JPH08155252A - Improvement of regeneration efficiency in concentration type deodorizer - Google Patents

Improvement of regeneration efficiency in concentration type deodorizer

Info

Publication number
JPH08155252A
JPH08155252A JP6330569A JP33056994A JPH08155252A JP H08155252 A JPH08155252 A JP H08155252A JP 6330569 A JP6330569 A JP 6330569A JP 33056994 A JP33056994 A JP 33056994A JP H08155252 A JPH08155252 A JP H08155252A
Authority
JP
Japan
Prior art keywords
regeneration
zone
heating air
zones
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6330569A
Other languages
Japanese (ja)
Inventor
Takao Komatsu
隆夫 小松
Tomomi Yamauchi
奉身 山内
Takehiko Ito
武彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6330569A priority Critical patent/JPH08155252A/en
Publication of JPH08155252A publication Critical patent/JPH08155252A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means

Abstract

PURPOSE: To give an enough amt. of heat being not too high temp. and to improve regeneration efficiency by partitioning a regenerating zone into a plurality of regenerating zones in the circumferential direction and making a heated air for regeneration flow in each regenerating zone. CONSTITUTION: A regenerating zone 3 is partitioned into a plurality of zones in the circumferential direction, e.g. into two zones. In addition, two partitioned regenerating zones are sealed so as to exhibit no leakage each other. Heated air for regeneration heated at a specified temp. by means of a heater 6 is continuously passed through the regenerating zone 3a adjoining to an adsorbing zone at first, and then, it is passed through the regenerating zone 3b adjoining to a cooling zone in the opposite direction to the direction of the heated air passing through the regenerating zone 3a. Temp. distribution of a honeycomb rotor in the thickness direction is uniformed thereby and improvement of regeneration efficiency is attempted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃縮式脱臭装置におけ
る再生効率を高める方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for enhancing the regeneration efficiency in a concentration type deodorizing device.

【0002】[0002]

【従来の技術】悪臭の素となる揮発性有機化合物(VO
C)(以下、VOCという)の処理装置として、燃焼
法、吸着法、生物法等があるが、ガス濃度が低く、大風
量の排ガスに対しては、これらの方法では、設備費並び
に運転費が高くなるためにあまり採用されてない。一般
には、これらの排ガスを濃縮してガス量を減少させ、こ
れを燃焼処理する方法が採られている。
2. Description of the Related Art Volatile organic compounds (VO
C) (hereinafter, referred to as VOC) treatment device includes combustion method, adsorption method, biological method, etc., but with respect to exhaust gas with low gas concentration and large air volume, these methods require equipment cost and operation cost. It is not often used because it becomes high. Generally, a method is adopted in which these exhaust gases are concentrated to reduce the amount of gas and the exhaust gas is burned.

【0003】低濃度かつ大風量の排ガスの濃縮方法とし
て従来から広く採用されている方法は、VOCを吸着す
る機能を持った吸着体、例えば、活性炭やゼオライト等
を担持したハニカムロータにVOCを一旦吸着させ、こ
れを少量の加熱空気で脱着することによって行われてい
る。
A method which has been widely adopted as a method for concentrating exhaust gas having a low concentration and a large air volume has been that a VOC is once adsorbed on an adsorbent having a function of adsorbing VOC, for example, a honeycomb rotor carrying activated carbon or zeolite. It is adsorbed and desorbed with a small amount of heated air.

【0004】この濃縮のメカニズムを図7、図8に示
す。図7は、従来例の濃縮式脱臭装置の概略斜視図であ
り、図8は、従来例の方法の模式フロー図である。図7
において、濃縮装置の構造体であるハニカムロータ1
は、駆動モータ5によって矢印Aで示す反時計方向に連
続的に一定速度で回転される。ハニカムロータ1は、V
OCを吸着する吸着ゾーン2、吸着したVOCを脱着し
てハニカムロータの吸着能力を回復させる再生ゾーン
3、並びに再生ゾーンで加熱されたハニカムロータを冷
却する冷却ゾーン4に分割されている。また、各ゾーン
は相互にガスのリーク(漏れ)が生じないようにシール
構造(図示せず)が施されている。
The mechanism of this concentration is shown in FIGS. FIG. 7 is a schematic perspective view of a concentrating type deodorizing apparatus of a conventional example, and FIG. 8 is a schematic flow diagram of a method of the conventional example. Figure 7
At the honeycomb rotor 1, which is the structure of the concentrating device
Is continuously rotated at a constant speed in the counterclockwise direction indicated by arrow A by the drive motor 5. The honeycomb rotor 1 has a V
It is divided into an adsorption zone 2 for adsorbing OC, a regeneration zone 3 for desorbing the adsorbed VOC to restore the adsorption ability of the honeycomb rotor, and a cooling zone 4 for cooling the honeycomb rotor heated in the regeneration zone. Further, each zone is provided with a seal structure (not shown) so that gas does not leak to each other.

