JPH08155253A - Control of concentration ratio in concentration type deodorizer - Google Patents

Control of concentration ratio in concentration type deodorizer

Info

Publication number
JPH08155253A
JPH08155253A JP6330570A JP33057094A JPH08155253A JP H08155253 A JPH08155253 A JP H08155253A JP 6330570 A JP6330570 A JP 6330570A JP 33057094 A JP33057094 A JP 33057094A JP H08155253 A JPH08155253 A JP H08155253A
Authority
JP
Japan
Prior art keywords
regeneration
zone
concentration
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6330570A
Other languages
Japanese (ja)
Inventor
Takao Komatsu
隆夫 小松
Tomomi Yamauchi
奉身 山内
Takehiko Ito
武彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6330570A priority Critical patent/JPH08155253A/en
Publication of JPH08155253A publication Critical patent/JPH08155253A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To control concentrating ratio of gas concn. of the heated air for regeneration by circulating a part of the heated air for regeneration fed into a regenerating zone from a cooling zone through a heating zone. CONSTITUTION: After air for cooling is passed through a cooling zone 4, it is heated to a specified temp. by means of a heater 6 and is introduced into a regenerating zone 3. The regenerated gas going out from the regenerating zone 3 is divided at the rear stage of a fan 8 and a part thereof is returned to the heater 6 and is circulated. It is possible thereby to increase the amt. of heated air for regeneration without being restricted by the concentrating ratio and a perfect regeneration is performed. In addition, the amt. of circulating air is adjusted by means of an air flow adjusting damper 10 arranged in a flow path between the cooling zone 4 and the heater 6 and an air flow adjusting damper 11 arranged in a branched path on the downstream of the fan 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃縮式脱臭装置におけ
る濃縮倍率の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a concentration ratio in a concentration type deodorizing device.

【0002】[0002]

【従来の技術】悪臭の素となる揮発性有機化合物(VO
C)(以下、VOCという)の処理装置として、燃焼
法、吸着法、生物法等があるが、ガス濃度が低く、大風
量の排ガスに対しては、これらの方法では、設備費並び
に運転費が高くなるためにあまり採用されてない。一般
には、これらの排ガスを濃縮してガス量を減少させ、こ
れを燃焼処理する方法が採られている。
2. Description of the Related Art Volatile organic compounds (VO
C) (hereinafter, referred to as VOC) treatment device includes combustion method, adsorption method, biological method, etc., but with respect to exhaust gas with low gas concentration and large air volume, these methods require equipment cost and operation cost. It is not often used because it becomes high. Generally, a method is adopted in which these exhaust gases are concentrated to reduce the amount of gas and the exhaust gas is burned.

【0003】低濃度かつ大風量の排ガスの濃縮方法とし
て従来から広く採用されている方法は、VOCを吸着す
る機能を持った吸着体、例えば、活性炭やゼオライト等
を担持したハニカムロータにVOCを一旦吸着させ、こ
れを少量の加熱空気で脱着することによって行われてい
る。
A method which has been widely adopted as a method for concentrating exhaust gas having a low concentration and a large air volume has been that a VOC is once adsorbed on an adsorbent having a function of adsorbing VOC, for example, a honeycomb rotor carrying activated carbon or zeolite. It is adsorbed and desorbed with a small amount of heated air.

【0004】この濃縮のメカニズムを図5、図6に示
す。図5は、濃縮式脱臭装置の概略斜視図であり、図6
は、濃縮式脱臭装置の模式図である。図5において、濃
縮装置の構造体であるハニカムロータ1は、駆動モータ
5によって矢印Aで示す反時計方向に連続的に一定速度
で回転される。ハニカムロータ1は、VOCを吸着する
吸着ゾーン2、吸着したVOCを脱着してハニカムロー
タの吸着能力を回復させる再生ゾーン3、並びに再生ゾ
ーンで加熱されたハニカムロータを冷却する冷却ゾーン
4に分割されている。また、各ゾーンは相互にガスのリ
ーク(漏れ)が生じないようにシール構造(図示せず)
が施されている。
The mechanism of this concentration is shown in FIGS. FIG. 5 is a schematic perspective view of the concentration type deodorizing device, and FIG.
FIG. 3 is a schematic diagram of a concentration type deodorizing device. In FIG. 5, the honeycomb rotor 1, which is the structure of the concentrating device, is continuously rotated in the counterclockwise direction indicated by arrow A at a constant speed by the drive motor 5. The honeycomb rotor 1 is divided into an adsorption zone 2 for adsorbing VOCs, a regeneration zone 3 for desorbing the adsorbed VOCs to restore the adsorption ability of the honeycomb rotor, and a cooling zone 4 for cooling the honeycomb rotor heated in the regeneration zone. ing. In addition, each zone has a seal structure (not shown) to prevent gas leaks from occurring.
Is given.

