JPS6329928B2 - - Google Patents

Info

Publication number
JPS6329928B2
JPS6329928B2 JP56130618A JP13061881A JPS6329928B2 JP S6329928 B2 JPS6329928 B2 JP S6329928B2 JP 56130618 A JP56130618 A JP 56130618A JP 13061881 A JP13061881 A JP 13061881A JP S6329928 B2 JPS6329928 B2 JP S6329928B2
Authority
JP
Japan
Prior art keywords
lens
magnetic pole
objective lens
pole piece
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56130618A
Other languages
Japanese (ja)
Other versions
JPS5832348A (en
Inventor
Takeshi Tomita
Kojin Kondo
Katsushige Tsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP13061881A priority Critical patent/JPS5832348A/en
Publication of JPS5832348A publication Critical patent/JPS5832348A/en
Publication of JPS6329928B2 publication Critical patent/JPS6329928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Description

【発明の詳細な説明】 本発明は試料面上に細く絞られた電子線を照射
し、試料面上の微小部分の分析を行うことのでき
る透過型電子顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission electron microscope that can analyze minute portions on a sample surface by irradiating the sample surface with a narrowly focused electron beam.

透過型電子顕微鏡において、試料の透過像を観
察しながら試料を移動させ、分析しようとする部
分を透過像中の中央部に配置させた後、第2段の
収束レンズにより電子線を絞つて分析しようとす
る部分にのみ電子線を照射し、その際発生するX
線等を検出して分析を行うことがなされている
が、電子線を第2段の収束レンズにより絞り込む
過程において像中の分析しようとする部分に確実
に絞り込まれて行くことを確認しながら行うた
め、対物レンズは第1図aに示すような結像条件
を満たすように励磁を固定したまま行つている。
但し第1図において、1は試料、2は対物レン
ズ、3は中間レンズ、4は中間レンズの物面、
EBは電子線である。
In a transmission electron microscope, the sample is moved while observing the transmitted image of the sample, the part to be analyzed is placed in the center of the transmitted image, and then the electron beam is narrowed down by the second stage converging lens for analysis. The electron beam is irradiated only on the part to be removed, and the X generated at that time is
Analysis is performed by detecting electron beams, etc., but this is done while making sure that the electron beam is focused on the part of the image to be analyzed in the process of narrowing down the electron beam using the second stage converging lens. Therefore, the excitation of the objective lens is kept fixed so as to satisfy the imaging conditions shown in FIG. 1a.
However, in Fig. 1, 1 is the sample, 2 is the objective lens, 3 is the intermediate lens, 4 is the object surface of the intermediate lens,
EB is an electron beam.

ところが、対物レンズを高分解能の透過像が得
られるように上述した励磁に設定した状態では、
第2図aに示すように対物レンズの前方磁界
PREの縮小率が充分でないため第2段の収束レ
ンズ9を介して導かれた電子線EBの試料1上に
おける照射域の直径は数1000Åより小さくするこ
とはできず、試料面上の微小部分の分析を行うこ
とはできなかつた。
However, when the objective lens is set to the above-mentioned excitation to obtain a high-resolution transmission image,
As shown in Figure 2a, the forward magnetic field of the objective lens
Because the reduction ratio of PRE is not sufficient, the diameter of the irradiation area on the sample 1 of the electron beam EB guided through the second stage converging lens 9 cannot be made smaller than several thousand Å, and the diameter of the irradiation area on the sample 1 cannot be made smaller than a few thousand Å. It was not possible to conduct an analysis of