【0005】ハニカムロータの部分は、その回転により
吸着ゾーン2、再生ゾーン3、並びに冷却ゾーン4の順
で連続的に移動させられる。対象となる処理ガスは、矢
印Bで示す方向に、吸着ゾーンを通されて、このガスに
含まれるVOCはハニカムロータに配置された吸着体に
吸着され、清浄(浄化)ガスとなり、大気に放出され
る。VOCを吸着したハニカムロータの部分は再生ゾー
ンに入り、この再生ゾーンでは、処理ガスの量と比べる
と少量である、加熱ヒータ6で加熱された加熱空気がハ
ニカムロータの部分に通されて、ハニカムロータに吸着
したVOCが脱着されて濃縮ガスとなる。
The rotation of the honeycomb rotor portion causes the adsorption zone 2, the regeneration zone 3 and the cooling zone 4 to move continuously in this order. The target processing gas is passed through the adsorption zone in the direction indicated by the arrow B, and the VOC contained in this gas is adsorbed by the adsorbent arranged in the honeycomb rotor, becomes a clean (purified) gas, and is released to the atmosphere. To be done. The portion of the honeycomb rotor that has adsorbed the VOCs enters the regeneration zone, and in this regeneration zone, a small amount of the heating air heated by the heater 6 is passed through the portion of the honeycomb rotor, The VOCs adsorbed on the rotor are desorbed and become concentrated gas.

【0006】VOCを加熱空気で脱着する際に、ハニカ
ムロータも当然加熱されるので、VOCを吸着する吸着
体の吸着能力が大幅に低下する。吸着能力を回復させる
ために、ハニカムロータの部分は、次の冷却ゾーンで大
気空気を通されることによって冷却され、再び吸着ゾー
ンに移動する。
Since the honeycomb rotor is naturally heated when desorbing VOCs with heated air, the adsorption capacity of the adsorbent for adsorbing VOCs is greatly reduced. In order to restore the adsorption capacity, the part of the honeycomb rotor is cooled by passing atmospheric air in the next cooling zone and moves to the adsorption zone again.

【0007】一般に、再生(脱着)を行う空気と冷却を
行う空気は、廃熱を回収するために、一連の流れとして
使用される。即ち、大気空気は冷却ゾーンに入り、ここ
で、ハニカムロータに蓄熱された顕熱を受けて温風とな
り、矢印Cで示すように、加熱ヒータ6に入り、この加
熱ヒータ6で、再生に必要な温度まで加熱され、再生ゾ
ーンに入り、矢印Dで示すように濃縮ガスとして取り出
される。再生ゾーンで脱着されたVOCを含む濃縮ガス
は、その後、触媒燃焼または直接燃焼法により処理され
る。
Generally, the air for regeneration (desorption) and the air for cooling are used as a series of streams to recover waste heat. That is, the atmospheric air enters the cooling zone, where it receives the sensible heat accumulated in the honeycomb rotor to become warm air, enters the heater 6 as indicated by arrow C, and is required by the heater 6 for regeneration. It is heated to a certain temperature, enters the regeneration zone, and is taken out as a concentrated gas as shown by arrow D. The enriched gas containing VOCs desorbed in the regeneration zone is then processed by catalytic combustion or direct combustion methods.

【0008】[0008]

【発明が解決しようとする課題】吸着体による濃縮現象
では、それぞれ、吸着は発熱現象であり、再生(脱着)
は吸熱現象である。このため、再生に必要な熱量は、V
OCを脱着する熱量とハニカムロータを加熱する熱量が
必要となる。しかるに、再生用の加熱空気の温度は、装
置の耐熱温度(特にシーリング材等)からの制約を受
け、また、高温下でのガス成分の変質および重合反応に
よる吸着体への悪影響などからも制約を受ける。このた
め、必要最低の温度が望ましい。また、同時に、再生加
熱空気量にも濃縮倍率の面から当然制約を受ける。この
ため、ガス成分を吸着したハニカムロータを完全に再生
するために必要な十分な熱量は、前述した制約条件の下
で与えなければならず、この制約された熱量による効果
的な再生が求められる。
In the concentration phenomenon by the adsorbent, the adsorption is an exothermic phenomenon, and the regeneration (desorption) is caused.
Is an endothermic phenomenon. Therefore, the amount of heat required for regeneration is V
The amount of heat for desorption of OC and the amount of heat for heating the honeycomb rotor are required. However, the temperature of the heated air for regeneration is restricted by the heat-resistant temperature of the equipment (particularly the sealing material), and is also restricted by the deterioration of the gas components at high temperatures and the adverse effect on the adsorbent due to the polymerization reaction. Receive. Therefore, the minimum required temperature is desirable. At the same time, of course, the amount of regenerated heating air is naturally limited in terms of the concentration ratio. Therefore, a sufficient amount of heat necessary to completely regenerate the honeycomb rotor that has adsorbed gas components must be given under the above-mentioned constraint conditions, and effective regeneration by this limited amount of heat is required. .