【0005】ハニカムロータの部分は、その回転により
吸着ゾーン2、再生ゾーン3、並びに冷却ゾーン4の順
で連続的に移動させられる。対象となる処理ガスは、矢
印Bで示す方向に、吸着ゾーンを通されて、このガスに
含まれるVOCはハニカムロータに配置された吸着体に
吸着され、清浄(浄化)ガスとなり、大気に放出され
る。VOCを吸着したハニカムロータの部分は再生ゾー
ンに入り、この再生ゾーンでは、処理ガスの量と比べる
と少量である、加熱ヒータ6で加熱された加熱空気がハ
ニカムロータの部分に通されて、ハニカムロータに吸着
したVOCが脱着されて濃縮ガスとなる。
The rotation of the honeycomb rotor portion causes the adsorption zone 2, the regeneration zone 3 and the cooling zone 4 to move continuously in this order. The target processing gas is passed through the adsorption zone in the direction indicated by the arrow B, and the VOC contained in this gas is adsorbed by the adsorbent arranged in the honeycomb rotor, becomes a clean (purified) gas, and is released to the atmosphere. To be done. The portion of the honeycomb rotor that has adsorbed the VOCs enters the regeneration zone, and in this regeneration zone, a small amount of the heating air heated by the heater 6 is passed through the portion of the honeycomb rotor, The VOCs adsorbed on the rotor are desorbed and become concentrated gas.

【0006】VOCを加熱空気で脱着する際に、ハニカ
ムロータも当然加熱されるので、VOCを吸着する吸着
体の吸着能力が大幅に低下する。吸着能力を回復させる
ために、ハニカムロータの部分は、次の冷却ゾーンで大
気空気を通されることによって冷却され、再び吸着ゾー
ンに移動する。
Since the honeycomb rotor is naturally heated when desorbing VOCs with heated air, the adsorption capacity of the adsorbent for adsorbing VOCs is greatly reduced. In order to restore the adsorption capacity, the part of the honeycomb rotor is cooled by passing atmospheric air in the next cooling zone and moves to the adsorption zone again.

【0007】一般に、再生(脱着)を行う空気と冷却を
行う空気は、廃熱を回収するために、一連の流れとして
使用される。即ち、大気空気は冷却ゾーンに入り、ここ
で、ハニカムロータに蓄熱された顕熱を受けて温風とな
り、矢印Cで示すように、加熱ヒータ6に入り、この加
熱ヒータ6で、再生に必要な温度まで加熱され、再生ゾ
ーンに入り、矢印Dで示すように濃縮ガスとして取り出
される。再生ゾーンで脱着されたVOCを含む濃縮ガス
は、その後、触媒燃焼または直接燃焼法により処理され
る。
Generally, the air for regeneration (desorption) and the air for cooling are used as a series of streams to recover waste heat. That is, the atmospheric air enters the cooling zone, where it receives the sensible heat accumulated in the honeycomb rotor to become warm air, enters the heater 6 as indicated by arrow C, and is required by the heater 6 for regeneration. It is heated to a certain temperature, enters the regeneration zone, and is taken out as a concentrated gas as shown by arrow D. The enriched gas containing VOCs desorbed in the regeneration zone is then processed by catalytic combustion or direct combustion methods.

【0008】[0008]

【発明が解決しようとする課題】吸着体による濃縮現象
では、それぞれ、吸着は発熱現象であり、再生(脱着)
は吸熱現象である。このため、再生に必要な熱量は、V
OCを脱着する熱量とハニカムロータを加熱する熱量が
必要となる。しかるに、再生用の加熱空気の温度は、装
置の耐熱温度(特にシーリング材等)からの制約を受
け、また、高温下でのガス成分の変質および重合反応に
よる吸着体への悪影響などからも制約を受ける。このた
め、必要最低の温度が望ましい。また、同時に、再生加
熱空気量にも濃縮倍率の面から当然制約を受ける。この
ため、ガス成分を吸着したハニカムロータを完全に再生
するために必要な十分な熱量は、前述した制約条件の下
で与えなければならない。
In the concentration phenomenon by the adsorbent, the adsorption is an exothermic phenomenon, and the regeneration (desorption) is caused.
Is an endothermic phenomenon. Therefore, the amount of heat required for regeneration is V
The amount of heat for desorption of OC and the amount of heat for heating the honeycomb rotor are required. However, the temperature of the heated air for regeneration is restricted by the heat-resistant temperature of the equipment (particularly the sealing material), and is also restricted by the deterioration of the gas components at high temperatures and the adverse effect on the adsorbent due to the polymerization reaction. Receive. Therefore, the minimum required temperature is desirable. At the same time, of course, the amount of regenerated heating air is naturally limited in terms of the concentration ratio. Therefore, a sufficient amount of heat required to completely regenerate the honeycomb rotor that has adsorbed the gas component must be given under the above-mentioned constraint condition.

