JP3500802B2 - Noxious gas heating purification equipment - Google Patents

Noxious gas heating purification equipment

Info

Publication number
JP3500802B2
JP3500802B2 JP28275395A JP28275395A JP3500802B2 JP 3500802 B2 JP3500802 B2 JP 3500802B2 JP 28275395 A JP28275395 A JP 28275395A JP 28275395 A JP28275395 A JP 28275395A JP 3500802 B2 JP3500802 B2 JP 3500802B2
Authority
JP
Japan
Prior art keywords
temperature
heating
heating device
heat storage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28275395A
Other languages
Japanese (ja)
Other versions
JPH09122445A (en
Inventor
彰 橋本
順二郎 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28275395A priority Critical patent/JP3500802B2/en
Publication of JPH09122445A publication Critical patent/JPH09122445A/en
Application granted granted Critical
Publication of JP3500802B2 publication Critical patent/JP3500802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種排ガスや空気
中に混入したCO(一酸化炭素),HC(炭化水素)等
の悪臭成分や有害成分を適正温度に加熱し酸化浄化する
ことによって清浄な空気を得るための加熱浄化装置に関
するものである。 【0002】 【従来の技術】近年、各種有機溶剤、燃料からの揮発や
燃焼、乾燥、熱処理時に発生するCOやHC成分は、そ
の有害性や臭気のため浄化し排出する事が必要不可欠な
ものになっている。またバンド機や樹脂,ビニール等の
融着時にも有害ガスが発生し、その浄化が求められてい
る。COやHC成分の浄化方法としては、有害ガスを含
んだ空気自身を加熱し空気中の酸素と反応させる方法が
最も浄化効率が高く信頼性も高い。ここで空気の温度を
上げ空気中の酸素がCOやHCと反応するには、800
〜900℃以上の温度が必要になる。酸化触媒を用いる
方法では200〜400℃の温度範囲で反応を進める事
ができ熱エネルギーの無駄を省く事ができる。 【0003】以下に従来の有害ガス浄化装置について説
明する。図4は、従来の触媒浄化装置の一例で、(a)
は触媒浄化装置本体、(b)は熱交換装置をも含めたシ
ステムを示す。25は触媒浄化装置本体、27は熱交換
機、22は加熱装置、23は触媒を示す。(a)で排ガ
スは入口(20)から触媒加熱装置本体に導入され、加
熱装置(22)により所定の温度に昇温し、触媒により
CO,HC等の有害成分が酸化浄化され、出口(24)
から排出される。この時排ガスの昇温に要したエネルギ
ーはガスと一緒に排出される事になる。このエネルギー
の一部を回収する目的で熱交換機を用いたシステムが
(b)である。この場合26から導入され27の熱交換
機で昇温された排ガスは、矢印に沿って流れ触媒浄化装
置本体(25)に進む。ここで浄化され、再び熱交換機
(27)に入り冷却され排出(28)される。すなわち
排ガスの昇温に要したエネルギーの一部を熱交換機で回
収しエネルギーロスを少なくしようとする物である。し
かし熱交換機の熱交換率は50〜60%がMAXである
ためより熱ロスの少ない方式が必要とされた。そこでよ
り熱ロスの少ない加熱浄化方式として図5の、蓄熱体を
用いた加熱浄化装置(従来例1)がある。(a)の状態
と(b)の状態を交互に繰り返す事により熱エネルギー
の削減を図るものである。7が浄化部で蓄熱体(6)、
加熱部分(10)を含んでいる。14、15は有害成分
を含んだ排ガスの流れ方向を切り替えるダンパーを示
す。(a)で排ガスは入口(1)から3の矢印のように
進み13の浄化部入口から浄化部(7)内に入る。浄化
部内では蓄熱体(6)の下方の物を通過し加熱装置(1
0)を通過する時加熱され有害成分は浄化される。次に
上方の蓄熱体を通過するとき熱を奪われ冷却される。そ
して浄化部出口(12)から排出され浄化装置出口(1
1)へ進む。一定時間後(b)のように排ガスの流れ方
向を切り替えるようにダンパー14、15をそれぞれ操
作する。浄化部での排ガスの流れ方向が逆になり、
(a)で排ガスから熱を奪った上方の蓄熱体6が今度は
排ガスに熱を与えるように働き、排ガスを加熱するエネ
ルギーの一部または大部分を補う。すなわちこの浄化部
内で熱が往復し省エネルギーとなる。この時浄化部分の
温度制御は図5に示すように加熱装置の近くに温度セン
サー(16)を設置し、この温度が所定の温度より低く
なったとき加熱装置が作動(ON)するように成ってい
る。 【0004】 【発明が解決しようとする課題】上記の従来例1(図
5)の構成で用いられるものは熱交換効率の高い浄化装
置を実現出来ているが、有害ガスの酸化反応を引き起こ
す部分の蓄熱体(加熱装置に近い蓄熱体)が酸化反応に
有効な温度を必要な範囲にわたって維持することが困難
である。なぜなら本来加熱部分の両側の蓄熱体がそれぞ
れ同じ厚さで酸化反応を引き起こすことが理想であるが
加熱装置を制御するためのセンサーが加熱部分にあると
いうことはこの部分の温度が低くなったときはすでに加
熱部分の風上の蓄熱体は全て所定の温度より低くなって
いることになる。この時でも加熱部分の風上の蓄熱体を
酸化反応に有効な温度範囲に維持するためには温度セン
サーの設定値を高くする必要があり、熱ロスが増加する
ことになる。またそれぞれの蓄熱体と加熱装置の間に触
媒を設置した物では温度センサーの設定値を高くするこ
とは触媒の寿命期間を短縮することになる。 【0005】本発明は、上記従来例1の問題点を解決す
るもので、加熱装置両側の触媒または蓄熱体の一部(有
害ガスの酸化反応に寄与する範囲)の温度を常に有害ガ
スを酸化するために有効な温度範囲に保つとともに、過
熱による触媒の劣化や、熱ロスの発生を防止する方法を
提供することを目的としている。 【0006】 【課題を解決するための手段】この目的を達成するため
に本発明の有害ガス加熱浄化装置は、過熱部分両側の蓄
熱体層それぞれの中に温度センサーを設置する。加熱装
置と蓄熱体の間に触媒を設置した物はそれぞれの触媒と
蓄熱体層の間または蓄熱体層の中に温度センサーを設置
する。またこれら2つの温度センサーにより加熱装置の
温度を制御するために2つの温度センサーを切り替え、
信号を一本化して制御機へ伝達するための切り替え装置
を有している。そして加熱部分から見てその時点での風
上側の触媒層と蓄熱体層の間または蓄熱体層の中に設置
した温度センサーからの情報で加熱部分の出力を制御す
る方式を有している。 【0007】 【発明の実施の形態】この構成による加熱制御及び浄化
部分の温度分布について説明する。加熱装置両側の蓄熱
体層の中にそれぞれ温度センサーを設置し、それぞれの
温度センサーからの情報は切り替えて使用する。加熱装
置から見て風上の温度センサーの情報で加熱装置を制御
する。すなわちたとえば有害なガス成分が触媒または蓄
熱体の働きによって300℃で反応できる場合加熱装置
が働く温度を300℃以下とし制御する。温度センサー
が300℃以下を示した時、加熱装置はONの状態に成
る。加熱装置が働いたときその影響は風下側にのみ現れ
るため風上側のセンサー部分は一度300℃より低くな
ると排ガスの流れ方向が変わるまでますます温度が低下
することになり、加熱装置はON状態を続けることにな
る。風下側の温度センサー部分は加熱装置によって加熱
された排ガスが通過するため温度が上昇する。一定時間
経過後排ガスの流れ方向を切り替えるとともに加熱装置
を制御するためのセンサーも切り替える。このような切
り替え制御によって加熱装置は触媒または蓄熱体の必要