【0009】一般に、濃縮式脱臭装置の濃縮倍率は、5
〜15倍である。また、この濃縮倍率は、対象とする処
理ガスの条件等により決定される。また、同時に、処理
ガスの濃度が変動すると、濃縮されたガスの濃度も処理
ガスの濃度に比例して変動する。即ち、処理ガス量の1
/5〜1/15に決定された空気を冷却ゾーンに導入
し、この冷却ゾーンで、再生ゾーンで加熱されたハニカ
ムロータを冷却する。その後、さらにこれが加熱ヒータ
6で所定の温度まで加熱されて再生ゾーンに入り、ハニ
カムロータに吸着されたVOCを脱着して濃縮ガスとな
る。
Generally, the concentration ratio of the concentration type deodorizing device is 5
~ 15 times. Further, this concentration ratio is determined by the conditions of the target processing gas and the like. At the same time, if the concentration of the processing gas changes, the concentration of the concentrated gas also changes in proportion to the concentration of the processing gas. That is, one of the processing gas amount
The air determined to be / 5 to 1/15 is introduced into the cooling zone, and the honeycomb rotor heated in the regeneration zone is cooled in this cooling zone. After that, this is further heated to a predetermined temperature by the heater 6 and enters the regeneration zone, and the VOC adsorbed on the honeycomb rotor is desorbed to become a concentrated gas.

【0010】濃縮倍率が高くなると、再生用加熱空気量
が少なくなるため、十分な熱量が得られず、完全な再生
が行われない。即ち、十分な熱量が与えられないと、再
生は再生加熱空気の導入面近傍となり、下流面の再生は
不十分となり、ハニカムロータの吸着機能は十分に回復
しない。また、再生加熱空気温度をあまり高くすると、
処理ガスの成分の変質、重合等の恐れもあり、ハニカム
ロータにも好ましくなく、さらに装置の耐熱温度からも
制約を受ける。
When the concentration ratio becomes high, the amount of heating air for regeneration becomes small, so that a sufficient amount of heat cannot be obtained and complete regeneration cannot be performed. That is, if a sufficient amount of heat is not applied, the regeneration is near the surface where the regenerated heated air is introduced, the regeneration on the downstream side is insufficient, and the adsorption function of the honeycomb rotor is not sufficiently restored. Moreover, if the temperature of the regenerated heating air is too high,
There is also a risk of deterioration of the components of the processing gas, polymerization, etc., which is not preferable for the honeycomb rotor and is also restricted by the heat resistant temperature of the apparatus.

【0011】なお、図8において、符号8で示すもの
は、再生用ファンであり、9で示すものは、風量調節用
ダンパである。
In FIG. 8, reference numeral 8 is a reproducing fan, and reference numeral 9 is an air volume adjusting damper.

【0012】したがって、本発明の目的は、ハニカムロ
ータの再生ゾーンにおいて厚み方向にほぼ均一な温度分
布となるように再生用加熱空気を与えることによって、
高温過ぎずに十分な熱量を与えるように構成した濃縮式
脱臭装置における再生効率を高める方法を提供すること
にある。
Therefore, an object of the present invention is to provide the heating air for regeneration so as to have a substantially uniform temperature distribution in the thickness direction in the regeneration zone of the honeycomb rotor,
It is an object of the present invention to provide a method for enhancing the regeneration efficiency in a concentration type deodorizing device configured to give a sufficient amount of heat without being too hot.

【0013】[0013]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明は吸着ゾーン、再生ゾーンおよび冷却ゾー
ンに分割されたハニカムロータを有する濃縮式脱臭装置
における再生効率を高める方法において、再生ゾーンを
円周方向に複数個の再生ゾーンに分割し、各再生ゾーン
に再生用加熱空気を流すことを特徴とする方法を採用す
るものである。
To achieve the above object, the present invention provides a method for enhancing regeneration efficiency in a concentration type deodorizing apparatus having a honeycomb rotor divided into an adsorption zone, a regeneration zone and a cooling zone. The zone is divided into a plurality of regeneration zones in the circumferential direction, and heated regeneration air is flown into each regeneration zone.