【0009】一般に、濃縮式脱臭装置の濃縮倍率は、5
〜15倍である。また、この濃縮倍率は、対象とする処
理ガスの条件等により決定される。また、同時に、処理
ガスの濃度が変動すると、濃縮されたガスの濃度も処理
ガスの濃度に比例して変動する。即ち、処理ガス量の1
/5〜1/15に決定された空気を冷却ゾーンに導入
し、この冷却ゾーンで、再生ゾーンで加熱されたハニカ
ムロータを冷却する。その後、さらにこれが加熱ヒータ
6で所定の温度まで加熱されて再生ゾーンに入り、ハニ
カムロータに吸着されたVOCを脱着して濃縮ガスとな
る。
Generally, the concentration ratio of the concentration type deodorizing device is 5
~ 15 times. Further, this concentration ratio is determined by the conditions of the target processing gas and the like. At the same time, if the concentration of the processing gas changes, the concentration of the concentrated gas also changes in proportion to the concentration of the processing gas. That is, one of the processing gas amount
The air determined to be / 5 to 1/15 is introduced into the cooling zone, and the honeycomb rotor heated in the regeneration zone is cooled in this cooling zone. After that, this is further heated to a predetermined temperature by the heater 6 and enters the regeneration zone, and the VOC adsorbed on the honeycomb rotor is desorbed to become a concentrated gas.

【0010】濃縮倍率が高くなると、再生用加熱空気量
が少なくなるため、十分な熱量が得られず、完全な再生
が行われない。即ち、十分な熱量が与えられないと、再
生は再生加熱空気の導入面近傍となり、下流面の再生は
不十分となり、ハニカムロータの吸着機能は十分に回復
しない。また、再生加熱空気温度をあまり高くすると、
処理ガスの成分の変質、重合等の恐れもあり、ハニカム
ロータにも好ましくなく、さらに装置の耐熱温度からも
制約を受ける。
When the concentration ratio becomes high, the amount of heating air for regeneration becomes small, so that a sufficient amount of heat cannot be obtained and complete regeneration cannot be performed. That is, if a sufficient amount of heat is not applied, the regeneration is near the surface where the regenerated heated air is introduced, the regeneration on the downstream side is insufficient, and the adsorption function of the honeycomb rotor is not sufficiently restored. Moreover, if the temperature of the regenerated heating air is too high,
There is also a risk of deterioration of the components of the processing gas, polymerization, etc., which is not preferable for the honeycomb rotor and is also restricted by the heat resistant temperature of the apparatus.

【0011】なお、図6において、符号8で示すもの
は、再生用ファンであり、9で示すものは、風量調節用
ダンパである。
In FIG. 6, reference numeral 8 is a reproducing fan, and reference numeral 9 is an air volume adjusting damper.

【0012】したがって、本発明の目的は、濃縮倍率を
任意に制御する制御方法並びに処理ガスの濃度変化に影
響されずに一定のガス濃度に維持するように制御する制
御方法を提供することにある。
Therefore, an object of the present invention is to provide a control method for arbitrarily controlling the concentration ratio and a control method for controlling so as to maintain a constant gas concentration without being affected by a change in the concentration of the processing gas. .

【0013】[0013]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明は、吸着ゾーン、再生ゾーンおよび冷却ゾ
ーンに分割されたハニカムロータを有する濃縮式脱臭装
置における濃縮倍率の制御方法において、冷却ゾーンか
ら加熱ヒータを通って再生ゾーンに供給される再生用加
熱空気の一部を循環することにより、再生用加熱空気の
ガス濃度の濃縮倍率を制御することを特徴とする方法を
採用するものである。
In order to achieve the above-mentioned object, the present invention provides a method for controlling a concentration ratio in a concentration type deodorizing device having a honeycomb rotor divided into an adsorption zone, a regeneration zone and a cooling zone, A method characterized by controlling the concentration ratio of the gas concentration of the heating air for regeneration by circulating a part of the heating air for regeneration supplied from the cooling zone to the regeneration zone through the heater. Is.