本発明はこのような従来装置の欠点を解決し、
分析する試料面上の電子線の直径を大幅に縮小し
微小部分の分析を行なうことができると共に、分
析しようとする部分の選択のための像観察の際に
良質な像を倍率を損うことなく観察することので
きる透過型電子顕微鏡を提供するもので、対物レ
ンズの内側ヨーク11bの光軸C側に励磁コイル
15を設けると共に、対物レンズの下磁極片14
bの下側に該下磁極片14bとの間にギヤツプG
を有して第三の磁極片17を設け、前記励磁コイ
ル15に励磁電流を供給した際に前記ギヤツプG
間に補助レンズが形成されるように構成したこと
を特徴としている。
The present invention solves the drawbacks of such conventional devices,
It is possible to significantly reduce the diameter of the electron beam on the surface of the sample to be analyzed, allowing analysis of microscopic parts, and at the same time, when observing images to select the part to be analyzed, it is possible to obtain a high-quality image without compromising the magnification. This provides a transmission electron microscope that allows observation without any interference, and an excitation coil 15 is provided on the optical axis C side of the inner yoke 11b of the objective lens, and a lower magnetic pole piece 14 of the objective lens is provided.
There is a gap G between the lower magnetic pole piece 14b and the lower side of b.
A third magnetic pole piece 17 is provided, and when an excitation current is supplied to the excitation coil 15, the gap G
It is characterized by a structure in which an auxiliary lens is formed in between.

以下、本発明において基本となつている考え方
を第1図の光線図に基づいて説明する。
The basic concept of the present invention will be explained below based on the ray diagram of FIG. 1.

対物レンズは従来においては最高の分解能が得
られるようにその励磁電流が設定されているが、
試料1の位置を下磁極片側に一定量移動させるこ
とにより、対物レンズの前方磁界による試料入射
電子線径の縮小率を格段に増大させることができ
る。しかしながら、このように試料位置を移動さ
せた場合、第1図bに示す光線図から明らかなよ
うに試料1の像は対物レンズ1の前方に虚像5と
して形成され、中間レンズ3の物面4には形成さ
れない。従つて透過像は観察できないため、電子
線照射域を試料の分析しようとする部分に絞り込
んで行く際に、これを確認しながら行うことはで
きない。そこで、対物レンズ2の後段に第1図c
において6で示すような補助レンズを設け、補助
レンズ6によつて虚像5の像が中間レンズ3の物
面4に形成されるようにすれば、透過像を観察し
ながら絞り込みを行うことができる。尚、その際
補助レンズを対物レンズから離す程、電子線が補
助レンズに入射するまでに光軸から離れる程度が
大きくなり球面収差が大きくなると共に、観察倍
率が低下するが補助レンズ6の主面が対物レンズ
2の主面に可能な限り接近させるように構成すれ
ば、これらの影響を無くすことができ、そのた
め、本発明においては、対物レンズの下磁極片1
4bの下側に該下磁極片14bとの間にギヤツプ
Gを有して第三の磁極片17を設け、前記励磁コ
イル15に励磁電流を供給した際に対物レンズの
下磁極片14bが補助レンズの上磁極片として兼
用されてギヤツプG間に補助レンズが形成される
ように構成している。
Conventionally, the excitation current of the objective lens is set to obtain the highest resolution.
By moving the position of the sample 1 by a certain amount to one side of the lower magnetic pole, it is possible to significantly increase the reduction rate of the diameter of the electron beam incident on the sample due to the forward magnetic field of the objective lens. However, when the sample position is moved in this way, the image of the sample 1 is formed as a virtual image 5 in front of the objective lens 1, as is clear from the ray diagram shown in FIG. is not formed. Therefore, since the transmission image cannot be observed, it is not possible to narrow down the electron beam irradiation area to the part of the sample to be analyzed while checking this. Therefore, the rear stage of the objective lens 2 is
By providing an auxiliary lens as shown by 6 in , so that the image of the virtual image 5 is formed on the object plane 4 of the intermediate lens 3 by the auxiliary lens 6, it is possible to narrow down the image while observing the transmitted image. . In this case, as the auxiliary lens is moved away from the objective lens, the distance from the optical axis increases before the electron beam enters the auxiliary lens, increasing spherical aberration and decreasing observation magnification. These effects can be eliminated by making the lower magnetic pole piece 1 of the objective lens as close as possible to the main surface of the objective lens 2.
A third magnetic pole piece 17 is provided below the lower magnetic pole piece 14b with a gap G between it and the lower magnetic pole piece 14b, and when an excitation current is supplied to the excitation coil 15, the lower magnetic pole piece 14b of the objective lens assists. It is configured so that it is also used as the upper magnetic pole piece of the lens and an auxiliary lens is formed between the gap G.