【0014】[0014]

【実施例】次に、本発明の実施例を説明する。EXAMPLES Next, examples of the present invention will be described.

【0015】(実施例1)図1は、本発明の方法の実施
例1の模式フロー図である。なお、実施例1を含む以下
の各実施例において、従来例で用いられている部材と同
様な機能および構成を持つ部材は、同一の符号を付して
ある。
Example 1 FIG. 1 is a schematic flow chart of Example 1 of the method of the present invention. In each of the following examples including the first example, members having the same functions and configurations as the members used in the conventional example are designated by the same reference numerals.

【0016】図1において、再生ゾーン3は、円周方向
に複数のゾーンに分割され、例えば、この実施例では、
2分割されている。そして、2分割された再生ゾーンは
相互にリークがないようにシールされている。説明の便
宜上、分割された再生ゾーンのうち、吸着ゾーンに隣接
する片方に3aの符号を付し、冷却ゾーンに隣接する他
方に3bの符号を付すことにする。この実施例1におい
ては、加熱ヒータ6で所定の温度に加熱された再生用加
熱空気は、連続的に、最初に、吸着ゾーンに隣接する再
生ゾーン3aを通され、次いで、再生ゾーン3aを通す
加熱空気の方向とは反対方向に冷却ゾーンに隣接する再
生ゾーン3bを通される。これによって、ハニカムロー
タの厚み方向の温度分布が均一化され、再生効率の向上
が図られる。
In FIG. 1, the reproduction zone 3 is divided into a plurality of zones in the circumferential direction. For example, in this embodiment,
It is divided into two. The reproduction zones divided into two are sealed so that there is no leak between them. For convenience of explanation, one of the divided regeneration zones adjacent to the adsorption zone is labeled with 3a, and the other adjacent to the cooling zone is labeled with 3b. In the first embodiment, the regeneration heating air heated to a predetermined temperature by the heater 6 is continuously passed through the regeneration zone 3a adjacent to the adsorption zone first, and then the regeneration zone 3a. It is passed through the regeneration zone 3b adjacent to the cooling zone in the opposite direction of the heated air. As a result, the temperature distribution in the thickness direction of the honeycomb rotor is made uniform, and the regeneration efficiency is improved.

【0017】(実施例2)図2は、本発明の方法の実施
例2の模式フロー図である。実施例2は、図2から明ら
かなように、実施例1とは、再生用加熱空気が分割され
た再生ゾーンを通される順序が異なる点を除いては同一
である。即ち、再生用加熱空気は、最初、冷却ゾーンに
隣接する再生ゾーン3bを通され、次に、再生ゾーン3
bを通す加熱空気の方向とは反対方向に吸着ゾーンに隣
接する再生ゾーン3aを通される。これによって、実施
例1と同様に、ハニカムロータの厚み方向の温度分布が
均一化され、再生効率の向上が図られる。
Example 2 FIG. 2 is a schematic flow chart of Example 2 of the method of the present invention. As is apparent from FIG. 2, Example 2 is the same as Example 1 except that the order in which the heating air for regeneration is passed through the divided regeneration zones is different. That is, the heating air for regeneration is first passed through the regeneration zone 3b adjacent to the cooling zone and then the regeneration zone 3b.
The regeneration zone 3a adjacent to the adsorption zone is passed in the direction opposite to the direction of the heated air passing through b. As a result, similar to Example 1, the temperature distribution in the thickness direction of the honeycomb rotor is made uniform, and the regeneration efficiency is improved.

