110410807A (en) * 2019-06-21 2019-11-05 山东皓隆环境科技有限公司 Catalysis burning all-in-one machine
CN113019116A (en) * 2020-03-06 2021-06-25 株式会社岛川制作所 Harmful component heating and purifying device

Also Published As

Publication number Publication date
TW201520485A (en) 2015-06-01
CN105452770B (en) 2017-09-01
JP6341466B2 (en) 2018-06-13
TWI626404B (en) 2018-06-11
JPWO2015041037A1 (en) 2017-03-02
CN105452770A (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6341466B2 (en) Catalytic heat storage combustion equipment
JP5595008B2 (en) Generator burner
JP5893606B2 (en) Ammonia abatement system
IL139441A (en) Web dryer with fully integrated regenerative heat source
JP3112831U (en) Thermal storage exhaust gas combustion system
JP5492482B2 (en) Direct combustion deodorization furnace
CZ360298A3 (en) Regenerating oxadation system
KR100823081B1 (en) Incinerator using heat accumulating member
JP2004538436A (en) Module VOC confinement chamber for two-chamber regenerative oxidizer
KR101625029B1 (en) Oxidation apparatus of volatile organic compound
KR100473522B1 (en) Incinerator of Volatile Organic Compound Using Catalytic Combustion
JP2008202511A (en) Exhaust emission control device for diesel engine
JP2016121859A (en) Harmful component heating and purifying device
JP2002081629A (en) Regenerative direct-combustion apparatus for combustion gas treatment
JP4092818B2 (en) Operation method of regenerative combustion type gas treatment device
CN109985517A (en) A kind of printing VOCs catalysis thermal oxidation cycle device
JP2008045818A (en) Heat storage type burning deodorizing apparatus
JP2005193175A (en) Method and apparatus for treating exhaust gas from gas engine
CN203893198U (en) Temperature control regenerative thermal oxidizer
KR101159661B1 (en) Combustion apparatus for gas of furnace
JPH11173529A (en) Heat storage catalytic method and device for treating exhaust gas
JP2012122706A (en) Single end type radiant tube burner
JP2012189241A (en) Heat storage type burner furnace
RU2004131828A (en) COMBUSTION CONTROL METHOD IN THE REACTOR AND REACTOR
KR20210042468A (en) The combine with a chopper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043808.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201602578

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14846588

Country of ref document: EP

Kind code of ref document: A1