【0014】[0014]

【実施例】次に、本発明の実施例を説明する。EXAMPLES Next, examples of the present invention will be described.

【0015】(実施例1)図1は、本発明の方法の実施
例1の模式フロー図である。なお、実施例1を含む以下
の各実施例において、従来例で用いられている部材と同
様な機能および構成を持つ部材は、同一の符号を付して
ある。
Example 1 FIG. 1 is a schematic flow chart of Example 1 of the method of the present invention. In each of the following examples including the first example, members having the same functions and configurations as the members used in the conventional example are designated by the same reference numerals.

【0016】図1において、冷却空気は、冷却ゾーン4
を通された後、加熱ヒータ6で所定の温度に加熱され、
再生ゾーン3に入る。再生ゾーン6を出た再生ガスはフ
ァン8の後段で分岐され、その一部が加熱ヒータ6に戻
り循環するようになっている。これによって、濃縮倍率
に拘束されることなく再生用加熱空気量を増大させるこ
とが可能となり、完全な再生が行われる。なお、循環の
風量は、冷却ゾーン4と加熱ヒータ6の間の流路中に配
置された風量調整ダンパ10と、ファン8の下流で分岐
した分岐路中に配置した風量調整ダンパ11によって調
整される。
In FIG. 1, the cooling air is supplied to the cooling zone 4
After being passed through, it is heated to a predetermined temperature by the heater 6,
Enter playback zone 3. The regeneration gas that has exited the regeneration zone 6 is branched at the latter stage of the fan 8 and a part of it is returned to the heater 6 and circulated. This makes it possible to increase the amount of heating air for regeneration without being restricted by the concentration ratio, and complete regeneration is performed. The circulation air volume is adjusted by the air volume adjustment damper 10 arranged in the flow path between the cooling zone 4 and the heater 6 and the air volume adjustment damper 11 arranged in the branch path branched downstream of the fan 8. It

【0017】(実施例2)図2は、本発明の方法の実施
例2の模式フロー図である。この実施例2の方法は、ガ
ス濃度を任意の値に制御するためのものである。実施例
2は、図2から明らかなように、再生ゾーン3の下流に
濃度検出器12を設け、実施例1における風量調整ダン
パ10(冷却ゾーン4と加熱ヒータ6の間の流路中に配
置した)に変えて、自動風量調整ダンパ10’を設け
て、前記濃度検出器12によって検出した濃度に応じて
前記自動風量調整ダンパ10’を制御する点で、実施例
1とは異なっている。
Example 2 FIG. 2 is a schematic flow chart of Example 2 of the method of the present invention. The method of the second embodiment is for controlling the gas concentration to an arbitrary value. As is clear from FIG. 2, the second embodiment is provided with a concentration detector 12 downstream of the regeneration zone 3, and the air volume adjustment damper 10 (disposed in the flow path between the cooling zone 4 and the heater 6) in the first embodiment. However, it is different from the first embodiment in that an automatic air volume adjustment damper 10 'is provided and the automatic air volume adjustment damper 10' is controlled according to the concentration detected by the concentration detector 12.

【0018】濃度検出器12の設定値は、一般にVOC
ガスを燃焼処理する場合の上限濃度である爆発下限界の
1/3以下に選ばれる。この設定した値になるように、
自動風量調整ダンパ10’を制御することにより、ハニ
カムロータの完全な再生と同時に濃縮ガスの濃度を高濃
度にかつ一定に維持することが可能となる。
The set value of the concentration detector 12 is generally VOC.
It is selected to be 1/3 or less of the lower explosion limit, which is the upper limit of the gas combustion process. So that it will be this set value
By controlling the automatic air volume adjustment damper 10 ′, it becomes possible to completely regenerate the honeycomb rotor and simultaneously maintain the concentration of the concentrated gas at a high concentration and constant.