な部分の温度を所定の温度以上に保つことができる。 【0008】 【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。 【0009】 (参考例1) 図1に参考例1を示す。図1で1は排ガスの入口、11
は浄化されたガスの出口を示す。3の矢印はガスの流れ
を示す。7は浄化部分で6は蓄熱体層を示す。17およ
び18が温度センサーを示す。加熱装置(10)の制御
はこれらの温度センサーからの情報で行う。(a)と
(b)は浄化部分でのガスの流れ方向が逆転した情報を
示す。まず図1(a)の場合加熱部分及び加熱部分に近
い両側の蓄熱体の温度を有害ガスの酸化反応が起こる温
度に設定し加熱部分から見て風上にある温度センサー
(18)の情報が設定温度より低い場合加熱装置をON
にする。次に排ガスの流れ方向切り替えダンパー(1
4,15)を切り替え、(b)の状態に成ったとき加熱
部分の制御のため情報を得る温度センサーを17に切り
替える。図から明らかなように加熱装置がON状態のと
きは排ガスは加熱装置によって加温されるがその影響は
加熱装置よりも風下の側に限られる。すなわち風上の温
度センサーが設定温度より低い状態になって以後は浄化
部分(7)の排ガスの流れ方向が逆転するまで加熱装置
はON状態を維持しつづけることになり蓄熱体のより広
い範囲で所定の温度をキープすることになる。 【0010】 (参考例2) 次に図2に参考例2を示す。 【0011】 これは参考例1に対して加熱装置(1
0)とそれぞれの蓄熱体層(6)の間に触媒(19)を
設けたものでそれぞれの温度センサーも蓄熱体層と触媒
の間に設置している。加熱装置の制御は風上側の温度セ
ンサーすなわち(a)では18のセンサー、(b)では
17のセンサーを情報源とする。 【0012】 (実施例) 次に図3に本発明の実施例を示す。 【0013】これは浄化部分をコの字形に折り曲げ排ガ
スの入口と出口を同一平面上になるように設計したもの
で、浄化部分(7)のガスの流れ方向を逆転させるため
のダンパーが平面のスライドダンパー(4)になってい
る。16、17、18は温度センサーを示すが従来は1
6の温度センサーで加熱装置(10)の制御を行ってい
たが本発明では17、18のセンサーを切り替えて制御
している。(a)の排ガスの流れ方向の場合では17、
(b)の排ガスの流れ方向の場合では18のセンサーの
情報を使用する。それぞれの温度センサーは蓄熱体層の
中に設置した例を示している。 【0014】本発明のように温度センサーの設置と温度
センサーの切り替え及び加熱装置の制御を実施した場に
対し従来例との比較を図6に示す。これは図3で示した
装置を用い従来の加熱装置の制御法としては温度センサ
ー16を用いた。本発明の加熱装置の制御法としては温
度センサー17、18を切り替え制御した。蓄熱体とし
てアルミナφ5の粒状のものを各10リットル(温度セ
ンサーより加熱装置側は各3リットル)、触媒はアルミ
ナφ4の表面にPtを付着したものそれぞれ3リットル
用いた。排ガスの流量は1m3/分とし流れ方向の切り
替え時間は1分とした。図6の温度カーブの測定点は図
3のA点で、B点は左右対称であり1/2サイクル時間
軸はずれるが温度のMAX,MINは同じ値であった。
図6はA(B)点の温度をMIN300℃をキープする
ために加熱装置の制御温度を調整したもので、51は従
来例で設定温度を380℃にしてはじめてA点がMIN
300℃をキープすることができた。一方52に示すよ
うに本発明では17、18の温度センサーでの設定温度
を300℃にすることでA(B)点の温度をMIN30
0℃にすることができた。このとき図6から明らかなよ
うに従来例ではMAX温度が450℃を超えているが本
発明では360℃にとどまっている。 【0015】 【発明の効果】以上のように本発明では最小限度の加熱
で触媒部分の温度を必要な温度にすることができ、また
温度が異常に高くならないため触媒の劣化も少なくする
ことができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method for appropriately controlling malodorous and harmful components such as CO (carbon monoxide) and HC (hydrocarbon) mixed in various exhaust gas and air. The present invention relates to a heating and purifying apparatus for obtaining clean air by heating to a temperature and purifying by oxidation. [0002] In recent years, CO and HC components generated during volatilization, combustion, drying and heat treatment from various organic solvents and fuels are indispensable to purify and discharge due to their harmfulness and odor. It has become. In addition, harmful gas is generated even when a banding machine, resin, vinyl, or the like is fused, and purification thereof is required. As a method of purifying CO and HC components, a method of heating air containing harmful gas itself and reacting it with oxygen in the air has the highest purification efficiency and high reliability. Here, in order to raise the temperature of the air and allow oxygen in the air to react with CO and HC, 800
A temperature of 900900 ° C. or higher is required. In the method using an oxidation catalyst, the reaction can proceed in a temperature range of 200 to 400 ° C., and waste of heat energy can be reduced. [0003] A conventional harmful gas purifying apparatus will be described below. FIG. 4 shows an example of a conventional catalyst purifying apparatus.
Shows a catalyst purification device main body, and (b) shows a system including a heat exchange device. 25 is a catalyst purifier main body, 27 is a heat exchanger, 22 is a heating device, and 23 is a catalyst. In (a), the exhaust gas is introduced from the inlet (20) into the catalyst heating device main body, heated to a predetermined temperature by the heating device (22), the harmful components such as CO and HC are oxidized and purified by the catalyst, and the outlet (24). )