以下、このような考えに基づく本発明の一実施
例を第3図を付して説明する。
An embodiment of the present invention based on this idea will be described below with reference to FIG.

第3図において7は電子銃、8,9は第1段、
第2段の収束レンズ、10はその励磁電源であ
る。11a,11bは各々対物レンズの外側及び
内側ヨーク、12は励磁コイルである。13は対
物レンズの励磁電源であり、14a,14bは対
物レンズの上磁極片及び下磁極片である。内側ヨ
ーク11bの光軸C側には補助レンズの励磁コイ
ル15が備えられており、16はその電源であ
る。対物レンズの下磁極片14bの下側にはギヤ
ツプGを有して下磁極片14bに対向するように
第3の磁極片17が配置されている。18はヨー
クであり、励磁コイル15を励磁することにより
ギヤツプG間に形成される磁界によつて補助レン
ズが形成される。3は中間レンズ、19は投影レ
ンズ、20は螢光板であり、1は試料であり、該
試料は通常の透過像を得る場合より、一定量下磁
極片14bに近い側に配置されている。
In Fig. 3, 7 is an electron gun, 8 and 9 are first stage,
The second stage converging lens, 10, is its excitation power source. 11a and 11b are outer and inner yokes of the objective lens, respectively, and 12 is an excitation coil. 13 is an excitation power source for the objective lens, and 14a and 14b are upper and lower magnetic pole pieces of the objective lens. An auxiliary lens excitation coil 15 is provided on the optical axis C side of the inner yoke 11b, and 16 is a power source thereof. A third magnetic pole piece 17 is arranged below the lower magnetic pole piece 14b of the objective lens so as to have a gap G and face the lower magnetic pole piece 14b. 18 is a yoke, and an auxiliary lens is formed by the magnetic field formed between the gap G by exciting the excitation coil 15. 3 is an intermediate lens, 19 is a projection lens, 20 is a fluorescent plate, and 1 is a sample, which is placed a certain distance closer to the lower pole piece 14b than when obtaining a normal transmission image.

このような構成において電源16より励磁コイ
ル15に供給される電流を調整して補助レンズに
よつて第1図cに示すように虚像5の像が中間レ
ンズ3の物面4に形成されるようにする。
In such a configuration, the current supplied from the power source 16 to the excitation coil 15 is adjusted so that the image of the virtual image 5 is formed on the object surface 4 of the intermediate lens 3 by the auxiliary lens as shown in FIG. Make it.

さて、このような状態においては螢光板20上
には試料の透過像が映し出されるため、この像を
観察しながら試料1を光軸と垂直方向に移動さ
せ、分析しようとする部分を観察像の中央に位置
させる。そこで、電源10より第2段の収束レン
ズ9に供給される電流を変化させ、試料面上にお
ける電子線の照射域を縮小させて行く。これに伴
い、螢光板20上に投影される像の径も縮小して
行くが、操作者はこのように縮小して行く像が分
析しようとする部分に向つて縮小して行くことを
確認しながらこの縮小を行うことができる。この
場合、試料の位置が通常の透過像を得る場合より
対物レンズの下磁極側に近づいているため、対物
レンズの前方磁界PREの試料入射電子線に対す
る縮小率が大きく、電子線の照射域を最も縮小さ
せた際の光線図は第2図bに示す如きものとな
り、試料面上における電子線照射域の直径は数10
Å程度まで小さくすることができる。従つて、こ
のような微小部分より発生したX線を図示外の検
出系により検出することにより、試料面上の微小
部分の分析を行うことができる。
Now, in such a state, a transmitted image of the sample is projected on the fluorescent plate 20, so while observing this image, move the sample 1 in the direction perpendicular to the optical axis and place the part to be analyzed on the observed image. Place it in the center. Therefore, the current supplied from the power source 10 to the second stage converging lens 9 is changed to reduce the irradiation area of the electron beam on the sample surface. Along with this, the diameter of the image projected on the fluorescent plate 20 also decreases, but the operator confirms that the image that decreases in this way decreases toward the part to be analyzed. This reduction can be done while In this case, the position of the sample is closer to the lower magnetic pole side of the objective lens than when obtaining a normal transmission image, so the reduction ratio of the forward magnetic field PRE of the objective lens with respect to the electron beam incident on the sample is large, and the irradiation area of the electron beam is The ray diagram when it is most reduced is as shown in Figure 2b, and the diameter of the electron beam irradiation area on the sample surface is several 10
It can be made as small as Å. Therefore, the minute portion on the sample surface can be analyzed by detecting the X-rays generated from such a minute portion using a detection system not shown.