【0019】(実施例3)実施例2におけるように、濃
縮ガスの濃度を一定にすることは、処理ガスの濃度が変
動するため濃度ガス量もこれに伴い変動する。このた
め、冷却用空気を再生加熱空気として利用する場合に
は、冷却用空気の量は変動しかつ風量も減少する。その
結果、冷却ゾーンでの十分な冷却が難しくなり、冷却効
果が低下する。図3は、この冷却効果の低下を防止する
ための本発明の方法の実施例3の模式フロー図である。
この実施例3では、図3から明らかなように、実施例2
の構成に加えて、冷却用ファン13と、風量調整ダンパ
14を設ける。これにより、冷却用ファン13によっ
て、冷却に必要とするに十分な風量を取り込むことがで
き、冷却用に使用された空気量の一部(再生に必要な量
だけ)が自動風量調整ダンパ10’によって再生用加熱
空気となり、残りは大気に放出される。冷却用空気量の
調整は、風量調整ダンパ14によって調整される。
(Embodiment 3) When the concentration of the concentrated gas is kept constant as in the second embodiment, the concentration of the processing gas changes, and the amount of the concentration gas also changes accordingly. Therefore, when the cooling air is used as the regenerative heating air, the amount of the cooling air fluctuates and the air volume also decreases. As a result, sufficient cooling in the cooling zone becomes difficult, and the cooling effect decreases. FIG. 3 is a schematic flow chart of Example 3 of the method of the present invention for preventing the reduction of the cooling effect.
In this third embodiment, as is clear from FIG.
In addition to the above configuration, a cooling fan 13 and an air volume adjusting damper 14 are provided. As a result, the cooling fan 13 can take in a sufficient amount of air for cooling, and a part of the amount of air used for cooling (only the amount necessary for regeneration) can be automatically adjusted. To become heated air for regeneration, and the rest is released to the atmosphere. The amount of cooling air is adjusted by the air amount adjustment damper 14.

【0020】次に、本発明の効果を確認するために、従
来例と本発明を比較検討する。従来例の濃縮方法(図
5、図6)では、再生用加熱空気量が濃縮倍率で決めら
れるため、特に濃縮倍率が高くなると十分な熱量が得ら
れず、VOCを吸着したハニカムロータが完全に再生さ
れず、この結果、吸着効率が当然低下する。例えば、再
生用加熱空気の温度が160°Cの場合、濃縮倍率が高
くなると、再生用加熱空気量が減少し、再生ゾーンの出
口の温度は約40°C前後まで低下する。VOCの物性
にもよるが、再生空気温度が60°C以下になると、脱
着現象はあまり期待されず、ハニカムロータの再生ゾー
ンの下流側ではVOCは脱着されずに残留し、当然この
領域では吸着機能が失われる。
Next, in order to confirm the effect of the present invention, the conventional example and the present invention will be compared and examined. In the conventional concentration method (FIGS. 5 and 6), since the amount of heating air for regeneration is determined by the concentration ratio, a sufficient amount of heat cannot be obtained especially when the concentration ratio becomes high, and the honeycomb rotor that has adsorbed VOCs is completely It is not regenerated, and as a result, the adsorption efficiency is naturally lowered. For example, when the temperature of the heating air for regeneration is 160 ° C. and the concentration ratio increases, the amount of heating air for regeneration decreases and the outlet temperature of the regeneration zone decreases to about 40 ° C. Depending on the physical properties of the VOC, when the temperature of the regenerated air is 60 ° C or less, the desorption phenomenon is not expected so much, and the VOC remains without being desorbed on the downstream side of the regeneration zone of the honeycomb rotor. Loss of functionality.

【0021】図4は、吸着能力を説明するための模式図
である。図4aは、吸着能力が十分再生された吸着、再
生、冷却サイクルを示し、図4bは、再生が十分行われ
ない吸着、再生、冷却サイクルを示す。図4aの場合に
は、吸着能力に余裕があり、吸着効率は高い。図4bの
場合には、再生効率が低く、吸着能力が不十分であり、
当然吸着効率は低くなる。特に、破過領域(ニ)ができ
ると、効率は極端に低下する。なお、図4中、符号
(イ)はハニカムロータの厚みを示し、符号(ロ)はハ
ニカムロータの余裕領域を示し、符号(ハ)は実質上の
ハニカムロータの有効厚みを示す。また、図4中、ハッ
チング部分はVOCの吸着領域を示す。
FIG. 4 is a schematic diagram for explaining the adsorption capacity. FIG. 4a shows an adsorption, regeneration and cooling cycle with a sufficiently regenerated adsorption capacity, and FIG. 4b shows an adsorption, regeneration and cooling cycle with insufficient regeneration. In the case of FIG. 4a, the adsorption capacity has a margin and the adsorption efficiency is high. In the case of FIG. 4b, the regeneration efficiency is low and the adsorption capacity is insufficient,
Naturally, the adsorption efficiency becomes low. In particular, when a breakthrough region (d) is formed, the efficiency is extremely reduced. In FIG. 4, reference numeral (a) indicates the thickness of the honeycomb rotor, reference numeral (b) indicates the margin area of the honeycomb rotor, and reference numeral (c) indicates the effective thickness of the honeycomb rotor. Further, in FIG. 4, the hatched portion indicates the VOC adsorption area.