Is discharged from At this time, the energy required for raising the temperature of the exhaust gas is discharged together with the gas. (B) is a system using a heat exchanger for the purpose of recovering a part of this energy. In this case, the exhaust gas introduced from 26 and heated by the heat exchanger 27 flows along the arrow and proceeds to the catalyst purification device main body (25). Here, it is purified, again enters the heat exchanger (27), cooled and discharged (28). That is, a part of the energy required for raising the temperature of the exhaust gas is recovered by the heat exchanger to reduce the energy loss. However, since the heat exchange rate of the heat exchanger is MAX at 50 to 60%, a method with less heat loss is required. Therefore, as a heating purification method with less heat loss, there is a heating purification device using a heat storage body (conventional example 1) shown in FIG. The heat energy is reduced by alternately repeating the states (a) and (b). 7 is a purifier and a heat storage unit (6),
A heating section (10) is included. Reference numerals 14 and 15 denote dampers for switching the flow direction of the exhaust gas containing harmful components. In (a), the exhaust gas advances from the inlet (1) as indicated by the arrow 3 and enters the purifier (7) from the purifier inlet at thirteen. In the purifying section, the heating device (1) passes through an object below the heat storage body (6).
Heating when passing through 0), harmful components are purified. Next, when passing through the upper heat storage body, the heat is taken away and cooled. Then, the gas is discharged from the purifier outlet (12) and is discharged from the purifier outlet (1).
Proceed to 1). The dampers 14 and 15 are respectively operated so as to switch the flow direction of the exhaust gas after a certain period of time (b). The flow direction of the exhaust gas in the purification section is reversed,
The heat storage body 6 above, which has taken heat from the exhaust gas in (a), works to give heat to the exhaust gas, and supplements a part or most of the energy for heating the exhaust gas. That is, heat reciprocates in the purifying section, thereby saving energy. At this time, as shown in FIG. 5, a temperature sensor (16) is installed near the heating device to control the temperature of the purification section, and when the temperature becomes lower than a predetermined temperature, the heating device is turned on. ing. [0004] The apparatus used in the structure of the above-mentioned prior art 1 (FIG. 5) can realize a purifying apparatus having a high heat exchange efficiency. It is difficult for the heat storage material (heat storage material close to the heating device) to maintain a temperature effective for the oxidation reaction over a necessary range. It is ideal that the heat storage bodies on both sides of the heating part should cause the oxidation reaction with the same thickness, respectively.However, the fact that the sensor for controlling the heating device is in the heating part means that when the temperature of this part becomes low Means that all the heat storage bodies on the windward side of the heating portion are already lower than the predetermined temperature. Even at this time, it is necessary to increase the set value of the temperature sensor in order to maintain the heat storage material on the windward side of the heating portion in a temperature range effective for the oxidation reaction, and the heat loss increases. In the case where a catalyst is provided between each heat storage unit and the heating device, increasing the set value of the temperature sensor shortens the life of the catalyst. The present invention solves the above-mentioned problem of the first conventional example. The temperature of a part of the catalyst or the heat storage body (the range contributing to the oxidation reaction of the harmful gas) on