【0018】(実施例3)図3は、本発明の方法の実施
例3の模式フロー図である。実施例3は、再生用加熱空
気を2分割した再生ゾーンに導入する際に、加熱空気を
再生ゾーンに導く流路を分岐し、各分岐路中に風量調整
ダンパを設けている点で、実施例1、2とは異なってい
る。即ち、図3から明らかなように、加熱ヒータ6から
再生ゾーン3a、3bに至る流路が分岐により2つ設け
られ、その分岐路中に、風量調整ダンパ10B、10A
が設けられていて、各風量調整ダンパ10B、10Aに
よって、再生ゾーン3a、3bに導入される加熱空気の
量が調整される。なお、各再生ゾーン3a、3bから出
た加熱空気は、再び合流され、ファン8を介して風量調
整ダンパ9で総風量が調整される。これによって、ハニ
カムロータの厚み方向の温度分布が一層均一化され、再
生効率の向上がさらに図られる。
(Embodiment 3) FIG. 3 is a schematic flow chart of Embodiment 3 of the method of the present invention. Example 3 is carried out in that, when the heating air for regeneration is introduced into the regeneration zone divided into two, the flow path for guiding the heating air to the regeneration zone is branched, and the air volume adjustment damper is provided in each branch passage. Different from Examples 1 and 2. That is, as is apparent from FIG. 3, two flow paths from the heater 6 to the regeneration zones 3a, 3b are provided by branching, and the air flow rate adjusting dampers 10B, 10A are provided in the branch paths.
Is provided, and the amount of heated air introduced into the regeneration zones 3a, 3b is adjusted by the respective air volume adjustment dampers 10B, 10A. The heated air discharged from each of the regeneration zones 3a and 3b is merged again, and the total air volume is adjusted by the air volume adjustment damper 9 via the fan 8. As a result, the temperature distribution in the thickness direction of the honeycomb rotor is made more uniform, and the regeneration efficiency is further improved.

【0019】(実施例4)図4は、本発明の方法の実施
例4の模式フロー図である。実施例4は、再生用加熱空
気を2分割した再生ゾーンに導入する際に、加熱空気を
再生ゾーンに導く流路を分岐し、各分岐路中に風量調整
ダンパを設けている点で、実施例3と同様であるが、再
生用加熱空気が分割された各再生ゾーンを通される方向
が異なっている。即ち、実施例3では、加熱空気は、処
理ガスの通過方向(矢印Bで示す)とは反対方向に再生
ゾーン3aを通され、かつ処理ガスの通過方向とは同一
方向に再生ゾーン3bを通されるが、実施例4では、こ
れとは逆に、加熱空気は、処理ガスの通過方向とは同一
方向に再生ゾーン3aを通され、かつ処理ガスの通過方
向とは反対方向に再生ゾーン3bを通される。これによ
って、実施例3と同様に、ハニカムロータの厚み方向の
温度分布が一層均一化され、再生効率の向上がさらに図
られる。
(Embodiment 4) FIG. 4 is a schematic flow chart of Embodiment 4 of the method of the present invention. Example 4 is carried out in that when the heating air for regeneration is introduced into the regeneration zone divided into two, the flow path for guiding the heating air to the regeneration zone is branched and the air flow rate adjustment damper is provided in each branch passage. Same as Example 3, but the direction in which the heating air for regeneration is passed through the divided regeneration zones is different. That is, in the third embodiment, the heated air passes through the regeneration zone 3a in the direction opposite to the process gas passage direction (indicated by the arrow B), and passes through the regeneration zone 3b in the same direction as the process gas passage direction. However, in the fourth embodiment, conversely, the heated air is passed through the regeneration zone 3a in the same direction as the passage direction of the processing gas, and the regeneration zone 3b is opposite to the passage direction of the processing gas. Be passed through. As a result, as in the case of Example 3, the temperature distribution in the thickness direction of the honeycomb rotor is made more uniform, and the regeneration efficiency is further improved.

【0020】次に、本発明の効果を確認するために、従
来例と本発明を比較検討する。従来例の濃縮方法(図
7、図8)では、再生用加熱空気量が濃縮倍率で決めら
れるため、特に濃縮倍率が高くなると十分な熱量が得ら
れず、VOCを吸着したハニカムロータが完全に再生さ
れず、この結果、吸着効率が当然低下する。例えば、再
生用加熱空気の温度が160°Cの場合、濃縮倍率が高
くなると、再生用加熱空気量が減少し、再生ゾーンの出
口の温度は約40°C前後まで低下する。VOCの物性
にもよるが、再生空気温度が60°C以下になると、脱
着現象はあまり期待されず、ハニカムロータの再生ゾー
ンの下流側ではVOCは脱着されずに残留し、当然この
領域では吸着機能が失われる。
Next, in order to confirm the effect of the present invention, the conventional example and the present invention will be compared and examined. In the conventional concentration method (FIGS. 7 and 8), since the amount of heating air for regeneration is determined by the concentration ratio, a sufficient amount of heat cannot be obtained especially when the concentration ratio becomes high, and the VOC adsorbed honeycomb rotor is completely removed. It is not regenerated, and as a result, the adsorption efficiency is naturally lowered. For example, when the temperature of the heating air for regeneration is 160 ° C. and the concentration ratio increases, the amount of heating air for regeneration decreases and the outlet temperature of the regeneration zone decreases to about 40 ° C. Depending on the physical properties of the VOC, when the temperature of the regenerated air is 60 ° C or less, the desorption phenomenon is not expected so much, and the VOC remains without being desorbed on the downstream side of the regeneration zone of the honeycomb rotor. Loss of functionality.