更に又、本発明においては、対物レンズの下磁
極片14bの下側に該下磁極片14bとの間にギ
ヤツプGを有して第三の磁極片17を設け、前記
励磁コイル15に励磁電流を供給した際に対物レ
ンズの下磁極片14bが補助レンズの上磁極片と
して兼用されてギヤツプG間に補助レンズが形成
されるように構成しているため、補助レンズの位
置を対物レンズに最大限に近付けることができ、
そのため、 (1) 対物レンズを通過して補助レンズに入射する
電子線は軸外の電子線を殆んど含まないことか
ら、球面収差を小さくすることができ、それに
より分析すべき位置を選ぶために電子線の絞り
込みを行ないながら、電子顕微鏡像を観察する
際に良質の像を観察することができる。
Furthermore, in the present invention, a third magnetic pole piece 17 is provided below the lower magnetic pole piece 14b of the objective lens with a gap G between it and the lower magnetic pole piece 14b, and an exciting current is applied to the excitation coil 15. When supplying the objective lens, the lower magnetic pole piece 14b of the objective lens is also used as the upper magnetic pole piece of the auxiliary lens, and the auxiliary lens is formed between the gap G. can be brought close to the limit,
Therefore, (1) Since the electron beam that passes through the objective lens and enters the auxiliary lens contains almost no off-axis electron beams, spherical aberration can be reduced, and the position to be analyzed can be selected accordingly. Therefore, it is possible to observe a high-quality image when observing an electron microscope image while narrowing down the electron beam.

(2) 又、分析すべき位置を選ぶために電子線の絞
り込みを行ないながら、観察倍率が低下しない
から充分な倍率で像を観察できる。
(2) Furthermore, since the observation magnification does not decrease while narrowing down the electron beam to select the position to be analyzed, images can be observed at sufficient magnification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は補助レンズの作用を説明するための
図、第2図は従来及び本発明における対物レンズ
の前方磁界の電子線径縮小率の差を比較して示す
ための図、第3図は本発明の一実施例を示すため
の図である。 1:試料、2:対物レンズ、3:中間レンズ、
4:物面、5:虚像、6:補助レンズ、7:電子
銃、8,9:収束レンズ、10:励磁電源、11
a:外側ヨーク、11b:内側ヨーク、12:励
磁コイル、13,16:励磁電源、14a,14
b:上、下磁極片、15:補助励磁コイル、G:
ギヤツプ、17:磁極片、18:ヨーク、19:
投影レンズ、20:螢光板。
Fig. 1 is a diagram for explaining the action of the auxiliary lens, Fig. 2 is a diagram for comparing and showing the difference in the electron beam diameter reduction rate of the forward magnetic field of the objective lens in the conventional and the present invention, and Fig. 3 is a diagram for explaining the effect of the auxiliary lens. FIG. 1 is a diagram showing an embodiment of the present invention. 1: Sample, 2: Objective lens, 3: Intermediate lens,
4: Object surface, 5: Virtual image, 6: Auxiliary lens, 7: Electron gun, 8, 9: Converging lens, 10: Excitation power source, 11
a: outer yoke, 11b: inner yoke, 12: excitation coil, 13, 16: excitation power supply, 14a, 14
b: Upper and lower magnetic pole pieces, 15: Auxiliary excitation coil, G:
Gap, 17: Magnetic pole piece, 18: Yoke, 19:
Projection lens, 20: Fluorescent plate.