both sides of the heating device is constantly oxidized. It is an object of the present invention to provide a method for maintaining the temperature within an effective temperature range and preventing deterioration of the catalyst due to overheating and occurrence of heat loss. [0006] In order to achieve this object, the harmful gas heating and purifying apparatus of the present invention has a temperature sensor installed in each of the heat storage layers on both sides of the superheated portion. In the case where a catalyst is installed between the heating device and the heat storage element, a temperature sensor is installed between each catalyst and the heat storage layer or in the heat storage layer. In addition, two temperature sensors are switched to control the temperature of the heating device by these two temperature sensors,
There is a switching device for unifying the signal and transmitting it to the controller. Then, there is a method in which the output of the heating portion is controlled based on information from a temperature sensor installed between the catalyst layer and the heat storage layer on the windward side at that time as viewed from the heating portion or in the heat storage layer. A description will now be given of the heating control and the temperature distribution of the purifying portion according to this configuration. Temperature sensors are installed in the heat storage layers on both sides of the heating device, and the information from each temperature sensor is switched and used. The heating device is controlled based on information from a temperature sensor on the windward side as viewed from the heating device. That is, for example, when a harmful gas component can react at 300 ° C. by the action of a catalyst or a heat storage element, the temperature at which the heating device operates is controlled to 300 ° C. or less. When the temperature sensor indicates less than 300 ° C., the heating device is turned on. When the heating device works, its effect appears only on the leeward side, so once the temperature of the sensor part on the leeward side becomes lower than 300 ° C, the temperature will decrease more and more until the flow direction of the exhaust gas changes, and the heating device turns on. Will continue. The temperature of the temperature sensor on the leeward side rises because the exhaust gas heated by the heating device passes therethrough. After a certain period of time, the flow direction of the exhaust gas is switched, and the sensor for controlling the heating device is also switched. By such switching control, the heating device can maintain the temperature of the required portion of the catalyst or the heat storage at a predetermined temperature or higher. An embodiment of the present invention will be described below with reference to the drawings. Reference Example 1 FIG. 1 shows Reference Example 1. In FIG. 1, 1 is an exhaust gas inlet, 11
Indicates the outlet of the purified gas. Arrow 3 indicates the gas flow. Reference numeral 7 denotes a purification portion, and reference numeral 6 denotes a heat storage layer. 17 and 18 indicate temperature sensors. The control of the heating device (10) is performed based on information from these temperature sensors. (A) and (b) show information in which the flow direction of the gas in the purification section is reversed. First, in the case of FIG. 1A, the temperatures of the heating part and the heat storage body on both sides close to the heating part are set to the temperature at which the oxidizing reaction of the harmful gas occurs, and the information of the temperature sensor (18) on the windward side as viewed from the heating part is Turn on the heating device when the temperature is lower than the set temperature