【0021】図5は、吸着能力を説明するための模式図
である。図5aは、吸着能力が十分再生された吸着、再
生、冷却サイクルを示し、図5bは、再生が十分行われ
ない吸着、再生、冷却サイクルを示す。図5aの場合に
は、吸着能力に余裕があり、吸着効率は高い。図5bの
場合には、再生効率が低く、吸着能力が不十分であり、
当然吸着効率は低くなる。特に、破過領域(ニ)ができ
ると、効率は極端に低下する。なお、図5中、符号
(イ)はハニカムロータの厚みを示し、符号(ロ)はハ
ニカムロータの余裕領域を示し、符号(ハ)は実質上の
ハニカムロータの有効厚みを示す。また、図5中、ハッ
チング部分はVOCの吸着領域を示す。
FIG. 5 is a schematic diagram for explaining the adsorption capacity. FIG. 5a shows an adsorption, regeneration and cooling cycle with a sufficiently regenerated adsorption capacity, and FIG. 5b shows an adsorption, regeneration and cooling cycle with insufficient regeneration. In the case of FIG. 5a, the adsorption capacity has a margin and the adsorption efficiency is high. In the case of FIG. 5b, the regeneration efficiency is low and the adsorption capacity is insufficient,
Naturally, the adsorption efficiency becomes low. In particular, when a breakthrough region (d) is formed, the efficiency is extremely reduced. In FIG. 5, reference numeral (a) indicates the thickness of the honeycomb rotor, reference numeral (b) indicates the margin area of the honeycomb rotor, and reference numeral (c) indicates the effective thickness of the honeycomb rotor. Further, in FIG. 5, the hatched portion indicates the VOC adsorption area.

【0022】本発明では、限られた再生条件の下で、再
生ゾーンのハニカムロータの厚み方向の温度分布を均一
化して再生を行い、常に吸着ゾーンのハニカムロータを
図5aに示す状態に維持しようとするものである。
In the present invention, under the limited regeneration conditions, the temperature distribution in the thickness direction of the honeycomb rotor in the regeneration zone is made uniform, and the honeycomb rotor in the adsorption zone is always maintained in the state shown in FIG. 5a. It is what

【0023】図6は、再生方式の違いによる再生ゾーン
におけるハニカムロータの厚さ方向の温度分布を示すグ
ラフである。図中、破線は理想とする温度分布示す。即
ち、厚さ方向にほぼ同一高さの温度となる温度分布が理
想的である。図6aは、図7、図8で示すような従来例
の再生方式による温度分布を示し、図6bは、図1、図
2の実施例1、2における温度分布を示し、図6cは、
図3、図4の実施例3、4における温度分布を示す。図
6aの場合では、ハニカムロータの両端側の温度差が大
きく、温度の低い下流側では再生効率は期待できない。
また上流側の温度が必然的に高くなり、前述の理由から
好ましくない。図6bの場合では、従来例の方式と比べ
て温度分布はかなり改善される。図6cの場合では、温
度分布はさらに改善され理想とする温度分布に近い。
FIG. 6 is a graph showing the temperature distribution in the thickness direction of the honeycomb rotor in the regeneration zone depending on the regeneration method. In the figure, the broken line shows the ideal temperature distribution. That is, it is ideal that the temperature distribution has substantially the same height in the thickness direction. FIG. 6a shows a temperature distribution according to the conventional reproducing method as shown in FIGS. 7 and 8, FIG. 6b shows a temperature distribution in the first and second embodiments of FIGS. 1 and 2, and FIG.
The temperature distribution in Examples 3 and 4 of FIG. 3 and FIG. 4 is shown. In the case of FIG. 6a, the temperature difference between both ends of the honeycomb rotor is large, and regeneration efficiency cannot be expected on the downstream side where the temperature is low.
Further, the temperature on the upstream side inevitably becomes high, which is not preferable for the above reason. In the case of FIG. 6b, the temperature distribution is considerably improved compared to the conventional method. In the case of FIG. 6c, the temperature distribution is further improved and is close to the ideal temperature distribution.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
ハニカムロータの再生ゾーンにおいて厚み方向にほぼ均
一な温度分布となるように再生用加熱空気を与えること
によって、高温過ぎずに十分な熱量を与えるように構成
した濃縮式脱臭装置における再生効率を高める方法が得
られる。
As described above, according to the present invention,
A method for increasing the regeneration efficiency in a concentrating deodorizing device configured to provide a sufficient amount of heat without excessively high temperature by supplying heating air for regeneration so that a temperature distribution in the regeneration zone of a honeycomb rotor is substantially uniform in the thickness direction. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の方法の実施例1の模式フロー
図である。
FIG. 1 is a schematic flow chart of Example 1 of the method of the present invention.