Claims (1)

【特許請求の範囲】[Claims] 1 対物レンズの内側ヨーク11bの光軸C側に
励磁コイル15を設けると共に、対物レンズの下
磁極片14bの下側に該下磁極片14bとの間に
ギヤツプGを有して第三の磁極片17を設け、前
記励磁コイル15に励磁電流を供給した際に前記
ギヤツプG間に補助レンズが形成されるように構
成したことを特徴とする透過型電子顕微鏡。
1. An excitation coil 15 is provided on the optical axis C side of the inner yoke 11b of the objective lens, and a third magnetic pole is provided with a gap G between the lower magnetic pole piece 14b and the lower magnetic pole piece 14b of the objective lens. A transmission electron microscope characterized in that a piece 17 is provided so that an auxiliary lens is formed between the gap G when an excitation current is supplied to the excitation coil 15.
JP13061881A 1981-08-20 1981-08-20 Transmission-type electron microscope Granted JPS5832348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13061881A JPS5832348A (en) 1981-08-20 1981-08-20 Transmission-type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13061881A JPS5832348A (en) 1981-08-20 1981-08-20 Transmission-type electron microscope

Publications (2)

Publication Number Publication Date
JPS5832348A JPS5832348A (en) 1983-02-25
JPS6329928B2 true JPS6329928B2 (en) 1988-06-15

Family

ID=15038527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13061881A Granted JPS5832348A (en) 1981-08-20 1981-08-20 Transmission-type electron microscope

Country Status (1)

Country Link
JP (1) JPS5832348A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344533A (en) * 2005-06-09 2006-12-21 Kawasaki Heavy Ind Ltd Photoelectric transfer type imaging tube for x-rays
JP2013096900A (en) * 2011-11-02 2013-05-20 Jeol Ltd Transmission electron microscope and observation method of transmission electron micrographic image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150650A (en) * 1974-10-30 1976-05-04 Hitachi Ltd Denshisensochino hitenshusahoseisochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150650A (en) * 1974-10-30 1976-05-04 Hitachi Ltd Denshisensochino hitenshusahoseisochi

Also Published As

Publication number Publication date
JPS5832348A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
US7223983B2 (en) Charged particle beam column
US7039157B2 (en) X-ray microscope apparatus
US7939801B2 (en) Electron beam observation device using pre-specimen magnetic field as image-forming lens and specimen observation method
US20120287258A1 (en) Charged particle beam microscope and method of measurement employing same
US4633085A (en) Transmission-type electron microscope
US8772714B2 (en) Transmission electron microscope and method of observing TEM images
JP2001202912A (en) Method of aligning opening in a charged particle beam system, having optical axis
US11955310B2 (en) Transmission charged particle microscope with an electron energy loss spectroscopy detector
JPH0235419B2 (en)
JPS6329928B2 (en)
US5304801A (en) Electron microscope
JP2004134386A (en) Particle optical arrangement and particle optical system
JP3533335B2 (en) Compound emission electron microscope for chemical analysis
JP3064335B2 (en) Transmission electron microscope
JP2839683B2 (en) Foucault electron microscope
US3869611A (en) Particle-beam device of the raster type
JPH06283128A (en) Electron microscope
JP3354846B2 (en) Magnification controlled charged particle beam irradiation system
JPS586267B2 (en) scanning electron microscope
JPH06231716A (en) Ion micro beam device
JPS61250952A (en) Electron microscope
JPH0619964B2 (en) electronic microscope
JP2014032943A (en) Scanning electron microscope for irradiating sample with electron beams having small energy width
JPH03738B2 (en)
JPH0261093B2 (en)