To Next, the exhaust gas flow direction switching damper (1)
4, 15), and the temperature sensor for obtaining information for controlling the heating portion when the state of (b) is reached is switched to 17. As is clear from the figure, when the heating device is ON, the exhaust gas is heated by the heating device, but the effect is limited to the leeward side of the heating device. That is, after the temperature sensor on the windward side becomes lower than the set temperature, the heating device continues to be kept ON until the flow direction of the exhaust gas in the purification section (7) is reversed. The predetermined temperature will be kept. Reference Example 2 Next, Reference Example 2 is shown in FIG. This is different from the heating device (1
A catalyst (19) is provided between the heat storage layer (0) and each heat storage layer (6), and each temperature sensor is also provided between the heat storage layer and the catalyst. The control of the heating device uses a temperature sensor on the windward side, that is, 18 sensors in (a) and 17 sensors in (b) as information sources. FIG. 3 shows an embodiment of the present invention. This is designed so that the purifying portion is bent in a U-shape so that the inlet and the outlet of the exhaust gas are flush with each other, and the damper for reversing the gas flow direction of the purifying portion (7) is flat. It is a slide damper (4). Reference numerals 16, 17, and 18 indicate temperature sensors.
Although the heating device (10) is controlled by the temperature sensor (6), in the present invention, the control is performed by switching the sensors (17, 18). In the case of the exhaust gas flow direction of (a), 17,
In the case of the exhaust gas flow direction (b), information from 18 sensors is used. Each of the temperature sensors shows an example in which they are installed in the heat storage layer. FIG. 6 shows a comparison with a conventional example where the temperature sensor is installed, the temperature sensor is switched, and the heating device is controlled as in the present invention. This uses the apparatus shown in FIG. 3 and uses a temperature sensor 16 as a control method of a conventional heating apparatus. As a control method of the heating device of the present invention, the temperature sensors 17 and 18 were switched and controlled. As the heat storage material, 10 liters of alumina φ5 granular material (each 3 liters on the heating device side from the temperature sensor) were used, and 3 liters of catalyst each having Pt adhered to the surface of alumina φ4 were used. The flow rate of the exhaust gas was 1 m3 / min, and the switching time of the flow direction was 1 minute. The measurement point of the temperature curve in FIG. 6 is point A in FIG. 3, and point B is symmetrical and deviates from the half cycle time axis, but MAX and MIN of the temperature have the same value.
FIG. 6 shows the result of adjusting the control temperature of the heating device in order to keep the temperature at the point A (B) at MIN 300 ° C.
300 ° C could be kept. On the other hand, as shown in 52, in the present invention, the temperature at the point A (B) is set to MIN30 by setting the temperature set by the temperature sensors 17 and 18 to 300 ° C.
It was able to reach 0 ° C. At this time, as apparent from FIG. 6, the MAX temperature exceeds 450 ° C. in the conventional example, but stays at 360 ° C. in the present invention. As described above, according to the present invention, the temperature of the catalyst portion can be brought to a required temperature with minimum heating, and the deterioration of the catalyst can be reduced because the temperature does not become abnormally high. it can.