【図2】図2は、本発明の方法の実施例2の模式フロー
図である。
FIG. 2 is a schematic flow chart of Example 2 of the method of the present invention.

【図3】図3は、本発明の方法の実施例3の模式フロー
図である。
FIG. 3 is a schematic flow chart of Example 3 of the method of the present invention.

【図4】図4は、本発明の方法の実施例4の模式フロー
図である。
FIG. 4 is a schematic flow chart of Example 4 of the method of the present invention.

【図5】図5は、吸着能力を説明するための模式図であ
る。
FIG. 5 is a schematic diagram for explaining adsorption capacity.

【図6】図6は、再生方式の違いによる再生ゾーンにお
けるハニカムロータの厚さ方向の温度分布を示すグラフ
である。
FIG. 6 is a graph showing the temperature distribution in the thickness direction of the honeycomb rotor in the regeneration zone depending on the regeneration method.

【図7】図7は、従来例の濃縮式脱臭装置の概略斜視図
である。
FIG. 7 is a schematic perspective view of a conventional concentrated deodorizing device.

【図8】図8は、従来例の方法の模式フロー図である。FIG. 8 is a schematic flow chart of a conventional method.

【符号の説明】[Explanation of symbols]

1 ハニカムロータ 2 吸着ゾーン 3 再生ゾーン、 3a、3b 分割した再生ゾーン 4 冷却ゾーン 6 加熱ヒータ 8 再生用ファン 9 風量調整ダンパ 10A、10B 風量調整ダンパ 1 Honeycomb rotor 2 Adsorption zone 3 Regeneration zone, 3a, 3b Divided regeneration zone 4 Cooling zone 6 Heating heater 8 Regeneration fan 9 Air volume adjustment damper 10A, 10B Air volume adjustment damper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01D 53/34 ZAB

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 吸着ゾーン、再生ゾーンおよび冷却ゾー
ンに分割されたハニカムロータを有する濃縮式脱臭装置
における再生効率を高める方法において、再生ゾーンを
円周方向に複数個の再生ゾーンに分割し、各再生ゾーン
に再生用加熱空気を流すことを特徴とする方法。
1. A method for enhancing regeneration efficiency in a concentration type deodorizing device having a honeycomb rotor divided into an adsorption zone, a regeneration zone and a cooling zone, wherein the regeneration zone is divided into a plurality of regeneration zones in a circumferential direction. A method comprising flowing heated air for regeneration into a regeneration zone.
【請求項2】 請求項1記載の方法において、前記再生
ゾーンを2分割することを特徴とする方法。
2. The method according to claim 1, wherein the reproduction zone is divided into two parts.
【請求項3】 請求項2記載の方法において、再生用加
熱空気を分割した1つの再生ゾーンに対してある方向に
流し、再生用加熱空気を分割した他の再生ゾーンに対し
て反対方向に流すことを特徴とする方法。
3. The method according to claim 2, wherein the heating air for regeneration is caused to flow in one direction with respect to one divided regeneration zone, and the heating air for regeneration is caused to flow in the opposite direction with respect to another regeneration zone. A method characterized by the following.
【請求項4】 請求項3記載の方法において、再生ゾー
ンに対してある方向に流した再生用加熱空気を続いて他
の再生ゾーンに流すことを特徴とする方法。
4. The method according to claim 3, wherein the heating air for regeneration flowing in a certain direction with respect to the regeneration zone is subsequently flowed to another regeneration zone.
【請求項5】 請求項1記載の方法において、再生用加
熱空気を分岐し、分岐した再生用加熱空気を各再生ゾー
ンに流すことを特徴とする方法。
5. The method according to claim 1, wherein the heating air for regeneration is branched, and the branched heating air for regeneration is flown to each regeneration zone.
【請求項6】 請求項5記載の方法において、再生用加
熱空気を分岐する各分岐路中に風量調整ダンパを設け、
各分岐路中に流れる再生用加熱空気の量を調整すること
を特徴とする方法。
6. The method according to claim 5, wherein an air flow rate adjustment damper is provided in each branch path for branching the heating air for regeneration.
A method comprising adjusting the amount of heating air for regeneration flowing in each branch.
【請求項7】 請求項5記載の方法において、分岐した
再生用加熱空気を各再生ゾーンに流す際、各再生ゾーン
に対して互いに反対方向に流すことを特徴とする方法。
7. The method according to claim 5, wherein when the branched heating air for regeneration is caused to flow through the respective regeneration zones, it flows in directions opposite to each other with respect to the respective regeneration zones.
JP6330569A 1994-12-07 1994-12-07 Improvement of regeneration efficiency in concentration type deodorizer Pending JPH08155252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330569A JPH08155252A (en) 1994-12-07 1994-12-07 Improvement of regeneration efficiency in concentration type deodorizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330569A JPH08155252A (en) 1994-12-07 1994-12-07 Improvement of regeneration efficiency in concentration type deodorizer