【0022】本発明では、限られた再生条件の下で、再
生ゾーンのハニカムロータの厚み方向の温度分布を均一
化して再生を行い、常に吸着ゾーンのハニカムロータを
図4aに示す状態に維持しようとするものである。
In the present invention, under the limited regeneration conditions, the temperature distribution in the thickness direction of the honeycomb rotor in the regeneration zone is made uniform, and the honeycomb rotor in the adsorption zone is always maintained in the state shown in FIG. 4a. It is what

【0023】(実験例)次に、本発明の方法と従来例の
方法を比較するための実験例を説明する。別紙の表1
は、この実験結果を表す。なお、表1中、従来方式は、
図5、図6で示す方法のものであり、再生加熱空気循環
方式は、図1、図2で示す実施例1、実施例2の方法の
ものであり、再生ガス濃度設定方式は、図3で示す実施
例3の方法のものである。また実験で用いた処理ガスの
詳細は以下の通りである。 処理ガス仕様 処理ガス量 1,800 m3 N/min ガス組成 トルエン、キシレン ガス濃度 50〜200 ppm ガス温度 30 °C
(Experimental Example) Next, an experimental example for comparing the method of the present invention with the conventional method will be described. Attachment 1
Represents the result of this experiment. In Table 1, the conventional method is
The method shown in FIGS. 5 and 6 is used, the regeneration heating air circulation method is the method of Example 1 and Example 2 shown in FIGS. 1 and 2, and the regeneration gas concentration setting method is shown in FIG. The method of Example 3 shown in FIG. The details of the processing gas used in the experiment are as follows. Processing gas specifications Processing gas amount 1800 m 3 N / min Gas composition Toluene and xylene Gas concentration 50 to 200 ppm Gas temperature 30 ° C

【0024】表1から明らかなように、処理ガス条件に
対してハニカムロータの吸着能力が十分であっても、従
来方式では、再生に必要なエネルギーがハニカムロータ
に与えられず、再生が不十分となり、吸着効率は下が
る。再生加熱空気循環方式では、ハニカムロータに十分
な熱エネルギーが与えられるため、完全な再生が可能と
なり、吸着効率が向上する。このため、処理ガス出口濃
度も低くなり、また再生ガス濃度は多少上がる。再生ガ
ス濃度設定方式では、再生加熱空気循環方式と同様に、
再生が完全となり、吸着効率が向上する。再生ガス濃度
は設定濃度の2,500ppmとなり、再生ガス量は3
5.6〜142.6m3 N/minとなる。従来方式で
は、処理ガス濃度が極低濃度である場合を除き、濃縮倍
率は10倍前後が限界である。
As is clear from Table 1, even if the adsorption capacity of the honeycomb rotor is sufficient for the processing gas conditions, the conventional method does not give the energy required for regeneration to the honeycomb rotor and the regeneration is insufficient. Therefore, the adsorption efficiency decreases. In the regenerated heated air circulation method, since sufficient heat energy is applied to the honeycomb rotor, complete regeneration is possible and adsorption efficiency is improved. Therefore, the concentration of the processing gas at the outlet becomes low, and the concentration of the regeneration gas becomes slightly high. The regeneration gas concentration setting method, like the regeneration heating air circulation method,
The regeneration is complete and the adsorption efficiency is improved. The regeneration gas concentration is 2,500 ppm, which is the set concentration, and the regeneration gas amount is 3
It becomes 5.6-142.6 m < 3 > N / min. In the conventional method, the concentration ratio is limited to about 10 times, except when the processing gas concentration is extremely low.

【0025】[0025]

【発明の効果】以上説明したように、本発明では、再生
加熱空気を循環させているので、再生が完全に行われる
ために、吸着効率が向上する。
As described above, in the present invention, since the regenerated heated air is circulated, the regeneration is completely performed, so that the adsorption efficiency is improved.