【図面の簡単な説明】 【図1】(a) 参考例1における有害ガス加熱浄化装
置を示す図 (b) 同装置で排気ガスの流れを逆転した状態を示す
図 【図2】(a) 参考例2における触媒を用いた有害ガ
ス加熱浄化装置を示す図 (b) 同装置で排気ガスの流れを逆転した状態を示す
図 【図3】(a) 本発明の実施例における触媒を用いた
有害ガス加熱浄化装置を示す図 (b) 同装置で排気ガスの流れを逆転した状態を示す
図 【図4】(a) 従来の触媒浄化装置本体の構成を示す
図 (b) 熱交換機も含めた従来の触媒浄化システム全体
の構成を示す図 【図5】(a) 従来の蓄熱体を用いた浄化装置を示す
図 (b) 同装置の排気ガスの流れを逆転した状態を示す
図 【図6】加熱装置の制御温度を調整したときの様子を示
す図 【符号の説明】 6 蓄熱体層 10 加熱装置 16、17、18 温度センサー 3 ガスの流れ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a diagram showing a harmful gas heating / purifying device in Reference Example 1 (b) is a diagram showing a state where the flow of exhaust gas is reversed by the same device FIG. 2 (a) FIG. 3 (b) shows a harmful gas heating and purifying apparatus using a catalyst in Reference Example 2 FIG. 3 (a) shows a state in which the flow of exhaust gas is reversed by the same apparatus FIG. Diagram showing a harmful gas heating purification device (b) Diagram showing a state in which the flow of exhaust gas is reversed by the device [FIG. 4] (a) Diagram showing the configuration of a conventional catalyst purification device main body (b) including heat exchanger FIG. 5 (a) is a diagram showing a conventional purifying device using a heat storage element, and FIG. 5 (b) is a diagram showing a state in which the flow of exhaust gas of the device is reversed. 6 is a diagram showing a state when the control temperature of the heating device is adjusted. [Description of References] Heating layer 10 Heating devices 16, 17, 18 Temperature sensor 3 Gas flow