Publications (1)

Publication Number Publication Date
JPH08155252A true JPH08155252A (en) 1996-06-18

Family

ID=18234122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330569A Pending JPH08155252A (en) 1994-12-07 1994-12-07 Improvement of regeneration efficiency in concentration type deodorizer

Country Status (1)

Country Link
JP (1) JPH08155252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920900A1 (en) * 1997-11-05 1999-06-09 Nichias Corporation Gas treating apparatus
EP0939283A2 (en) * 1998-02-25 1999-09-01 SANYO ELECTRIC Co., Ltd. Humidity control apparatus
JP2001310110A (en) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd Gas concentration device
JP2002159821A (en) * 2000-11-28 2002-06-04 Seibu Giken Co Ltd Organic gas concentration apparatus
KR20020090477A (en) * 2001-05-28 2002-12-05 주식회사 나노테크닉스 A method of recovering solvent with high boiling point
KR20170049534A (en) * 2014-09-12 2017-05-10 뒤르 시스템즈 에이지 Method and regenerative separating apparatus for separating contaminants from process exhaust air

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920900A1 (en) * 1997-11-05 1999-06-09 Nichias Corporation Gas treating apparatus
US6080227A (en) * 1997-11-05 2000-06-27 Nichias Corporation Gas treating apparatus
EP0939283A2 (en) * 1998-02-25 1999-09-01 SANYO ELECTRIC Co., Ltd. Humidity control apparatus
EP0939283A3 (en) * 1998-02-25 2002-05-22 SANYO ELECTRIC Co., Ltd. Humidity control apparatus
JP2001310110A (en) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd Gas concentration device
JP2002159821A (en) * 2000-11-28 2002-06-04 Seibu Giken Co Ltd Organic gas concentration apparatus
KR20020090477A (en) * 2001-05-28 2002-12-05 주식회사 나노테크닉스 A method of recovering solvent with high boiling point
KR20170049534A (en) * 2014-09-12 2017-05-10 뒤르 시스템즈 에이지 Method and regenerative separating apparatus for separating contaminants from process exhaust air
US10682604B2 (en) 2014-09-12 2020-06-16 Dürr Systems Ag Method and regenerative separating apparatus for separating contaminants from process exhaust air

Similar Documents

Publication Publication Date Title
US6500236B2 (en) Method for decarbonating waste gas and decarbonating apparatus
US6294000B1 (en) Rotary concentrator and method of processing adsorbable pollutants
US20110209613A1 (en) Apparatus and method for in-situ high temperature regeneration of a rotor sorption concentrator
US6080227A (en) Gas treating apparatus
KR980008274A (en) Multiple thermal pulsation pressure fluctuation adsorption method
JP2007127401A (en) Method and device for purifying exhaust air contaminated with organic harmful substance
CN112638847B (en) Rotary bed adsorption system including recirculation isolation loop and purge/regeneration loop
JPH06343819A (en) Dry type dehumidifying device
JPH08155252A (en) Improvement of regeneration efficiency in concentration type deodorizer
US5891323A (en) Purification process
JPH05200231A (en) Dry dehumidifier
JPH08155253A (en) Control of concentration ratio in concentration type deodorizer
JP4372977B2 (en) Special gas dehumidifier
EP0707881B1 (en) Ammonia adsorption method
JP2002186822A (en) Adsorbing and desorbing apparatus
JPH04135611A (en) Device for removing carbon dioxide
JPH10146514A (en) Waste gas treatment apparatus
JP3531187B2 (en) Deodorizing device and deodorizing method
JPH0947627A (en) Apparatus for cleaning exhaust gas
JPH07256048A (en) Deodorizing apparatus
JPH06320A (en) Dry dehumidifier
JPH1015339A (en) Deodorizing device
JPH10305208A (en) Gas adsorption/desorption treating device
JPH0724239A (en) Air cleaner
JPH0970520A (en) Ammonia recovering device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120