【0026】さらに、再生ガス量を任意に設定できるの
で、極低濃度の処理ガスであっても濃縮倍率を任意に設
定することが可能となる。このように再生ガス量を任意
に設定できるので、処理ガス量並びにガス濃度の変動に
関係なく自燃可能な濃度に設定することによって再生ガ
ス量も減少し、このため設備規模が縮小し、また、特に
これを触媒燃焼処理する場合には、予熱用燃料がほとん
ど不用(運転開始時のみ必要)となり運転費の大幅な低
減が可能となる。
Furthermore, since the amount of regenerated gas can be set arbitrarily, it is possible to set the concentration ratio arbitrarily even for a processing gas having an extremely low concentration. Since the amount of regenerated gas can be set arbitrarily in this way, the amount of regenerated gas also decreases by setting the concentration to be self-combustible regardless of fluctuations in the amount of treated gas and the gas concentration, which reduces the facility scale, and In particular, when this is subjected to catalytic combustion treatment, the preheating fuel is almost unnecessary (necessary only at the start of operation), and the operating cost can be greatly reduced.

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の方法の実施例1の模式フロー
図である。
FIG. 1 is a schematic flow chart of Example 1 of the method of the present invention.

【図2】図2は、本発明の方法の実施例2の模式フロー
図である。
FIG. 2 is a schematic flow chart of Example 2 of the method of the present invention.

【図3】図3は、本発明の方法の実施例3の模式フロー
図である。
FIG. 3 is a schematic flow chart of Example 3 of the method of the present invention.

【図4】図4は、吸着能力を説明するための模式図であ
る。
FIG. 4 is a schematic diagram for explaining adsorption capacity.

【図5】図5は、従来例の濃縮式脱臭装置の概略斜視図
である。
FIG. 5 is a schematic perspective view of a conventional concentrated deodorizing device.

【図6】図6は、従来例の方法の模式フロー図である。FIG. 6 is a schematic flow chart of a conventional method.

【符号の説明】[Explanation of symbols]

1 ハニカムロータ 2 吸着ゾーン 3 再生ゾーン、 4 冷却ゾーン 6 加熱ヒータ 8 再生用ファン 9 風量調整ダンパ 10 風量調整ダンパ 10’自動風量調整ダンパ 11 風量調整ダンパ 12 濃度検出器 13 ファン 14 風量調整ダンパ 1 Honeycomb rotor 2 Adsorption zone 3 Regeneration zone, 4 Cooling zone 6 Heating heater 8 Regeneration fan 9 Air volume adjustment damper 10 Air volume adjustment damper 10 'Automatic air volume adjustment damper 11 Air volume adjustment damper 12 Concentration detector 13 Fan 14 Air volume adjustment damper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01D 53/34 ZAB

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸着ゾーン、再生ゾーンおよび冷却ゾー
ンに分割されたハニカムロータを有する濃縮式脱臭装置
における濃縮倍率の制御方法において、冷却ゾーンから
加熱ヒータを通って再生ゾーンに供給される再生用加熱
空気の一部を循環することにより、再生用加熱空気のガ
ス濃度の濃縮倍率を制御することを特徴とする方法。
1. A method for controlling a concentration ratio in a concentration type deodorizing device having a honeycomb rotor divided into an adsorption zone, a regeneration zone and a cooling zone, wherein regeneration heating is supplied from the cooling zone to a regeneration zone through a heater. A method for controlling the concentration ratio of the gas concentration of the heating air for regeneration by circulating a part of the air.
【請求項2】 請求項1記載の方法において、前記再生
用加熱空気の一部の循環は、再生ゾーンの下流から分岐
して再生ゾーンの上流に至る分岐路によって行われるこ
とを特徴とする方法。
2. The method according to claim 1, wherein a part of the circulation of the heating air for regeneration is performed by a branch path branching from a downstream side of the regeneration zone to an upstream side of the regeneration zone. .
【請求項3】 請求項1記載の方法において、前記再生
用加熱空気のガス濃度を再生ゾーンの下流で検出し、検
出結果に基づいて再生用加熱空気のガス濃度を制御する
ことを特徴とする方法。
3. The method according to claim 1, wherein the gas concentration of the heating air for regeneration is detected downstream of the regeneration zone, and the gas concentration of the heating air for regeneration is controlled based on the detection result. Method.
【請求項4】 請求項3記載の方法において、前記ガス
濃度の制御は、冷却冷却ゾーンと加熱ヒータの間に設け
られかつ再生ガスのガス濃度を検出する濃度検出器から
の信号で制御される自動風量調整ダンパによって行われ
ることを特徴とする方法。
4. The method according to claim 3, wherein the control of the gas concentration is controlled by a signal from a concentration detector provided between the cooling / cooling zone and the heater and detecting the gas concentration of the regenerated gas. A method characterized by being performed by an automatic air volume adjustment damper.
【請求項5】 請求項4記載の方法において、前記再生
ガスのガス濃度は爆発下限界の1/3以下に設定される
ことを特徴とする方法。
5. The method according to claim 4, wherein the gas concentration of the regeneration gas is set to 1/3 or less of the lower explosion limit.
【請求項6】 請求項1記載の方法において、冷却ゾー
ンを通る冷却用空気の一部を分岐して再生用加熱空気と
して使用することを特徴とする方法。
6. The method according to claim 1, wherein a part of the cooling air passing through the cooling zone is branched and used as heating air for regeneration.
JP6330570A 1994-12-07 1994-12-07 Control of concentration ratio in concentration type deodorizer Pending JPH08155253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330570A JPH08155253A (en) 1994-12-07 1994-12-07 Control of concentration ratio in concentration type deodorizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330570A JPH08155253A (en) 1994-12-07 1994-12-07 Control of concentration ratio in concentration type deodorizer