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/36 103Z F23J 15/00 H (58)調査した分野(Int.Cl.7,DB名) B01D 53/00 - 53/96 ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 7 identification code FI B01D 53/36 103Z F23J 15/00 H (58) Field surveyed (Int.Cl. 7 , DB name) B01D 53/00-53 / 96

Claims (1)

(57)【特許請求の範囲】 【請求項1】 有害ガスを含んだガスを加熱することに
よって浄化する装置であって、ガスが通過する流路と加
熱装置とを備えた浄化部を有し、前記浄化部は一端が開
口し他端が閉じているとともに閉じている部分で互いに
連通した2室からなっており、前記2室のそれぞれの室
の開口部側には蓄熱体層が、閉じられた側には加熱装置
がそれぞれ配置され、蓄熱体層と加熱装置との間には触
媒層が配置されており、それぞれの室の開口部はそれぞ
れスライドダンパ−を介して、2つの異なる流路と連通
しており、前記浄化部のそれぞれの室の流路の1つはガ
スの入口と連通し、それぞれの室のもう一方の流路はガ
スの出口と連通しており、ダンパーを切り替えることに
よってガスの流れ方向を逆転させることができる構造で
あり、前記2室のそれぞれの蓄熱体層の中に温度を検出
する温度センサーを配置し、これらの温度センサーのう
ち加熱装置から見て風上側の蓄熱体層の中に設置した温
度センサーからの情報で前記加熱装置の出力制御を行う
ことを特徴とした有害ガス加熱浄化装置。
(57) [Claim 1] An apparatus for purifying by heating a gas containing a harmful gas, comprising a purifying section having a flow path through which the gas passes and a heating device. The purifying section is composed of two chambers that are open at one end and closed at the other end and communicate with each other at a closed portion. A heat storage layer is closed on the opening side of each of the two chambers. A heating device is disposed on each of the sides, and a catalyst layer is disposed between the heat storage layer and the heating device. The openings of the respective chambers are respectively provided with two different flows through slide dampers. One of the flow passages in each chamber of the purification section is in communication with the gas inlet, and the other flow passage in each of the chambers is in communication with the gas outlet, and switches the damper. This allows the gas flow direction to be reversed. A temperature sensor for detecting a temperature is disposed in each of the heat storage layers of the two chambers, and a temperature sensor installed in the heat storage layer on the windward side as viewed from the heating device among these temperature sensors. The harmful gas heating and purifying apparatus characterized in that the output of the heating apparatus is controlled based on the information of:
JP28275395A 1995-10-31 1995-10-31 Noxious gas heating purification equipment Expired - Lifetime JP3500802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28275395A JP3500802B2 (en) 1995-10-31 1995-10-31 Noxious gas heating purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28275395A JP3500802B2 (en) 1995-10-31 1995-10-31 Noxious gas heating purification equipment

Publications (2)

Publication Number Publication Date
JPH09122445A JPH09122445A (en) 1997-05-13
JP3500802B2 true JP3500802B2 (en) 2004-02-23

Family

ID=17656619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28275395A Expired - Lifetime JP3500802B2 (en) 1995-10-31 1995-10-31 Noxious gas heating purification equipment

Country Status (1)

Country Link
JP (1) JP3500802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215375B2 (en) * 2000-04-26 2009-01-28 株式会社大気社 Regenerative combustion gas processing equipment
KR100458931B1 (en) * 2001-09-07 2004-12-03 대양환경(주) Rotary Regenerative NOx Abatement System with Distribution Wings

Also Published As

Publication number Publication date
JPH09122445A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US6280691B1 (en) Indoor air purification system
JP2004530488A (en) High performance air cleaning system and method
JPH10513526A (en) Performance improvement of manifold catalysts in automotive exhaust systems
JPH10267248A (en) Catalyst type exhaust gas processor
JP3250645B2 (en) Exhaust gas purification equipment
JP2007309535A (en) Exhaust gas treatment device for metal scrap melting furnace
JP3500802B2 (en) Noxious gas heating purification equipment
JPH04326924A (en) Intermittent type apparatus and method for purifying catalyst
JP3961639B2 (en) Hazardous gas purification apparatus and method having a buffer
JP5165838B2 (en) Gas treatment system
JP2616516B2 (en) Harmful component heating purification device and purification method
JP2789871B2 (en) Catalyst purification device
JP2743632B2 (en) Noxious gas heating purification equipment
JPH10128048A (en) Dilute organic solvent gas treating device
JP2734824B2 (en) Noxious gas heating purification equipment
JP2734823B2 (en) Noxious gas heating purification equipment
JP2720648B2 (en) Hazardous gas heating purification apparatus and operation method thereof
JPH09122446A (en) Gas heating and purifying apparatus
JPH08155253A (en) Control of concentration ratio in concentration type deodorizer
JP2743641B2 (en) Catalyst purification device
JP2831910B2 (en) Method for regenerating CO oxidation catalyst
JP2692425B2 (en) Catalyst purification device and purification method
JP3378559B2 (en) Diesel engine black smoke purification device
JPH04326941A (en) Catalytic cleaning apparatus and cleaning method
JP2501616Y2 (en) Exhaust gas treatment device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141212

Year of fee payment: 11

EXPY Cancellation because of completion of term