Publications (1)

Publication Number Publication Date
JPH08155253A true JPH08155253A (en) 1996-06-18

Family

ID=18234134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330570A Pending JPH08155253A (en) 1994-12-07 1994-12-07 Control of concentration ratio in concentration type deodorizer

Country Status (1)

Country Link
JP (1) JPH08155253A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187698A (en) * 2005-01-04 2006-07-20 Seibu Giken Co Ltd Organic solvent gas treatment device
JP2009160484A (en) * 2007-12-28 2009-07-23 Toyobo Co Ltd Organic solvent containing gas treatment system
JP2009291723A (en) * 2008-06-05 2009-12-17 Kanken Techno Co Ltd Voc removing apparatus and voc removing method
WO2011021637A1 (en) * 2009-08-18 2011-02-24 東洋紡績株式会社 Organic solvent recovery system
JP2011062687A (en) * 2009-08-18 2011-03-31 Toyobo Co Ltd Organic solvent recovery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187698A (en) * 2005-01-04 2006-07-20 Seibu Giken Co Ltd Organic solvent gas treatment device
JP2009160484A (en) * 2007-12-28 2009-07-23 Toyobo Co Ltd Organic solvent containing gas treatment system
JP2009291723A (en) * 2008-06-05 2009-12-17 Kanken Techno Co Ltd Voc removing apparatus and voc removing method
WO2011021637A1 (en) * 2009-08-18 2011-02-24 東洋紡績株式会社 Organic solvent recovery system
JP2011062687A (en) * 2009-08-18 2011-03-31 Toyobo Co Ltd Organic solvent recovery system

Similar Documents

Publication Publication Date Title
US6294000B1 (en) Rotary concentrator and method of processing adsorbable pollutants
EP0920900B1 (en) Gas treating apparatus
US4203734A (en) Method and apparatus for the selective adsorption of vaporous or gaseous impurities from other gases
JPS5827480B2 (en) Dehumidification tower regeneration method for rare gas hold-up equipment
JPH06343819A (en) Dry type dehumidifying device
JP2011031159A (en) Organic solvent recovery system
KR101796242B1 (en) Method and apparatus for controling apparatus of exhaust sintering gas cleaning system
US5891323A (en) Purification process
JPH08155253A (en) Control of concentration ratio in concentration type deodorizer
JP7280694B2 (en) Adsorbent regeneration device, VOC recovery device, VOC recovery system, and adsorbent regeneration method
JPH08155252A (en) Improvement of regeneration efficiency in concentration type deodorizer
JP3894238B2 (en) Low concentration organic solvent gas processing equipment
JPH05200233A (en) Dry dehumidifier
JP2007014885A (en) Gas treating system
JP3363030B2 (en) Low-concentration organic solvent gas processing apparatus and processing method
JP2021169097A (en) Organic solvent gas concentration device
JPH04135611A (en) Device for removing carbon dioxide
JPH07256048A (en) Deodorizing apparatus
JPS60820A (en) Deodorizing treatment of odorous gas
EP0793526B1 (en) Method and apparatus for purification of ventilating air
US20230059807A1 (en) Plant and method for treating an aeriform effluent
JPH11502770A (en) Purification of gas, especially saturated with chemical residues
JP3531187B2 (en) Deodorizing device and deodorizing method
JPH081075Y2 (en) Volatile scatter remover
JPH10128047A (en) Treatment of dilute organic solvent gas and treating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120